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Abstract

Visualization plays an important role as an effective analysis tool for huge and complex
data sets in many application domains such as financial market, computer networks, biology
and sociology. Howevcr, in many cases, data sets are processed by existing analvsis techniques
(c.g., classification, clustcring, PCA) beforc applying visualization. In this paper, we study
visual analysis of classification problem, a significant research issue in machine learning and
data mining community. The problem asks to construct a $c1$assifier from given sct of positive
and negative samplcs that predicts the classes of future samples with high accuracy. We first
extract a bipartite graph structure from the sample set, which consists of a set of samples and
a set of subsets of attributes. We then propose ari algorithm that constructs a two-laycred
drawing of tbe bipartite graph, by permuting the nodes using an edge crossing minimization
technique. Thc resulting drawing can act as a new classifier. Surprisingly, experimental results
on bench mark data scts show that our new classifier is competitive with a well-known decision
trcc generator C4.5 in terms of prediction crror. Furthermore, the ordering of samples from
tlic resulting drawing enables us to derive new analysis and insight into data such as clustering.

1 Introduction

1.1 Background

Wc considcr a mathematical learning problem called classification, which has been a significant
rcsearch issue ffom classical statistics to modern rescarch fields on lcarning theory (e.g., machine
learning) and data analysis (e.g., data mining) [9, 18, 3, 8]. Indeed, major existing methodologics
to this problem havc a geometric, spatial flavor. The main aim of our rescarch is to establish a
new leaming framework bascd on information visualization.

In classffication, we arc given a set $S$ of samples. Each sample is specificd with values on $7l$

attributes and belongs to either positive $(+)$ or negative $(-)$ class. The aim of classification is to
construct a function (callcd a classifier) from the sample domain to thc class $\{+, -\}$ by using thc
givcn sample set $S$ , so that the constructed classifier can prcdict thc classes of futurc samples with
high accuracy.

Many cxisting methodologies arc based on geometric concepts and construct a hyperplanc as
classificr. Classical ones (e.g.. Fisher’s linear discriminant in $1930$ ’s and perceptron in $1960’ s[12]$ )
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assume the sample domain to bc thc $7t$-dimensional real space and decide $n+1$ coefficients $\{\omega_{j}\}_{j=0}^{n}$

of the hypcrplanc $f(x)$ in the form:

$f(x)= \sum_{j=1}^{n}\omega_{j}x_{j}+\omega_{0\dagger}$

by which a saniple $x=(x_{1}, \ldots, x_{n})$ is classified into the class determined by sgn$\{f(x)\}$ . Nowadays,
kemel methods or support vector machines enablc us to construct hyperplane classificr even from
non-spatial data (e.g., protein sequmce, webgraph) [16, 13, 17, 15].

Existing methods have made grcat success in many application areas and one can find various
leaming algorithms implcmentcd on such softwarcs as WEKA [19]. When we usc thcm, however, wc
often face with such difficulties as scaling, choice of distance measure, hardness of interpretation,
many of which arise due to geomctric concepts. Often it may not bc casy to overcome these
difficulties. Furthermore it is not easy for human to interact with the resulting classifier or to
visualize the hidden structures implicitly learned by the methods. Thesc current situations require
us to develop a new framework of classification from anothcr perspective.

1.2 Our Contribution

Visualization plays an important role as an effective analysis tool for huge and complex data sets
in many application domains such as financial markct, computer networks, biology and sociology.
However, in many cases, data sets need to be processcd by cxisting analysis techniques (e.g.,
classification, clustering, PCA) before they arc displayed in a two or thrce dimcnsional spacc.

In this paper, wc hypothesize that good visualization (e.g., visual objccts with low visual
complexity) itself can discover esscntial or hiddcn structure of data without relying on data analysis
tcchniques, which can lead to novel leaming technique. Based on our hypothesis, we construct a
classifier using visualization and show the effectiveness of the classifier by empirical studies. The
main contribution of this paper is to opcn ncw possibility of such ncw leaming methodologies that
can find and visualize essential information on data simultancously.

Wc bricfly outline how to construct our visual classifier from a set $S$ of samplcs on a domain
$\mathcal{D}_{1}\cross\cdots\cross \mathcal{D}_{n}$ of $n$ attributes. We first represent the rclationship bctwccn $S$ and the domain as
a two-layercd drawing of a bipartitc graph, as shown in Figurc 1, whcre each value node in thc
top lcvcl represcnts one of the values in $n$ attributcs, and each sample node in the bottom lcvcl
rcprcsenting one of thc samples is joincd by edges to the value nodes that specifies the saniplc.

We thcn try to rcduce the number of edge crossings by changing thc drawing (i.e., the ordering
of nodes on each side) and by replacing two subdomains into their product as a ncw subdomain
(increasing the number of valuc nodes) until a tcrmination criteria is satisficd. Figure 2 shows
an example of a two-laycred drawing of a final bipartite graph, where a large number of positive
(negativc) samples form a cluster in the bottom levcl.

Wc can use the resulting drawing as a classificr as follows. Given a new samplc, we determine its
position in thc bottom level as the average of the positions of the corresponding valuc nodes, and
thcn judgc it as positive (negative) if it falls among positive (negative) sample nodes. Performance
of classificr is usually evaluatcd by error rate on test sample set, and surprisingly, our classificr is
compctitive with a wcll-known decision trec classifier C4.5 [11].

