0000000000
0 16440 2009 0 20-34 20

Classification by Ordering Data Samples

Kazuya Haraguchi* Seok-Hee Hong! Hiroshi Nagamochi?

Abstract

Visualization plays an important role as an effective analysis tool for huge and complex
data sets in many application domains such as financial market, computer networks, biology
and sociology. However, in many cases, data sets are processed by existing analysis techniques
(e.g., classification, clustcring, PCA) beforc applying visualization. In this paper, we study
visual analysis of classification problem, a significant research issue in machine learning and
data mining community. The problem asks to construct a classifier from given sct of positive
and negative samples that predicts the classes of future samples with high accuracy. We first
extract a bipartite graph structure from the sample set, which consists of a set of samples and
a set of subsets of attributes. We then propose an algorithin that constructs a two-laycred
drawing of the bipartite graph, by permuting the nodes using an edge crossing minimization
technique. The resulting drawing can act as a new classifier. Surprisingly, experimental results
on bench mark data sets show that our new classifier is competitive with a well-known decision
tree generator C4.5 in terms of prediction error. Furthermore, the ordering of samples from
the resulting drawing enables us to derive new analysis and insight into data such as clustering.

1 Introduction

1.1 Background

We consider a mathematical learning problem called classification, which has been a significant
research issue from classical statistics to modern rescarch fields on learning theory (e.g., machine
learning) and data analysis (e.g., data mining) (9, 18, 3, 8]. Indeed, major existing methodologics
to this problem have a geometric, spatial flavor. The main aim of our rescarch is to establish a
new lcarning framework based on information visualization.

In classification, we arc given a set S of samples. Each sample is specified with valucs on n
attributes and belongs to either positive (+) or negative (—) class. The aim of classification is to
construct a function (called a classifier) from the sample domain to the class {+, —} by using the
given sample set .9, so that the constructed classifier can predict the classes of futurc samples with
high accuracy.

Many existing methodologies arc based on geometric concepts and construct a hyperplanc as
classificr. Classical ones (e.g.. Fisher’s linear discriminant in 1930’s and perceptron in 1960’s [12])

*Department of Information Technology and Electronics, Faculty of Science and Engineering, Ishinomaki Senshu
University, Japan (kazuyahQisenshu-u.ac.jp)

tSchool of Information Technologies, University of Sydney, Australia (shhong@it.usyd.edu.au)

IDepartment of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Japan
(nag@amp.i.kyoto-u.ac.jp)

21

assume the sample domain to be the n-dimensional real space and decide n+ 1 coefficients {w; }ro
of the hyperplane f(z) in the form:

n
f(z) = ijmj + wo,
=1

by which a sample z = (z,...,x,) is classified into the class determined by sgn{f(z)}. Nowadays,
kernel methods or support vector machines enable us to construct hyperplane classifier even from
non-spatial data (e.g., protein sequence, webgraph) [16, 13, 17, 15].

Existing methods have made great success in many application areas and one can find various
learning algorithms implemented on such softwarcs as WEKA [19]. When we use them, however, we
often face with such difficulties as scaling, choice of distance measure, hardness of interpretation,
many of which arise due to geometric concepts. Often it may not be ecasy to overcome these
difficulties. Furthermore it is not easy for human to interact with the resulting classifier or to
visualize the hidden structures implicitly learned by the methods. Thesc current situations require
us to develop a new framework of classification from another perspective.

1.2 Our Contribution

Visualization plays an important role as an effective analysis tool for huge and complex data sets
in many application domains such as financial market, computer networks, biology and sociology.
However, in many cases, data sets need to be processed by existing analysis techniques (e.g.,
classification, clustering, PCA) before they arc displayed in a two or three dimensional space.

In this paper, we hypothesize that good visualization (e.g., visual objects with low visual
complexity) itself can discover essential or hidden structure of data without relying on data analysis
techniques, which can lead to novel learning technique. Based on our hypothesis, we construct a
classifier using visualization and show the effectiveness of the classifier by empirical studies. The
main contribution of this paper is to open new possibility of such new learning methodologies that
can find and visualize essential information on data simultaneously.

