
Listing All Trees with Specified Degree Sequence

Shin-ichi Nakano
Department of Computer Science, Faculty of Engineering,

Gunma University, Kiryu 376-8515, Japan

Abstract

In this paper we designed a simple algorithm to generate all ordered trees
with specified degree sequence. The algorithm generates each tree in $O(1)$

time for each on average.

1 Introduction
Generating all graphs having some property without duplicates has many applica-
tions, including unbiased statistical analysis[M98]. A lot of algorithms to solve these
problems are already known, and can be found in good textbooks [G93, KS98, K06].

Trees are one of basic model frequently used in many areas, including searching
for keys, modeling computation, parsing a program, etc.

Given a rooted tree T with n inner (non-leaf) vertices, the degree sequence of
T is the list of n integers such that (1) each integer corresponds to the number
of children of each inner vertex in T , and (2) the integers appear in nonincreasing
order. Note that each rooted tree has a unique degree sequence, while a degree
sequence may correspond to many rooted trees.

There are some algorithms to generate all ordered trees having specified degree
sequence. The algorithm in [ZR79] generates all such ordered tree in $O(n)$ time for
each, and loopless algorithms in [KL99, KLOO, KL02] generate all such ordered trees
in $O(1)$ time for each.

In this paper first we give a simple algorithm to generate all ordered trees having
specified degree sequence in $O(1)$ time for each.

The outline of our algorithm is as follows.
Let O_{D} be the set of all ordered trees having specified degree sequence. First

we define a tree structure FT_{D} among the trees in O_{D} so that each vertex in FT_{D}

corresponds to each tree in O_{D} . Next we design a simple but efficient algorithm to
compute all child vertices of a given vertex in FT_{D} . Applying the algorithm recur-
sively from the root of FT_{D} , we can list all vertices in FT_{D} , and also corresponding

数理解析研究所講究録
第 1644巻 2009年 55-62 55

Figure 1: The family tree of O_{D}^{1} .

trees in O_{D} . Many listing algorithms have designed based on such tree structures
but with some other ideas[LN01, N02, N04, NU04].

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 defines the teee structure FT_{D} among O_{D} . Section 4 gives a simple but effi-
cient algorithm to list all trees in O_{D} . Our algorithm generates all ordered trees with
specified degree sequence in $O(1)$ time for each. Finally Section 5 is a conclusion.

2 Preliminary
A graph is a tree if it is connected and has no cycle. A tree T is rooted if one vertex
r is designated as the root of T .

For each vertex v in a rooted tree, let $P(v)$ be the unique path from v to the
root r . The depth of v is the number of edges in $P(v)$. The parent of $v\neq r$ is its
neighbor on $P(v)$, and the ancestors of v are the vertices on $P(v)$. The parent of
r is not defined. We say if v is the parent of u then u is a child of v , and if v is
an ancestor of u then u is a descendant of v . Note that each vertex is always a
descendant of itself. We denote by $d(v)$ the number of children of v . The height of
a vertex v is the number of edges on the longest path from v to a descendant of v ,

56

Figure 2: A subtree of the family tree FT_{D} .
and denoted by $h(v)$. A vertex is a leaf if it has no child, otherwise it is an inner
vertex. The height of a leaf is always 0 , and the height of a vertex is always larger
than the height of its child by one.

The degree sequence of a rooted tree T having n inner vertices is the list of n

integers such that (1) each integer corresponds to the number of children of each
inner vertex in T , and (2) the integers appear in nonincreasing order. Note that each
rooted tree has a unique degree sequence, while a degree sequence may correspond
to many rooted trees.

Assume that $D=(d_{1}, d_{2}, \cdots, d_{n})$ is the degree sequence of a rooted tree T . Let
n_{i} be the number of occurences of integer i in D . Then the number of edges in T is
$\Sigma_{i=1}^{n-1}in_{i}$.

A rooted tree is an ordered tree if the children of each vertex are ordered linearly
left-to-right, otherwise, it is an unordered tree.