This paper is organized as follows. We give the formal definition of bipartitc graphs, called
$’$ ‘SF-graphs” and describe how to visualize the graphs in Section 2. We explain the crossing
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value nodes

sample nodes $\bullet$ positive $\bullet$ negative

Figure 1: The initial SF-graph from MONKS-I

niinimization algorithm for combining subdomains and permuting orderings of nodes in SF-graphs
in Section 3. In Section 4, wc show how to use visualized SF-graphs as a new classifier. Wc prcsent
somc cmpirical studies in Section 5 and make concluding remarks in Scction 6.

2 Preliminary

2.1 Samples and Features over Attributes

III thc subsequent discussion, we assume that a set $S=\{s_{1}, \ldots , s_{\pi\iota}\}$ of positive/ncgative samples
over $n$ attributes is givcn. Let $\mathcal{D}_{j}$ denote thc domain of attribute $j$ , i.e., the set of all valucs takcn
as a value of attributc $j$ , wherc we assume that each $\mathcal{D}_{j}$ is a finite unordercd sct of at lcast two
discretc values. Each sample $s_{i}$ is spccificd by an n-dimensional vector $s_{i}=(s_{i.1}, s_{i,2}, \ldots, s_{i,n})$

such that $s_{i,j}\in \mathcal{D}_{j}$ for cach attribute $j\in\{1.2, \ldots, n\}$ . Table 1 shows a set of six samples over 4
attributes.

To handle subdomains of the entirc domain, wc dcfine “features” and “feature sets.” A feature
is a noncmpty subset $F\subseteq\{1,2, \ldots, n\}$ of the $n$ attributes, and thc domain $\mathcal{D}_{F}$ of a feature
$F=\{j_{1}, \ldots.j_{q}\}$ is dcfincd as the set of all combinations of values taken by attributcs in $F$ , i.e.,
$\mathcal{D}_{F}=\mathcal{D}_{j_{1}}\cross\cdots\cross \mathcal{D}_{j_{q}}$ . The restriction $s|_{F}$ of a sample $s_{i}=(s_{i,1}, s_{i,2}, \ldots, s_{i,n})$ to featurc $F$ is
dcfincd by $(s_{i,j_{1}}, s_{i,j_{2}}, \ldots, s_{i,j_{q}})\in \mathcal{D}_{F}$ . A value $v\in \mathcal{D}_{F}$ is called covered if there is a sample $s_{i}\in S$

with $s_{i}|_{F}=v$ , and a feature $F$ is callcd covered if all values $v\in \mathcal{D}_{F}$ are covered. A feature set
$\mathcal{F}=\{F_{1}, \ldots, F_{p}\}$ is a set of disjoint featurcs. i.e.. $F_{k}\cap F_{k’}=\emptyset$ for $k\neq k’$ . The set of all values in
the domains of features $F_{1}\ldots.,$ $F_{p}$ is denotcd by $\mathcal{D}_{\mathcal{F}}=\mathcal{D}_{F_{1}}\cup \mathcal{D}_{F_{2}}\cup\cdots\cup \mathcal{D}_{F_{r}}$ .

2.2 SF-graphs

Given a fcature sct $\mathcal{F}=\{F_{1}, \ldots , F_{\nu}\}$ , we represent the relationship bctween thc sample set $S$

and the set $\mathcal{D}_{\mathcal{F}}$ of valucs by sample-feature graph (SF-graph), which is a bipartite graph $G_{\mathcal{F}}=$

$(\mathcal{D}_{F}, S, E_{\mathcal{F}})$ , defined as follows.
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value nodes

Figure 2: A final SF-graph for MONKS-I

Table 1: A sample set $S=\{s_{1}\ldots., s_{6}\}$ with $\mathcal{D}_{1}=\{0,1\},$ $\mathcal{D}_{2}=\{0,1,2\},$ $\mathcal{D}_{3}=\{T, F\}$ and
$\mathcal{D}_{4}=\{Y, N\}$

. Each value $v\in \mathcal{D}_{\mathcal{F}}$ is represented by a nodc, callcd a value node in the first node set, and
each samplc $s_{i}\in S$ is rcpresentcd by a node, called a sample node in the second nodc set,
wherc $\backslash vc$ use the samc notation for nodes for simplicity.. A valuc node $v$ and a samplc node $s_{i}$ is joincd by an edge $(v, s_{i})\in \mathcal{D}_{F}\cross S$ if and only if
$s_{i}|_{F_{k}}=v$ for somc feature $F_{k}\in \mathcal{F}$ . Tbus thc cdgc sct is givcn by

$E_{\mathcal{F}}=\{(v,$ $s_{i})\in \mathcal{D}_{\mathcal{F}}\cross S|s_{i}|_{F_{k}}=v$ for some $F_{k}\in \mathcal{F}\}$ .

If $\mathcal{F}$ is a singlcton $\mathcal{F}=\{F_{1}\}$ , we write $G_{\mathcal{F}}$ by $G_{F_{1}}$ for convenicnce.
Figurc 3 shows SF-graph $G_{F}=(\mathcal{D}_{\mathcal{F}}, S_{t}E_{\mathcal{F}})$ of thc sample sct $S$ in Tablc 1 for fcaturc sct

$\mathcal{F}=\{\{1\}, \{2,3\}, \{4\}\}$ . The associated valuc vcctor is shown above each value node. Obscrvc that
SF-graph shows the membership of samples to the subdomains dctermined by features in $\mathcal{F}$ .