We briefly outline how to construct our visual classifier from a set S of samples on a domain
Dy x - X D, of n attributes. We first represent the relationship between S and the domain as
a two-layered drawing of a bipartite graph, as shown in Figure 1, where each value node in the
top level represents one of the values in n attributes, and each sample node in the bottom level
representing one of the samples is joined by edges to the value nodes that specifies the sample.

We then try to reduce the number of edge crossings by changing the drawing (i.c., the ordering
of nodes on each side) and by replacing two subdomains into their product as a new subdomain
(increasing the number of valuc nodes) until a termination criteria is satisfied. Figure 2 shows
an cxample of a two-layered drawing of a final bipartite graph, where a large number of positive
(negative) samples form a cluster in the bottom level.

We can use the resulting drawing as a classifier as follows. Given a new sample, we determine its
position in the bottom level as the average of the positions of the corresponding valuc nodes, and
then judge it as positive (negative) if it falls among positive (negative) sample nodes. Performance
of classifier is usually evaluated by error rate on test sample set, and surprisingly, our classifier is
competitive with a well-known decision tree classifier C4.5 [11].

This paper is organized as follows. We give the formal definition of bipartitc graphs, called
“SF-graphs” and describe how to visualize the graphs in Section 2. We explain the crossing

22

value nodes

sample nodes e positive e negative

Figure 1: The initial SF-graph from MONKS-1

minimization algorithm for combining subdomains and permuting orderings of nodcs in SF-graphs
in Scction 3. In Section 4, we show how to use visualized SF-graphs as a new classifier. We present
some empirical studies in Section 5 and make concluding remarks in Scction 6.

2 Preliminary

2.1 Samples and Features over Attributes

In the subsequent discussion, we assume that a set S = {8;,..., s} of positive/negative samples
over n attributes is given. Let D; denote the domain of attribute j, i.c., the sct of all values taken
as a value of attribute j, wherc we assume that each D; is a finite unordered set of at lcast two
discrete values. Each sample s; is specified by an n-dimensional vector s; = (8i.1,8i2,.-.,8in)
such that s;; € D, for each attribute j € {1,2,...,n}. Table 1 shows a set of six samples over 4
attributes.

To handle subdomains of the entirc domain, we define “features” and “feature sets.” A feature
is a nonempty subset F' C {1,2,...,n} of the n attributes, and the domain Dr of a feature
F = {j1,...,7q} is decfincd as the set of all combinations of values taken by attributes in F, i.e.,
Dr = Dj, x --- x Dj,. The restriction s{r of a sample s; = (8i,1,8i,2y.++,8i,n) to feature F is
defined by (8;,j,+8i,j3,-- - 8i,j,) € Dr. A value v € Dp is called covered if there is a sample s; € §
with s;|F = v, and a feature F is called covered if all values v € D are covered. A feature set
F = {F1,...,Fp} is a set of disjoint features, i.c., Fx N Fxr = @ for k # k’. The set of all valucs in
the domains of features Fy,..., Fy is denoted by Dr = Dp, UDF, U---UDp,.

2.2 SF-graphs

Given a feature sct F = {F,...,F,}, we represent the relationship bctween the sample set S
and the set Dx of values by sample-feature graph (SF-graph), which is a bipartite graph G =
(D#, S, Ex), defined as follows.

23

value nodes

sample nodes e positive e negative

Figure 2: A final SF-graph for MONKS-1

Table 1: A sample set S = {s1,...,s6} with D; = {0,1}, D; = {0,1,2}, D3 = {T,F} and
Dy = {Y,N}

Class | Att. 1 Att. 2 Att. 3 Att. 4
81 + 0 2 T Y
S2 + 1 1 F N
83 + 0 0 T Y
84 - 1 0 F N
S5 - 1 1 T Y
Se - 0 2 F N

e Each value v € Dr is represented by a node, called a value node in the first node set, and
cach sample s; € S is represented by a node, called a sample node in the second node set,
where we use the same notation for nodes for simplicity.

e A value node v and a sample node s; is joined by an edge (v,s;) € Dx x S if and only if
8i|rm, = v for some feature Fy € F. Thus the cdge set is given by

Er = {(v,s;) € D x S| si|p, = v for some F} € F}.