3 The Family Tree
Let O_{D} be the set of all ordered trees having specified degree sequence $D=(d_{1}, d_{2}, \cdots-, d_{n})$.
In this section we define a tree structure FT_{D} among the trees in O_{D} . Then in the
next section we give a simple but efficient algorithm to list all ordered trees in O_{D} .

57

T $P(T)$

Figure 4: Illustration for Case 1.

Assume that T is an ordered tree.
The last inner vertex of T in preorder is called the pruning vertex of T . Note

that all the child vertices of the pruning vertex are leaves.
The path $(\ell_{1}, \ell_{2}, \cdots, \ell_{q})$ in T is called the left-down path of T if (1) ℓ_{1} is the root,

(2) the leftmost child of ℓ_{q} is a leaf, and (3) ℓ_{i+1} is the leftmost child of ℓ_{i} for each
$i=1,2,$ $\cdots,$ $q-1$. The leftmost child of ℓ_{q} is called the leftmost leaf of T .

Given $D=(d_{1}, d_{2}, \cdots, d_{n})$, let T_{r}^{D} be the ordered tree derived from the path
$(\ell_{1}, \ell_{2}, \cdots, \ell_{n})$ by attaching $d_{i}-1$ leaves to ℓ_{i} for $i=1,2,$ $\cdots,$ $n-1$ and d_{n} leaves
to ℓ_{n} so that $(\ell_{1}, \ell_{2}, \cdots, \ell_{n})$ is the left-down path of T_{r}^{D} . See an example in Fig. 3.
Thus $T_{r}^{D}\in O_{D}$ and $O_{D}\neq\phi$ holds. The ordered tree T_{r}^{D} is called the root tree of
O_{D} .

For each ordered tree $T\in O_{D}-\{T_{r}^{D}\}$ with $D=(d_{1}, d_{2}, \cdots, d_{n})$, we define an
ordered tree, called the parent tree $P(T)$ of T , as follows. We have two cases. Note
that for each case T and $P(T)$ have the same degree sequence. Thus $P(T)\in O_{D}$

holds. Let $I(T)$ be the subgraph of T induced by all inner vertices of T .
Case 1: $I(T)$ is the left-down path of T .

Let $LD=(\ell_{1}, \ell_{2}, \cdots, \ell_{n})$ be the left-down path of T . Since $d(\ell_{1})\geq d(\ell_{2})\geq\cdots\geq$

$d(\ell_{n})$ holds only for T_{r}^{D} , and by assumption $T\in O_{D}-\{T_{r}^{D}\}$, there is some i such
that $d(\ell_{i})<d(\ell_{i+1})$. Let a be the smallest index such that $d(\ell_{a})<d(\ell_{a+1})$. $P(T)$
is the ordered tree derived from T by (1) removing $d(\ell_{a+1})-d(\ell_{a})$ child leaves from
ℓ_{a+1} , then (2) attaching the removed child leaves to ℓ_{a} so that the left-down path

58

T $P(T)$

T $P(T)$ $P(P(T))$ $P(P(P(T)))$ $P(P(P(P(T))))$

Figure 6: The sequence $T,$ $P(T),$ $P(P(T)),$ \cdots .

remain as it was. See an example in Fig. 4. Intuitively $P(T)$ is derived from T by
swapping ℓ_{a} and ℓ_{a+1} .
Case 2: $I(T)$ is not the left-down path of T .

$P(T)$ is the ordered tree derived from T by swapping (1) the subtree consisting
of the pruning vertex p of T and its children, and (2) the leftmost leaf ℓ_{q} of T . See
an example in Fig. 5. Note that all children of p are leaves since p is the last inner
vertex in preorder. Also note that p is not in $I(T)$ since Case 1 does not occur.

Let O_{D}^{1} be the subset of O_{D} consisting of all T such that $I(T)$ is the left-down path
of T . If $I(T)$ is the left-down path of T then $P(T)$ is defined by Case 1 and $I(P(T))$
is also the left-down path of T . For any $T\in O_{D}^{1}-\{T_{r}^{D}\}$, repeatedly finding the
parent tree of the derived tree results in the sequence $T,$ $P(T),$ $P(P(T)),$ \cdots , which
always end at the root tree T_{r}^{D} of O_{D} . By merging the sequence above for each
$T\in O_{D}^{1}$ we can define a tree structure among trees in O_{D}^{1} . See an example in Fig. 1.