2.3 Visualization by Two-Layered Drawings

We visualizc SF-graph $G_{\mathcal{F}}$ with a two-layercd drawing, which is dcfincd by a pair of ordcrings on thc
two nodc sets in $G_{\mathcal{F}}$ . We denote an ordertng on a sample sct $S$ by a bijcction $\sigma$ : $Sarrow\{1, \ldots, |S|\}$ .
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Figurc 3: SF-graph $G_{\mathcal{F}}=(\mathcal{D}_{\mathcal{F}}, S, E_{\mathcal{F}})$ of the sample set $S$ in Table 1 constructed for $\mathcal{F}=$

$\{\{1\}, \{2,3\}, \{4\}\}$

For a set $\mathcal{F}$ of features, we dcnote an ordcring OIl the set $\mathcal{D}_{\mathcal{F}}$ of value nodes by a bijcction
$\pi_{\mathcal{D}_{\mathcal{F}}}$ : $\mathcal{D}_{\mathcal{F}}arrow\{1, \ldots, |\mathcal{D}_{\mathcal{F}}|\}$ . In thc rcst of the paper, wc abbreviate $\pi_{\mathcal{D}_{\mathcal{F}}}$ into $\pi_{\mathcal{F}}(\pi_{\mathcal{D}_{\mathcal{F}}}$ with
$\mathcal{F}=\{F_{k}\}$ into $\pi_{k}$ ) for convcnience if no confusion ariscs. In thc two-layercd drawing, the value
nodes in $\mathcal{D}_{\mathcal{F}}$ are placcd in the top level according to the order $\pi_{\mathcal{F}}$ , while the sample nodcs in $S$

arc placcd in the bottom lcvel according to the order $\sigma$ . Let $\chi(G_{\mathcal{F}}, \pi_{\mathcal{F}}, \sigma)$ denote the numbcr of
cdgc crossings in thc drawing $(\pi_{\mathcal{F}}.\sigma)$ of $G_{F}$ .

In order to find a “good” visualization of thc givcn samplc set $S$ , we nccd to find a featurc sct
$\mathcal{F}=\{F_{1}, \ldots, F_{p}\}$ and its two-layered drawing $(\pi_{\mathcal{F}}, \sigma)$ such that

$\chi(G_{\mathcal{F}}.\pi_{\mathcal{F}}, \sigma)$ is minimizcd
subject to

$F_{1}\cup\cdots\cup F_{p}=\{1,2,$ $\ldots\{n\}$ ,
each fcature $F_{k}\in \mathcal{F}$ is covered.

Thc motivation of this formulation is as follows. There are many graph drawing studics claiming
that cdgc crossings has the greatest impact on readability among various criteria (e.g., bends,
symmetry) [10, 6]. In terms of SF-graph, crossing minimization may provide us good inforination
on thc truc locations of samples in their domain which wc cannot usually see.

Wc claiin that thc optimal ordering on sample nodes reflects their truc locations. This claim is
supported by the following observation: Let us take a feature set $\mathcal{F}$ having only one featurc. Wc
show how crossing minimization works for such $G_{\mathcal{F}}$ in Figurc 4. We observe that samples having
thc samc value (i.e., those belong to the same subdomain) get gathered together in a chain of
samples, which we call a sample chain, as the result of crossing minimization.

Note that merging two fcaturcs $F_{k},$ $F_{k}/\in \mathcal{F}$ into a new onc $F_{k’’}=F_{k}\cup F_{k^{l}}$ givcs a two-
layercd drawing with a smaller numbcr of edgc crossings. For an extreme example, the fcature set
$\mathcal{F}=\{F_{1}=\{1\ldots., n\}\}$ admits a two-layercd drawing $(\pi_{\mathcal{F}}.\sigma)$ with no edge crossings, although $F_{1}$

is not covered in general (in many data sets. it holds that $S\subseteq \mathcal{D}_{1}\cross\cdots x\mathcal{D}_{n}$). However, we arc not
interestcd in uncovered fcaturcs. Discarding such oncs, thc number of value nodes from a featurc of
our intcrcst is bounded by $m_{\dot{t}}$ while the domain of a feature. direct product of attributc domains,
can be exponcntially large unlcss restrictcd. Sincc we havc no information on uncovered values,
continuing to generatc uncovcred features may easily rcsult in ovcrfitting to thc givcn samplc set.
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Figurc 4: Crossing minimization on SF-graph with one feature

Hence we can expect that the above good visualization idcntifies similar samples and collccts thcm
as sample chains over a well-structurcd sct of subdomains.

2.4 Crossing Minimization
We now revicw the studics on crossing minimization in two-laycrcd drawings. Two-sided crossing
minimization problem (2-CM) asks to dccide both $\pi_{\mathcal{F}}$ and $\sigma$ that minimize $\chi(G_{\mathcal{F}}, \pi_{\mathcal{F}}, \sigma)$ . Howcver,
2-CM is NP-hard evcn if the ordering on one side is fixcd [4, 2, 7]. This restrictcd version of 2-
CM is callcd one-sided crossing minimization problem (1-CM). We design a heuristic proccdure of
crossing minimization on SF-graph in the next section, whcre 1-CM with a fixcd ordcring on $\mathcal{D}_{\mathcal{F}}$

forms its bases. Thus, we can formalize 1-CM as follows.