If F is a singleton F = {F,}, we write Gx by Gp, for convenience.

Figure 3 shows SF-graph Gx = (Dz,S,EF) of the sample sct S in Table 1 for featurc set
F = {{1},{2, 3}, {4}}. The associated value vector is shown above each value node. Obscrve that
SF-graph shows the membership of samples to the subdomains determined by features in F.

2.3 Visualization by Two-Layered Drawings

We visualize SF-graph Gz with a two-layered drawing, which is defined by a pair of orderings on the
two node sets in G». We denote an ordering on a sample set S by a bijection o : § — {1,...,|S|}.

24

O iEH AP 00D @D (LD O

Dy Dr, Dry

s 82 S3 84 85 86

Figure 3: SF-graph Gx = (D#x,S,Er) of the sample set S in Table 1 constructed for F =

{{1}:{2,3}, {4}}

For a set F of features, we denote an ordering on the set Dz of value nodes by a bijection
mp, ¢ Dr — {1,...,|Dx|}. In the rest of the paper, we abbreviate mp, into 7rx (7p, with
F = {Fx} into m) for convenience if no confusion arises. In the two-laycred drawing, the value
nodes in Dx are placed in the top level according to the order 7, while the sample nodes in S
arc placed in the bottom level according to the order o. Let x(Gr,mx,0) denote the number of
cdge crossings in the drawing (nx,0) of G£.

In order to find a “good” visualization of the given sample set .S, we need to find a feature set
F = {Fy,...,Fp} and its two-layered drawing (7x, o) such that

x(Gx,7x,0) is minimized

subject to :
FLU---UF,={1,2,....n},
each fcature Fi € F is covered.

The motivation of this formulation is as follows. There are many graph drawing studics claiming
that cdge crossings has the greatest impact on readability among various criteria (e.g., bends,
symmetry) {10, 6]. In terms of SF-graph, crossing minimization may provide us good information
on the true locations of samples in their domain which we cannot usually sce.

We claim that the optimal ordering on sample nodes reflects their true locations. This claim is
supported by the following obscrvation: Let us take a feature set F having only one featurc. We
show how crossing minimization works for such Gx in Figurc 4. We observe that samples having
the same value (i.e., those belong to the same subdomain) get gathered together in a chain of
samples, which we call a sample chain, as the result of crossing minimization.

Note that merging two features Fi, Fxr € F into a new onc Fg» = Fj U Fy gives a two-
layercd drawing with a smaller number of edge crossings. For an extreme example, the fcature set
F = {F; ={1,...,n}} admits a two-layered drawing (7r,o) with no edge crossings, although F;
is not covered in general (in many data sets, it holds that S € Dy x - - - x Dy,). However, we are not
intercsted in uncovered fcatures. Discarding such ones, the number of value nodes from a featurc of
our intcrest is bounded by m, while the domain of a feature, direct product of attribute domains,
can be exponentially large unless restricted. Since we have no information on uncovered values,
continuing to generatc uncovered featurcs may casily result in overfitting to the given sample set.

25

81 S2 S3 S4 85 Sg 81 83 86 84 85 82

Figure 4: Crossing minimization on SF-graph with one feature

Hence we can expect that the above good visualization identifies similar samples and collects them
as sample chains over a well-structured sct of subdomains.

2.4 Crossing Minimization

We now review the studies on crossing minimization in two-layerced drawings. Two-sided crossing
minimization problem (2-CM) asks to dccide both 7z and o that minimize x(Gx, 7, o). However,
2-CM is NP-hard even if the ordering on one side is fixed [4, 2, 7]. This restricted version of 2-
CM is called one-sided crossing minimization problem (1-CM). We design a heuristic procedure of
crossing minimization on SF-graph in the next section, where 1-CM with a fixed ordering on Dx
forms its bases. Thus, we can formalize 1-CM as follows.

Problem 1-CM(Gx,7x)
Input: A bipartite graph G = (D#, S, Ex) and an ordering mx on Dg.

Output: An ordering o on S that minimizes x(Gx,7x, o).