Also note that if $I(T)$ is not the left-down path of T then $P(T)$ is defined by Case
2 and the number of vertices in the left-down path of $P(T)$ is increased by one from
that of T . Again repeatedly finding the parent tree of the derived tree results in the
sequence $T,$ $P(T),$ $P(P(T)),$ \cdots , in which Case 1 eventually occurs somewhere, and
after that the sequence always end at the root tree T_{r}^{D} of O_{D} as mentioned above.
See an example in Fig. 6.

By merging the sequence above for each $T\in O_{D}-\{T_{r}^{D}\}$ we can define the family
tree FT_{D} , in which each vertex in FT_{D} corresponds to a tree in O_{D} , and each edge
corresponds to each relation between some T and $P(T)$. See an example in Fig. 2.

59

4 Listing Ordered Trees
In this section we give a simple but efficient algorithm to list all ordered trees in
O_{D} .

If we have an algorithm to list all child trees of an ordered tree in 0_{D} , then
by recursively applying the algorithm starting at the root tree T_{r}^{D} , we can list all
ordered trees in O_{D} . Now we are going to design such an algorithm.

Let T be an ordered tree in O_{D} . We have two cases. Note that $T\in O_{D}^{1}$ means
$I(T)$ is the left-down path of T .
Case 1: $T\in O_{D}^{1}$.

In this case T may have some child trees both in O_{D}^{1} and $O_{D}-O_{D}^{1}$. Let
$(\ell_{1}, \ell_{2}, \cdots, \ell_{n})$ be the left-down path of T . Since $I(T)$ is the left-down path of
T all but the leftmost children of ℓ_{i} are leaves for each $i=1,2,$ $\cdots,$ $n-1$, and all
children of ℓ_{n} are leaves.
Child trees in O_{D}^{1}

Let $T[i]$ be the ordered tree derived from T by transfering some leaf children of
either ℓ_{i} or ℓ_{i+1} to the other so that (1) the degree of ℓ_{i} and ℓ_{i+1} are exchanged and
(2) the left-down path remains as it was.

By the definition of the parent tree in Section 3, each child tree T_{c} of T in 0_{D}^{1}

is $T[i]$ for some i . However not all $T[i]$ are child trees of T. $T[i]$ is a child tree of T

only if $P(T[i])=T$ holds.
If $T=T_{r}^{D}$, then $d(\ell_{1})\geq d(\ell_{2})\geq\cdots\geq d(\ell_{n})$ holds, and $T[i]$ is a child tree of T

for each $i=1,2,$ $\cdots,$ $n-1$ if $d(\ell_{i})<d(\ell_{i+1})$.
Otherwise, $d(\ell_{1})\geq d(\ell_{2})\geq\cdots\geq d(\ell_{n})$ does not hold. Let s be the smallest index

such that $d(\ell_{s})<d(\ell_{\epsilon+1})$. Now $T[i]$ is a child tree of T for each $i=1,2,$ $\cdots,$ $s-1$
if $d(\ell_{i})<d(\ell_{i+1})$. $T[s]$ is not a child of T. $T[s+1]$ is a child tree of T only if
$d(\ell_{s+2})\leq d(\ell_{\epsilon})$. $T[i]$ is not a child tree of T for each $i=s+2,$ $s+3,$ $\cdots,$ $n-1$.

Note that if $T[i]$ is a child tree of T then the index s of $T[i]$ is always i .
Child trees in $O_{D}-O_{D}^{1}$

For each i,j such that $i=1,2,$ $\cdots,$ $n-1$ and $j=2,3,$ $\cdots,$ $d(\ell_{i})$, let $T[i,j]$ be the
ordered tree derived $homT$ by swapping (1) the subtree rooted at p_{n} and (2) the
j-th child of ℓ_{i} . Note that all children of ℓ_{n} are leaves.