Problem 1-CM $(G_{\mathcal{F}}, \pi_{\mathcal{F}})$

Input: A bipartite graph $G_{\mathcal{F}}=(\mathcal{D}_{\mathcal{F}}, S, E_{\mathcal{F}})$ and an ordering $\pi_{\mathcal{F}}$ on $\mathcal{D}_{\mathcal{F}}$ .
Output: An ordering $\sigma$ on $S$ that niinimizes $\chi(G_{F}, \pi_{\mathcal{F}}, \sigma)$ .

3 Algorithm to Grow up SF-graph
In this section, we dcscribe our algorithm PERMUTE-AND-MERGE for finding a goo$d’$ visualization
of a givcn sample set $S$ . It consists of two subroutines, one for combining two fcatures into a ncw
one, and the othcr for permuting value (samplc) nodes to reduce cdge crossings. Note that replacing
tWO featurcs $F_{k}$ and $F_{k’}$ with thcir union $F=F_{k}\cup F_{k}$ ノ increascs the number of value nodcs and
dccrcascs the numbcr of edges in SF-graph

$\dagger$
since $|\mathcal{D}_{F}|=|\mathcal{D}_{F_{k}}|\cross|\mathcal{D}_{F_{k}},$ $|$ is larger than $|\mathcal{D}_{F_{k}}|+|\mathcal{D}_{F_{k}},$ $|$

and two cdgcs $(s_{i}, a)$ and $(s_{i}, b)$ with $a\in \mathcal{D}_{F_{k}}$ and $b\in \mathcal{D}_{F_{k’}}$ arc replaced with a single cdge $(s_{1}(a, b))$ ,
$(a_{j}b)\in \mathcal{D}_{F}$ . Thus the algorithm grows up the valuc node sidc of SF-graph by combining fcaturcs
until no two fcatures $F_{k}$ and $F_{k’}$ generate a ncw covercd fcature $F=F_{k}\cup F_{k},$ .

Algorithm PERMUTE-AND-MERGE is describcd in Algorithm 1. Thc algorithm starts from thc
sct $\mathcal{F}$ of $n$ singleton features (line 2) and arbitrary orderings on value and samplc nodcs (line 3).
Then it itcratcs computing nodc orderings by crossing minimization (using procedurc PERMUTE
in line 5) and merging an appropriatc pair of featurcs into one (using function MERGE in line 6); if
no pair rcsults in a covcred feature, then the algorithm tcrminates. The ncxt two scctions dcscribe
the two subroutincs, rcspcctivcly.
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$\frac{A1gorithm1PERhIUTE-AND- L4ERGF_{\lrcorner}}{1:procedure}$

2. $\mathcal{F}arrow\{\{j\}|j\in\{1\ldots. , n\}\}$ $\triangleright G_{F}$ is constructed
3. $\pi_{\mathcal{F}},$ $\sigmaarrow$ arbitrary orderings on $\mathcal{D}_{\mathcal{F}},$ $S$

4: repeat
5. PERMUTE
6. until MERGE outputs $no$

$7$ : output $G_{\mathcal{F}}$ and $(\pi_{F}, \sigma)$

$8$ . end procedure

$\frac{A1gorithm2PERMUTE-BY- LS}{9:procedure}$
$\iota 0$ . repeat
11. $\pi_{\mathcal{F}}^{i_{l1}it}arrow\pi_{\mathcal{F}},$ $\sigma^{init}arrow\sigma$

12. for all $\pi_{\mathcal{F}}’\in N(\pi_{\mathcal{F}})$ do
13: $\sigma’arrow 1- CM(G_{\mathcal{F}}, \pi_{\mathcal{F}}’)$

14. if $\chi(G_{\mathcal{F}}, \pi_{\mathcal{F}}’, \sigma’)<\chi(G_{\mathcal{F}}, \pi_{\mathcal{F}}, \sigma)$ then
15. $\pi_{\mathcal{F}}arrow\pi_{\mathcal{F}}’,$ $\sigmaarrow\sigma’$

16. break the for-loop
17. end if
18: end for
19. until $\pi_{\mathcal{F}}\equiv\pi_{\mathcal{F}}^{init}$ and $\sigma\equiv\sigma^{init}$

20. end procedure

3.1 Procedure PERMUTE
The subroutinc PERMUTE can be any algorithm for crossing minimization. Here we proposc
PERMUTE-BY-LS in Algorithm 2, a hcuristic niethod based on local search. Starting from an
ordcring $\pi_{\mathcal{F}}$ , thc local scarch sccks for a bettcr ordcring $\pi_{\mathcal{F}}’$ in its neighborhood. The neighborhood
of $\pi_{\mathcal{F}\tau}$ denotcd by $N(\pi_{\mathcal{F}})$ . is a sct of ordcrings which can be obtained by a slight change of $\pi_{\mathcal{F}}$ . A
ncighbor ordering $\pi_{\mathcal{F}}\in N(\pi_{F})$ is cvaluated by edge crossings $\chi(G_{\mathcal{F}}, \pi_{\mathcal{F}}’, \sigma’)$ where $\sigma’$ is obtained
by solving 1-CM $(G_{\mathcal{F}}.\pi_{\mathcal{F}}’)$ (lincs 13 and 14). If thc edge crossings is smaller than the prcvious one.
then the proccdure adopts $\pi_{F}’$ and $\sigma’$ (line 15) and continues to scarch the neighborhood of thc
new $\pi_{\mathcal{F}}$ . Othcrwisc, the proccdurc terminates.

Thc followings arc dctailcd scttings of PERMUTE-BY-LS.