3 Algorithm to Grow up SF-graph

In this section, we describe our algorithm PERMUTE-AND-MERGE for finding a “good” visualization
of a given sample set S. It consists of two subroutines, one for combining two features into a new
one, and the other for permuting value (sample) nodes to reduce edge crossings. Note that replacing
two features Fy and Fy. with their union F = Fj U Fy increases the number of value nodes and
decreases the number of edges in SF-graph, since |Dr| = |Dr,| X |Dr,, | is larger than |Dpg, |+ |DrF,, |
and two edges (s;, a) and (s;,b) with a € Dg, and b € Dp,, arc replaced with a single edge (s, (a,b)),
(a,b) € Dp. Thus the algorithm grows up the value node side of SF-graph by combining featurcs
until no two features Fy and Fj. generate a new covered fecature F' = Fj U Fy/.

Algorithm PERMUTE-AND-MERGE is described in Algorithm 1. The algorithm starts from the
sct F of n singleton features (line 2) and arbitrary orderings on value and sample nodes (line 3).
Then it iterates computing node orderings by crossing minimization (using procedurec PERMUTE
in line 5) and merging an appropriate pair of features into one (using function MERGE in line 6); if
no pair results in a covered feature, then the algorithm terminates. The next two sections describe
the two subroutines, respectively.

26

Algorithm 1 PERMUTE-AND-MERGE

1: procedure

2 Fe—{{7}lie{l,....,n}} > G r is constructed
3 mF,0 « arbitrary orderings on Dx, S

4 repeat

5: PERMUTE

6 until MERGE outputs no

7 output Gx and (7x,0)

8: end procedure

Algorithm 2 PERMUTE-BY-LS
9: procedure

10: repeat

11: mHt e oMt o

12: for all 7’z € N(nx) do

13: o' «1-CM(GF, %)

14: if x(Gr,7%,0") < x(GFr,mr,0) then
15: TF g, 0 0

16: break the for-loop

17: end if

18: end for

19: until 7 = 781 and o = o't

20: end procedure

3.1 Procedure PERMUTE

The subroutine PERMUTE can be any algorithm for crossing minimization. Here we proposc
PERMUTE-BY-LS in Algorithm 2, a heuristic method based on local search. Starting from an
ordering 7x. the local scarch sccks for a better ordering 7’z in its neighborhood. The ncighborhood
of mr, denoted by N(mx), is a sct of orderings which can be obtained by a slight change of 7. A
ncighbor ordering 7’s € N(mx) is evaluated by edge crossings x(Gx, 7'z, 0’) where o’ is obtained
by solving 1-CM(Gg. 7’) (lines 13 and 14). If the edge crossings is smaller than the previous one,
then the procedure adopts 7’z and ¢’ (line 15) and continues to search the neighborhood of the
new mr. Otherwise, the procedurc terminates.
The followings are detailed settings of PERMUTE-BY-LS.

Restriction on Value Node Ordering. In order to reduce the search space, we restrict our-
selves to such mx where valuc nodes from the same feature are ordered consecutively, as in Fig-

ure 3. This restriction cnables us to represent 7+ as a concatenation of p orderings 71,...,7, on
Dr,, ..., Dr,, where the concatenation is given by an ordering n* : 7 = {F,....,Fp} —{1,...,p}.
Thus 7 x(v) for v € Dp, is given by:

rr(v) = > D, | + Tk (v).

k': w*(Fir)<m*(Fy)

27

Pn Pm
R IV I Y S S = S VR T
(@B (LF) (0.0 1) (1T (0F):

8¢ 82 83 81 84 S5
018 6/15 715 8/18 10/15 14/15

Figure 5: SF-graph ordered by the barycenter heuristic

It is casy to show that the total number of edge crossings is given by:

p
X(G.Faﬂ-f"y d) = Z X(GFkiﬂ.k‘, U)
k=1

+pp - 1)ISI(S] -1)/2, (1)

where the second term of the right hand is a constant for a fixed p. The above equality (1) mcans
that the number of edge crossings is invariant with a choice of an ordering 7* on F. In what

follows, we concentrate on searching 7, ..., 7, during the procedure, assuming that 7* is chosen
arbitrarily.

Neighborhood. For neighborhood N(nx), we take the set of all orderings on D which can be
obtained by swapping m(v) and mg(v') for any v,v' € Dp, (kK = 1,...,p). In line 12, a neighbor
7% € N(ms) is chosen at random.