Restriction on Value Node Ordering. In order to rcduce the search spacc, wc rcstrict our-
sclves to such $\pi_{F}$ wherc valuc nodcs from thc samc fcature are ordered consccutivcly, as in Fig-
ure 3. This rcstriction cnablcs us to reprcsent $\pi_{\mathcal{F}}$ as a concatenation of $p$ ordcrings $\pi_{1},$ $\ldots,$ $\pi_{p}$ on
$\mathcal{D}_{F_{1}},$ $\ldots.\mathcal{D}_{F},,$ , wherc the concatenation is givcn by an ordering $\pi^{*}$ : $\mathcal{F}=\{F_{1}, \ldots , F_{p}\}arrow\{1\ldots.,p\}$ .
Thus $\pi_{F}(v)$ for $v\in \mathcal{D}_{F_{k}}$ is given by:

$\pi_{\mathcal{F}}(v)=.\sum_{k’:\pi(F_{k’})<\pi(F_{k})}.|\mathcal{D}_{F_{k’}}|+\pi_{k}(v)$
.
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Figure 5: SF-graph ordcrcd by thc barycenter heuristic

It is casy to show that the total number of edge crossings is given by:

$\chi(G_{\mathcal{F}},\pi_{\mathcal{F}}, \sigma)=\sum_{k=1}^{p}\chi(G_{F_{k}}, \pi k\cdot\sigma)$

$+p(p-1)|S|(|S|-1)/2$ , (1)

whcre thc sccond term of the right hand is a constant for a fixcd $p$ . The abovc cquality (1) mcans
that thc nurnbcr of edge crossings is invariant with a choice of an ordcring $\pi^{*}$ on $\mathcal{F}$. In what
follows, we conccntrate on searching $\pi_{1}\ldots.,$ $\pi_{p}$ during the proccdure, assuming that $\pi^{*}$ is chosen
arbitrarily.

Neighborhood. For neighborhood $N(\pi_{\mathcal{F}})$ , wc take the sct of all ordcrings on $\mathcal{D}_{\mathcal{F}}$ which can bc
obtaincd by swapping $\pi_{k}(v)$ and $\pi_{k}(v’)$ for any $v,$ $v’\in \mathcal{D}_{F_{k}}(k=1, \ldots,p)$ . In line 12, a neighbor
$\pi_{\mathcal{F}}’\in N(\pi_{\mathcal{F}})$ is chosen at random.

Solving 1-CM. We use thc barycenter heuris$tic$ in solving 1-CM $(G_{\mathcal{F}}, \pi_{\mathcal{F}}’)$ to decide $\sigma$
‘ in line 13

[14, 7]. Thc barycenter heuristic permutcs the set $S$ of sample nodes in the increasing ordcr of
barycenter valucs: Lct us takc any subsct $\mathcal{D}_{F_{k}}\subseteq \mathcal{D}_{\mathcal{F}}(k=1, \ldots ip)$ . For a value node $v\in \mathcal{D}_{F_{k}}$ and
an ordcring $\pi_{k}’$ on $\mathcal{D}_{F_{k}}$ , we define the normalized index $I(v.\pi_{k}’)$ as follows:

$I(v, \pi_{k}’)=\frac{\pi_{k}’(v)-1}{|\mathcal{D}_{F_{k}}|-1}$ . (2)

Thc baryccntcr $\beta(s, \pi_{\mathcal{F}}’)$ of a sample nodc $s\in S$ (w.r.t. an ordcring $\pi_{\mathcal{F}}^{l}$ on $\mathcal{D}_{\mathcal{F}}$ including $\pi_{1}’,$

$\ldots,$
$\pi_{p}’$ )

is defincd by

$\beta(s,\pi_{\mathcal{F}}’)=\frac{1}{p}\sum_{k=1}^{p}I(s|_{F_{k}}, \pi_{k}’)$ . (3)

Figure 5 shows the rcsult of the barycentcr hcuristic on thc SF-graph of Figure 3, along with nor-
malizcd indices of value nodcs and barycenter valucs of sample nodes. We note that $I(v, \pi_{k}’)=\pi_{k}’(v)$

is usually used in the literature to numbcr value nodcs. Howcvcr, by (2), all features have equal
influcncc in dcciding barycenter since $I(v, \pi_{k}’)\in[0,1]_{!}$. which improvcd the leaming performance
in our preliminary cxperiments.
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Figure 6: Illustration of $\lambda$ and $\chi_{co1}$

Evaluation of Orderings. In linc 14, it is natural to usc the number of edge crossings $\chi$ in
cvaluation of orderings $(\pi_{\mathcal{F}}, \sigma)$ , but we can introducc various evaluating functions thcre. For
cxamplc, assume coloring each edge $(v, s_{i})\in E$ according to the class of sample $s_{i}\in S$ . Then we
can dcfinc colored edge crossings $\chi_{co1}(G_{\mathcal{F}}, \pi_{\mathcal{F}}, \sigma)$ to be the number of crossings $be\{weendiIIerenl\downarrow$

colorcd cdges. In thc two drawings in Figurc 6. $\chi_{co1}$ prefers the right one while $\chi$ rates both
situations similarly. By using $\chi_{co1}$ as an evaluator. wc can cxpcct samplcs belonging to thc- same
class to form clustcrs.

Analogously with $\chi$ in (1), $\chi_{co1}(G_{\mathcal{F}}, \pi_{\mathcal{F}}, \sigma)$ can be rcprcscntcd as the summation of $\chi_{co1}(G_{F_{k}}.\pi_{k}.\sigma)$ ’s
and a constant. Taking the quality of fcaturc into account, we define weighted colored edge crossings
$x_{co1}(G_{\mathcal{F}}.\pi_{\mathcal{F}}, \sigma)$ by

$\chi_{co1}^{*}(G_{\mathcal{F}}, \pi_{\mathcal{F}}, \sigma)=\sum_{k=1}^{p}\frac{\chi_{CO}l(G_{F_{k}}.\pi k\cdot\sigma)}{\rho(F_{k})}$ (4)

for an $impu7nty$ function $\rho(F_{k})$ on $\mathcal{D}_{F_{k}}$ which indicatcs thc quality of feature $F_{k}$ . Wc use thc
following for our cxperimcnts:

$\rho(F_{k})=\sum_{v\in \mathcal{D}_{F_{k}}}\deg^{+}(v)$
dcg“ (v),

wherc dcg$+(v)$ and $\deg^{-}(v)$ denotc the $n\iota unbcrs$ of positive and negativc sample nodcs $s_{i}\in S$

with $s_{j}|_{F_{k}}=v$ , rcspectively. The $\rho(F_{k})$ becomcs small (resp., largc) if $F_{k}$ divides the samplc set $S$

into purc (rcsp.. impurc) subscts in the sense of class distribution and thus may (resp., may not)
have nicc information on classification. Then $\chi_{co1}^{*}$ in (4) must be much influcnccd by $\chi_{co1}$ of good
fcatures.

3.2 Function MERGE
The subroutine MERGE in Algorithm 1 can be any function that outputs eithcr yes or $no$ according
to whcthcr thcre exists an appropriate pair of fcatures to bc merged. It should also mergc such a
pair into a new featurc if yes.

Wc present our algorithm MERGE-BY-PRIORITY in Algorithm 3. The algorithm first constructs
a priority qucuc $Q$ for all pairs of features in $\mathcal{F}$ (line 22). The prioritization of feature pairs
dctermincs the ordering according to $\backslash vhicli$ thcy arc tested for mcrge, and wc will mention thc
details below.
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$\overline{\frac{A1gorithm3MERGE-BY-\underline{P}\underline{RI}ORITY}{21:function}}$

22: $Qarrow a$ priority queue for all pairs of fcatures in $\mathcal{F}$

23: while $Q$ is not empty do
24: $\{F_{k}, F_{k’}\}arrow$ dequeue$(Q)$

25: $Farrow F_{k}\cup F_{k’}$

26: if $F$ is covered then
27: $\mathcal{F}arrow(\mathcal{F}\backslash \{F_{k}, F_{k’}\})\cup\{F\}$

28: reconstruct $G_{\mathcal{F}}$ for the new $\mathcal{F}$

29: initialize $\pi_{\mathcal{F}}$

30: $\sigmaarrow 1- CM(G_{\mathcal{F}}, \pi_{\mathcal{F}})$

31; return yes
32: end if
33: end while
34: return $no$

$35$ : end function

Thc algorithm removes the feature pair $\{F_{k}, F_{k’}\}$ from the head of $Q$ (opcration dequeue in
linc 24) and tests whether it can be mergcd undcr our criteria. If $Q$ becomes empty as the result
of repetition of removal, then the algorithm retums $no$ , indicating that there is no appropriate
feature pair to be merged.

Wc test in line 26 whether the new $F$ merged $homF_{k}$ and $F_{k’}$ is covcred, i.e., all generated
value nodes in $F$ are conmccted to sample nodcs in the reconstructcd SF-graph. For example,
starting from $\mathcal{F}=\{\{1\}, \{2\}, \{3\}, \{4\}\}$ , the pair of featurcs {2} and {3} passes the test since all
rcsulting value nodcs are connected, as shown in Figures 3 or 5.

If the feature pair $\{F_{k}, F_{k’}\}$ passes the test, thcn the algorithm mcrges $F_{k}$ and $F_{k’}$ into a new
featurc $F=F_{k}\cup F_{k’}$ , reconstructs SF-graph, initializes $\pi_{\mathcal{F}}$ and $\sigma$ and rctums yes (lines 27 to 31).
Now lct us describe the details of the algorithm.

Prioritization of Feature Pairs. Merge of feature pair has great influence on the quality of
the final drawing. Hence wc should be careful in choosing the priority measure which decides thc
ordering for test. In our cxpcriments, wc give higher priority to such a pair $\{F_{k}, F_{k’}\}$ that has a
smaller value in the following summation:

$\frac{\chi_{co1}(G_{F_{k}},\pi_{k},\sigma)}{\rho(F_{k})}+\frac{\chi_{co1}(G_{F_{k’}},\pi_{k^{J}},\sigma)}{\rho(F_{k},)}$ , (5)

which comes from the definition of wcightcd colored edge crossings (4). We expcct the abovc
evaluator to rcfine featurcs following the sample ordering well (which havc small $\chi_{co1}$ ) or to remove
impure features (which have large $\rho$).

Initialization of Value Node Ordering. In line 29, for the new $\mathcal{D}_{\mathcal{F}}$ , wc need to decide $\pi_{\mathcal{F}}$ so
that it serves as a good initial solution in thc next local scarch. Let us recall that $\mathcal{F}$ has $p-1$
fcatures and that $\pi_{\mathcal{F}}$ is determined by orderings on $p-1$ value node subsets.