Solving 1-CM. We use the barycenter heuristic in solving 1-CM(Gx, 7'z) to decide ¢’ in line 13
[14, 7]. The barycenter heuristic permutes the set S of sample nodes in the increasing order of
barycenter values: Let us take any subset Dp, € Dr (k=1,...,p). For a value node v € Dp, and
an ordering 7, on Dp,, we define the normalized indez I(v, 7},) as follows:

L(v) -1
I(v,m;) = E'i(—vl———- 2
(k) IDFkI —1 ()
The barycenter 3(s, 7’) of a sample node s € S (w.r.t. an ordering 7z on Dr including 71, .. .,)
is defined by
1P
ﬂ(s”’rlf‘)zgz-{(siﬂuﬁk)' (3)
k=1

Figure 5 shows the result of the barycenter heuristic on the SF-graph of Figure 3, along with nor-
malized indices of value nodes and barycenter values of sample nodes. We note that I(v,n}) = mi(v)
is usually used in the literature to number value nodes. However, by (2), all features have cqual
influence in deciding barycenter since I(v,n}) € [0, 1], which improved the learning performance
in our preliminary experiments.

28

X‘:QsXcol:z X=2»Xcol=0

Figure 6: Illustration of x and xco;

Evaluation of Orderings. In line 14, it is natural to usc the number of edge crossings x in
cvaluation of orderings (mr,o0), but we can introduce various evaluating functions thecre. For
cxample, assume coloring each edge (v, s;) € E according to the class of sample s; € S. Then we
can definc colored edge crossings xcoi(Gr,7F,0) to be the number of crossings between different,
colored cdges. In the two drawings in Figure 6, xcoi prefers the right one while y rates both
situations similarly. By using x.o as an evaluator, we can cxpect samples belonging to the same
class to form clusters.
Analogously with x in (1), xcol (G, T, o) can be represented as the summation of Xcol(GF, . k. 0)'s

and a constant. Taking the quality of feature into account, we define weighted colored edge crossings
Xeol(GF, mx,0) by

p

* Xcol(GFy , Tk, 0)

co G WAOFE,0) = 4
Xeol(GF 75,) kE=1 D (4)

for an tmpurity function p(Fx) on Dp, which indicates the quality of feature Fy. Wec use the
following for our experiments:

p(F) = Y deg*(v)deg™ (v),

UEDpk

where degt(v) and deg™ (v) denote the mumbers of positive and negative sample nodes s; € S
with s;|F, = v, respectively. The p(F)) becomes small (resp., large) if Fi divides the samplc sct S
into pure (resp., impure) subsets in the sense of class distribution and thus may (resp., may not)

have nice information on classification. Then x, in (4) must be much influcnced by xco of good
featurcs.

3.2 Function MERGE

The subroutine MERGE in Algorithm 1 can be any function that outputs either yes or no according
to whether there exists an appropriate pair of features to be merged. It should also merge such a
pair into a new featurc if yes.

We present our algorithm MERGE-BY-PRIORITY in Algorithm 3. The algorithm first constructs
a priority queue Q for all pairs of features in F (line 22). The prioritization of fecature pairs

determines the ordering according to which they are tested for merge, and we will mention the
details below.

29

Algorithm 3 MERGE-BY-PRIORITY
21: function

22: Q « a priority queue for all pairs of features in F
23: while Q is not empty do

24: {F%, Fi'} «— dequeue(Q)

25: F — F,U Fp

26: if I is covered then

27: F (f\{Fk,Fkl})U{F}

28: reconstruct Gz for the new F
29: initialize w~

30: o «—1-CM(Gx,7x)

31: return yes

32: end if

33: end while

34: return no

35: end function

The algorithm removes the feature pair {Fx, Fx} from the head of Q (opcration dequeue in
line 24) and tests whether it can be merged under our criteria. If Q becomes empty as the result
of repetition of removal, then the algorithm returns no, indicating that there is no appropriate
feature pair to be merged. _

We test in line 26 whether the new F merged from Fy and Fy is covered, i.e., all generated
value nodes in F are connccted to sample nodes in the reconstructed SF-graph. For example,
starting from F = {{1}, {2}, {3}, {4}}, the pair of features {2} and {3} passes the test since all
resulting value nodes are connected, as shown in Figures 3 or 5.