We now describe how to choosc $\pi_{F}$ on the value node set $\mathcal{D}_{F}$ arising from thc new feature
$F=F_{k}\cup F_{k’}$ . As we have $\pi_{k}$ on $\mathcal{D}_{F_{k}}$ and $\pi_{k’}$ on $\mathcal{D}_{F_{k}}$ , which have been parts of the local optimum
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Table 2; Summary of data sets from UCI Repository
$\overline{Data|S|n}$
$\overline{MONKS- 11246}$
MONKS-2 169 6

$\frac{MONKS- 31226}{BCW6999(22.6)}$

GLASS 214 9 (15.9)
HABER 306 3 (34.4)
HEART 270 13 (23.7)
HEPA 155 19 (19.5)
IONO 200 34 (42.5)

found in the last local scarch, we decide $\pi_{F}$ by using lexicographic ordering based on them: wc
definc $\pi_{F}(a)<\pi_{F}(b)$ for two valucs $a,$ $b\in \mathcal{D}_{F}$ if and only if the following holds:

$(\pi_{k}(a|_{F_{k}})<\pi_{k}(b|_{F_{k}}))$ or
$(\pi_{k}(a|_{F_{k}})=\pi_{k}(b|_{F_{k}})$ and $\pi_{k’}(a|_{F_{k}},)<\pi_{k’}(b|_{F_{k}}, ))$ .

Finally, we keep the orderings for the rest $p-2$ value node subsets which have not been changed
by merge.

4 Classifying with Visualized SF-graphs
In this section, we dcscribe how to use a two-layered drawing $(\pi_{\mathcal{F}}, \sigma)$ of a final SF-graph $G_{\mathcal{F}}$ as a
new $\backslash ^{r}isua1$ classifier. Let us denote a test sample by $t\in \mathcal{D}_{1}\cross\cdots\cross \mathcal{D}_{n}$ . Wc classify $t$ according
to its ncarest neighbor in barycenter: we examine the value nodcs to which sample node $t$ should
bc conncctcd, i.e., the value node $v\in \mathcal{D}_{F_{k}}$ with $t|_{F_{k}}=v$ for cach feature $F_{k}$ $(k=1, \ldots , p)$ , and
compute its baryccntcr $\beta(t.\pi_{\mathcal{F}})$ by (3). Finally, we classify $t$ into the class of the nearest sample
in terms of barycentcr.

For cxample, lct us take the SF-graph in Figure 5 again. In this case, a test sample $t=$

$(1,2, F, Y)$ has baryccnter 10/15 and is classified into negative class since negative sample $s_{4}$ is the
nearcst.

5 Empirical Studies
In this section, we present cmpirical studics on data sets from UCI Repository of Machine Leaming
[1]. First we give summary of the data sets, and then dcscribe cxperimental results.

5.1 Data Sets

Table 2 shows the summary of the used data sets, whcre we will explain the decimals in the
rightmost column later. MONKS-I to 3 are artificial data sets in the sense that the oraclc function
from thc sample domain to the class sct is available. In these data sets, each attribute $j$ has 2 to
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value nodes

sample nodes $\bullet$ positive $\bullet$ negative

Figurc 7: SF-graph obtaincd from MONKS-2

4 categorical valucs as its domain $\mathcal{D}_{j}$ . For cxample, a sample $s_{i}=$ $(s_{i,1}, \ldots , s_{\dot{r},6})$ in MONKS-I is
positivc if and only if $(s_{i,1}=s_{i,2})$ or $(s_{i,5}= 1" )$ .

Thc othcrs arc real data scts, whcrc thc oraclc is not availablc. For examplc, BCW (abbrcvia-
tion of breast-cancer-wisconsin) consists of 699 samples (paticnts), whcre 241 samples are positivc
(malignant) and thc rcst 458 samplcs arc ncgative (benign). Each samplc has intcgral valucs for 9
attributcs (c.g., clump thickncss, uniformity of ccll sizc).

Wc cvaluatc a classificr by its prcdiction crror rate on futurc samplcs. In thc litcraturc, prcdic-
tion crror ratc is usually cstimatcd by constructing a classificr from a training set of samplcs and
thcn cvaluating its crror ratc on a test set, For artificial data scts, we takc thc cntirc data sct as
the training sct and consider all possiblc samplcs as thc tcst sct by gcncrating them. The tcst sct
contains 432 samplcs in all for cach MONKS data sct.

For rcal data scts, wc cstimatc prcdiction error ratc by the avcrage of crror ratcs observcd in 5
trials of 10-fold cross validation, a wcll-known mcthodology to dividc thc data sct into training and
tcst scts. In thcsc data sets, somc attributcs takc continuous numcrical valucs which cannot bc
trcated in our formulation. Thus wc gcncratc binarization rulcs (e.g., a rule may map a continuous
valuc to 1 if it is larger than a computcd thrcshold, and to $0$ otherwisc) from a training sct by thc
algorithm proposcd in [5], and then construct a classifier from thc binarizcd data set. A decimal
in Tablc 2 indicatcs avcrage on thc numbcr of gcncratcd binary attributcs.

5.2 SF-graphs

Figurcs 2 and 7 show thc output SF-graphs for MONKS-I and 2 respectivcly. Thc samplc chain
cxtractcd from thc output SF-graph for BCW is shown in Figurc 8. In all figurcs, wc sce that
samplcs of thc samc class fomi clustcrs. Wc show how SF-graph providcs information in interactivc
data analysis.