If the feature pair {F}, Fi-} passes the test, then the algorithm merges Fy, and Fj into a new
featurc F' = F) U F, reconstructs SF-graph, initializes 7 and o and returns yes (lines 27 to 31).
Now lct us describe the details of the algorithm.

Prioritization of Feature Pairs. Merge of feature pair has great influence on the quality of
the final drawing. Hence we should be careful in choosing the priority measure which decides the
ordering for test. In our cxperiments, we give higher priority to such a pair {Fy, Fi-} that has a
smaller value in the following summation:

Xcol(GFk ore 0) Xcol(GF,,, s Mkt o U)
p(F) p(Fier) ’

which comes from the definition of weighted colored edge crossings (4). We expect the above
evaluator to refine features following the sample ordering well (which have small x¢01) or to remove
impure features (which have large p).

(5)

Initialization of Value Node Ordering. In line 29, for the new D, we need to decide 7 so
that it serves as a good initial solution in the next local search. Let us recall that F has p — 1
features and that 7x is determined by orderings on p — 1 value node subsets.

We now describe how to choosc mr on the value node set Dy arising from the new feature
F = FyUFy . As we have m; on Dp, and 7 on Dp,, which have been parts of the local optimum

30

Table 2: Summary of data sets from UCI Rcpository

Data |S] n
MONKS-1 124 6
MONKS-2 169 6
MONKS-3 122 6
BCW 699 9 (22.6)

GLASS 214 9 (15.9)
HABER 306 3 (34.4)
HEART 270 13 (23.7)
HEPA 155 19 (19.5)
IONO 200 34 (42.5)

found in the last local search, we decide nr by using lexicographic ordering based on them: we
define r(a) < wr(b) for two values a,b € Dr if and only if the following holds:

(m:(alp,‘) < TI'k(blpk)) or

(mx(alr,) = 7x(blr,) and 7k (alF,.) < mes (bl).

Finally, we kecp the orderings for the rest p — 2 value node subsets which have not been changed
by merge.

4 Classifying with Visualized SF-graphs

In this section, we describe how to usc a two-layered drawing (7=, o) of a final SF-graph G as a
new visual classifier. Let us denote a test sample by t € D; x -+ x D,. We classify ¢t according
to its ncarest neighbor in barycenter: we examine the value nodes to which sample node ¢ should
be connccted, i.e., the value node v € Dp, with t|g, = v for each feature Fx (k = 1,...,p), and
compute its barycenter 8(t, mx) by (3). Finally, we classify ¢t into the class of the nearest sample
in terms of barycenter.

For example, let us take the SF-graph in Figure 5 again. In this case, a test sample ¢t =
(1,2,F,Y) has barycenter 10/15 and is classified into negative class since negative sample 84 is the
nearcst.

5 Empirical Studies

In this section, we present empirical studies on data sets from UCI Repository of Machine Learning
[1]. First we give summary of the data sets, and then describe experimental results.

5.1 Data Sets

Table 2 shows the summary of the used data sets, where we will explain the decimals in the
rightmost column later. MONKS-1 to 3 are artificial data sets in the sense that the oracle function
from the sample domain to the class set is available. In these data sets, each attribute j has 2 to

31

value nodes

sample nodes ® positive ®negative

Figure 7: SF-graph obtained from MONKS-2

4 categorical valucs as its domain D;. For cxample, a sample s; = (s;1,...,8i,6) in MONKS-1 is
positive if and only if (s;; = s:2) or (s;5 = “1”).

The others arc real data scts, where the oracle is not available. For example, BCW (abbrevia-
tion of breast-cancer-wisconsin) consists of 699 samples (patients), where 241 samples arc positive
(malignant) and the rest 458 samples are negative (benign). Each sample has intcgral values for 9
attributes (e.g., clump thickness, uniformity of cell size).

We cvaluate a classifier by its prediction crror rate on future samples. In the literature, predic-
tion crror rate is usually estimated by constructing a classificr from a training set of samples and
then cvaluating its crror ratc on a test set. For artificial data sets, we take the cntirc data sct as
the training sct and consider all possible samples as the test set by generating them. The test sct
contains 432 samplces in all for each MONKS data set.