MONKS-I. Among samplcs rcmotc from boundarics of clustcrs, wc find thosc bclonging to thc
class to a strong dcgrcc: a samplc in MONKS-I is positivc if and only if it satisfies either condition
statcd in thc last subscction. Lct us rcgard thosc satisfying both conditions as strongly positivc
samplcs. Thc training sct contains 8 strongly positivc samplcs, and wc obscrvcd that they arc
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Figurc 8: Samplc chain from BCW and thc numbcr of $1$ ’s in samplc vcctor

$\frac\frac{Tab1e3:Prcdictioncrrorratcs(\%)}{DataSFCC4.5,MONKS- 1l6.200.00}$

MONKS-2 25.60 29.60

$\frac{MONKS- 319..360.00}{BCW5.12\pm 0535.16\pm 0.64}$

GLASS $9.86\pm 0.94$ $7.74\pm 1.63$

HABER $38.30\pm 1.69$ $25.50\pm 1.16$

HEART $26.07\pm 1.11$ $21.31\pm 1.60$

HEPA $23.54\pm 2.03$ $20.89\pm 1.52$

IONO $20.20\pm 1.50$ $14.40\pm 1.08$

actually gathcrcd in thc lcft cnd of thc samplc chain.

MONKS-2. Wc scc that similar samplcs gct closcr in tlic samplc chain: roughly spcaking, wc
scc two largc clustcrs of positive samplcs in Figurc 7. A samplc $s_{i}$ in MONKS-2 is positive if and
only if $s_{i}$ has nominal “1” for cxactly two attributcs. We obscrvcd that thc right clustcr contains
all positivc samplcs having nominal く 1” for thc l-st attribute, and that thc lcft clustcr contains
morc than 70% of positivc samplcs (20 out of 28) having nominal “1” for thc 5-th attributc.

BCW. Figurc 8 shows the numbcr of l’s in binarizcd samplc vcctor by grccn linc bcsidcs the
obtaincd samplc chain. Bascd on our rcsearch cxpericncc, wc havc obscrvcd that samples arc morc
likcly to bc positivc with many $1$ ’s although wc do not know thc oraclc function of BCW cxactly.
Wc can vicw the phenomena in the figure, wherc degrce of class mcmbcrship is also rcflectcd in
thc samplc chain.

5.3 Classification
Wc construct an SF-graph bascd classifier (SFC for short) as described in Scction 4. Wc prcscnt
prcdiction crror ratcs in Tablc 3, whcrc wc comparc our SFC with C4.5 [11], a wcll-known dccision
trcc gcnerator. Standard dcviation is shown for rcal data scts, which was dcrivcd from 5 trials
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of 10-fold cross validation. C4.5 constructs dccision trccs within 1 sccond in all cascs whilc SFC
takcs from 1 (for GLASS) to 120 scconds (for IONO), which is not too cxpcnsivc. Wc obscrved
that computation timc of SFC is proportional to thc numbcr of attributcs which decidcs thc sizc
of neighborhood in thc local scarch. All cxpcrinicnts are conductcd on our PC carrying 2. $83GHz$

CPU and $4GB$ main mcmory.
A typical decision trec is rcgardcd as disjunction of if-thcn mlcs, cach of which is rcprescnted

by conjunction of conditions on one attributc value. We can rcalizc small dccision trccs casily that
rcprcscnt thc oraclc functions of MONKS-I (scc Scction 5.1) and 3. and thus it is rcasonablc to
say that C4.5 is succcssful for the two data sets. On thc othcr hand, it must bc not bc so casy to
reprcscnt thc oraclc of MONKS-2 (scc Scction 5.2) by small trcc, and for such a data set, SFC is
supcrior to C4.5.

Lct us discuss our results for rcal data scts. Our SFC is worsc than C4.5 for alinost all thc
data sets but is competitive with BCW. Thus SFC can attain sufficient classifiers for suitable data
sets. We nccd to further cxamine what data typc is suitable for SFC, but for such data sets. SFC
surcly scrves as an cxccllcnt classificr.

6 Concluding Remarks
Our rcsults arc significant particularly in thc following scnse: for machine leaming rcscarch, our
cl assifier $is$ quite different frorn existii $\iota gappi_{odt}$} $[es$ because it is constructed based on coinbiitatorial
formulation (bipartitc graph and crossing minimization) rather than gcomctric conccpts. Wc assert
that dccision trce is also onc of gcomctric classifiers sincc a typical algorithm constructs a dccision
trce by partitioning thc samplc domain with hyperplancs, cvcn though it is rcprcscntcd by trcc
on thc surface. Thus our work may givc a ncw dircction to studics of lcarning problems. For
information visualization, on thc othcr hand, wc could show possibility of such a ncw schcmc that
cnablcs human to gain knowlcdgc using visualization.

It socms possiblc for us to improvc the pcrformancc of our SFC classificr furthcr. For cxamplc,
wc may dividc a valuc nodc by thc currcnt definition into a pair of positivc and ncgativc valuc
nodcs, whcrc positivc (rcsp., ncgativc) samplc nodcs arc connccted to thc former (resp., lattcr)
ones. This $sc1.1ing$ enlarges tlio search $\backslash sp_{\dot{c}}\iota c(\backslash$ , but, wc think $1_{\Sigma}haf$, it $sho\iota ild$ be eSTcctivc for our
purposc. Our future work also includcs finding good application areas of our methodology to gain
somc niore insights from thc fccdback.

This work is supportcd by Grant-in-Aid for Young Scicntists (Start-up, 20800045) from Japan
Socicty for thc Promotion of Sciencc (JSPS).
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