For rcal data sets, we cstimate prediction error ratc by the average of error rates observed in 5
trials of 10-fold cross validation, a well-known methodology to divide the data set into training and
test sets. In thesc data scts, some attributes take continuous numerical values which cannot be
treated in our formulation. Thus we generate binarization rules (e.g., a rule may map a continuous
valuc to 1 if it is larger than a computed threshold, and to 0 otherwisc) from a training sect by the
algorithm proposed in [5], and then construct a classifier from the binarized data set. A decimal
in Table 2 indicates average on the number of gencrated binary attributes.

5.2 SF-graphs

- Figures 2 and 7 show the output SF-graphs for MONKS-1 and 2 respectively. The sample chain
extracted from the output SF-graph for BCW is shown in Figurc 8. In all figures, we sce that
samples of the same class form clusters. We show how SF-graph provides information in interactive
data analysis.

MONKS-1. Among samples remote from boundarics of clusters, we find those belonging to the
class to a strong degrce: a sample in MONKS-1 is positive if and only if it satisfies either condition
stated in the last subsection. Let us regard those satisfying both conditions as strongly positive
samples. The training set contains 8 strongly positive samples, and we obscrved that they are

32

20

10

0

Figurc 8: Sample chain from BCW and the number of 1’s in sample vector

Table 3: Prediction crror rates (%)

Data SFC C4.5

MONKS-1 16.20 0.00
MONKS-2 25.60 29.60
MONKS-3 19.36 0.00
BCW 5124053 5.16 +£0.64
GLASS 9.86+094 7.74 +£1.63

HABER 38.30 +1.69 25.50 £ 1.16
HEART 26.07£1.11 21.31+1.60
HEPA 23.54 £ 2.03 20.89 + 1.52
IONO 20.20 +£1.50 14.40 +1.08

actually gathered in the left end of the samplc chain.

MONKS-2. Wec scc that similar samples get closer in the sample chain: roughly spcaking, we
sce two large clusters of positive samples in Figurc 7. A sample s; in MONKS-2 is positive if and
only if s; has nominal “1” for cxactly two attributecs. We obscrved that the right cluster contains
all positive samples having nominal “1” for the 1-st attribute, and that the left cluster contains
morc than 70% of positive samples (20 out of 28) having nominal “1” for the 5-th attribute.

BCW. Figurc 8 shows the number of 1’s in binarized sample vector by green line besides the
obtained sample chain. Based on our rescarch experience, we have observed that samples are more
likely to be positive with many 1’s although we do not know the oracle function of BCW cxactly.
We can view the phenomena in the figure, where degree of class membership is also reflected in
the sample chain.

5.3 Classification

We construct an SF-graph bascd classifier (SFC for short) as described in Scction 4. We present
prediction crror rates in Table 3, where we compare our SFC with C4.5 [11], a well-known decision
trce gencrator. Standard deviation is shown for real data scts, which was derived from 5 trials

33

of 10-fold cross validation. C4.5 constructs dccision trces within 1 second in all cases while SFC
takes from 1 (for GLASS) to 120 seconds (for IONQ), which is not too cxpensive. We obscrved
that computation time of SFC is proportional to the number of attributes which decides the size
of neighborhood in the local scarch. All experiments are conducted on our PC carrying 2.83GHz
CPU and 4GB main memory.

A typical decision trec is regarded as disjunction of if-then rules, cach of which is represented
by conjunction of conditions on one attribute value. We can realize small decision trees casily that
represent the oracle functions of MONKS-1 (sce Section 5.1) and 3, and thus it is rcasonable to
say that C4.5 is successful for the two data sets. On the other hand, it must be not be so casy to
represent the oracle of MONKS-2 (see Section 5.2) by small tree, and for such a data set, SFC is
superior to C4.5.

Let us discuss our results for real data sets. Qur SFC is worse than C4.5 for almost all the
data sets but is competitive with BCW. Thus SFC can attain sufficient classifiers for suitable data
sets. We nced to further examine what data type is suitable for SFC, but for such data scts, SFC
surcly scrves as an excellent classifier.

6 Concluding Remarks

Our results are significant particularly in the following sense: for machine learning research, our
classifier is quite different from existing approaches because it is constructed based on combinatorial
formulation (bipartite graph and crossing minimization) rather than gecometric concepts. We asscrt
that decision trce is also onc of geometric classifiers since a typical algorithm constructs a decision
tree by partitioning the sample domain with hyperplancs, even though it is represented by trec
on the surface. Thus our work may give a new dircction to studies of learning problems. For
information visualization, on the other hand, we could show possibility of such a new scheme that
cnables human to gain knowledge using visualization.

It secems possible for us to improve the performance of our SFC classifier further. For example,
we may divide a valuc node by the current definition into a pair of positive and ncgative valuc
nodes, where positive (resp., negative) sample nodes are connected to the former (resp., latter)
ones. This setling enlarges the search space, but we think that it should be cflective for our
purpose. Our future work also includes finding good application arcas of our methodology to gain
some more insights from the feedback.

This work is supported by Grant-in-Aid for Young Scientists (Start-up, 20800045) from Japan
Socicty for the Promotion of Science (JSPS).

References

[1] A. Asuncion and D.J. Newman. UCI Machine Learning Repository. Univer-
sity of California, Irvine, School of Information and Computer Sciences, 2007.
http://www.ics.uci.edu/ mlearn/MLRepository.html.

[2] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartitc graphs. Algorithmica,
Vol. 11, pp. 379-403, 1994.

[3] J. H. Friedman. Recent advances in predictive (machine) learning. Journal of Classification,
Vol. 23, pp. 175-197, 2006.

(4]

(5]

(6]

(8]

[9]

(10]

(15)

(16]
(17]

(18]

(19]

34

M. R. Garcy and D. S. Johnson. Crossing numbcr is NP-complcte. SIAM Journal on Algebraic
and Discrete Methods, Vol. 4, pp. 312-316, 1983.

K. Haraguchi and H. Nagamochi. Extcnsion of ICF classificrs to rcal world data scts. In
IEA/AIE, Vol. 4570 of Lecture Notes in Computer Science, pp. 776785, Kyoto, Japan, 2007.
Springcr.

W. Huang, S. Hong, and P. Eades. Layout effects on sociogram perception. In Proceedings of
Graph Drawing 2005 (GD2005), pp. 262-273, Limerick. Ircland, 2006.

M. Jiinger and P. Mutzel. 2-laycr straightline crossing minimization: Performance of cxact
and heuristic algorithms. Journal of Graph Algorithms and Applications, Vol. 1, No. 1, pp.
1-25, 1997.

Jon R. Kettenring. The practice of cluster analysis. Journal of Classification, Vol. 23, pp.
3-30, 2006.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learning: An Artificial Intel-
ligence Approach. Morgan Kaufmann, 1983.

H. Purchase. Which aesthetic has the greatest effect on human understanding? Tn Proceedings
of the 5th International Conference on Graph Drawing (GD’97), pp. 248-261, Romc, Italy,
1997.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
B. Schélkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

K. Sugiyama, S. Tagawa, and M. Toda. Mecthods for visual undcrstanding of hicrarchical
systcm structurcs. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-11,
No. 2, pp. 109-125, 1981.

T. Tamura and T. Akutsu. Subccllular location prediction of protcins using support vector
machincs with alignment of block scquences utilizing amino acid composition. BMC Bioin-
formatics, Vol. 8, No. 466, November 2007.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 2nd edition, 1999.

T. Washio and H. Motoda. State of thc art of graph-bascd data mining. ACM SIGKDD
Ezplorations Newsletter, Vol. 5, No. 1, pp. 59-68, July 2003.

S. M. Weciss and C. A. Kulikowski. Computer Systems that Learn: Classification and Predic-
tion Methods from Statistics, Neural Nets, Machine Learning, and Ezpert Systems. Morgan
Kaufmann, 1991.

L. H. Witten and E. Frank. Data Mining: Practical machine learning tools and techniques. Mor-
gan Kaufmann, San Francisco, 2nd edition, 2005. http://www.cs.waikato.ac.nz/ml/weka/.