By the definition of the parent tree in Section 3, for each i,j such that $i=$
$1,2,$ $\cdots,$ $n-1$ and $j=2,3,$ $\cdots,$ $d(\ell_{i}),$ $T[i,j]$ is a child tree of T .
Case 2: $T\not\in O_{D}^{1}$.

In this case T has no child tree in O_{D}^{1} , since the parent of each tree in O_{D}^{1} is also
in O_{D}^{1} . However T may have child trees in $O_{D}-O_{D}^{1}$.

Let $(\ell_{1},\ell_{2}, \cdots, \ell_{q})$ be the the left-down path of T .
The path $(r_{1}, r_{2}, \cdots, r_{p})$ is the right-down path of T if (1) r_{1} is the root, (2)

all child of r_{p} are leaves, and (3) r_{i+1} is the rightmost non-leaf child of r_{i} . Let
$(r_{1}, r_{2}, \cdots, r_{p})$ be the right-down path of T for each $i=1,2,$ $\cdots,p-1$. For $i=$
$1,2,$ $\cdots,p-1$ define $c(i)$ so that r_{i+1} is the $c(i)$-th child of r_{i} from the left.

60

Child trees in $O_{D}-O_{D}^{1}$

If T is the parent tree of some tree, then all the children of ℓ_{q} are leaves. Thus
if ℓ_{q} has a non-leaf child, then T has no child tree. Assume otherwise. Now all the
children of ℓ_{q} are leaves, and in this case T has one or more child trees, as follows.

Let $T[i,j]$ be the ordered tree derived from T by swapping (1) the subtree rooted
at ℓ_{q} and (2) the subtree rooted at j-th child of r_{i} .

By the definition of the parent tree in Section 3, for each i,j such that $i=$
$1,2,$ $\cdots,p-1$ and $j=c(i)+1,$ $c(i)+2,$ $\cdots,$ $d(r_{i}),$ $T[i,j]$ is a child tree of T , and for
each i,j such that $i=p$ and $j=1,2,$ $\cdots,$ $d(r_{p}),$ $T\lceil p,j]$ is a child tree of T . Note that
for each i and j above the subtree rooted at j-th child of r_{i} is just a leaf. Intuitively,
we swap the subtree rooted at ℓ_{q} only with a leaf locating to “the right” of “the
right-down path”.

Based on the case analysis above, given an ordered tree T in 0_{D} , we can find
all child trees of T in O_{D} . We can find each child tree in $O(1)$ time on average.
Then recursively applying the algorithm from the root tree T_{D}^{r} one can generate all
ordered trees in O_{D} . Thus we have the following theorem.

Theorem 4.1 One can generate all ordered trees in O_{D} in $O(|O_{D}|)$ time.

5 Conclusion
In this paper we designed a simple algorithm to generate all ordered trees with
specified degree sequence. The algorithm generates each tree in $O(1)$ time for each
on average. Can we generate all unordered trees with specified degree sequence in
$O(1)$ time for each?

References
[G93] L. A. Goldberg, Efficient Algorithms for Listing Combinatorial Structures,

Cambridge University Press, New York, (1993).

[K06] D. E. Knuth, The Art of Computer Programming, Fascicle 4, Generating All
Trees, Addison-Wesley Pub, (2006).

[KL99] J. F. Korsh and P. LaFollette, Towers, Beads, and Loopless Genemtion of
Trees with Specified Degree, Congressus Numerantium, Vol. 139, pp.157-166.

[KLOO] J. F. Korsh and P. LaFollette, Multiset Permutations and Loopless Gener-
ation of Ordered Trees with Specified Degree Sequence, Joumal of Algorithms,
Vol. 34, (2000), pp.309-336.

[KL02] J. F. Korsh and P. LaFollette, Loopless Generation of Trees with Specified
Degrees, The Computer Journal, Vol. 45, (2002), pp.364-372.

61

[KS98] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms, CRC Press,
Boca Raton, (1998).

[LNOI] Z. Li and S. Nakano, Efficient Generation of Plane 7tianglations without
Repetitions, Proc. of ICALP 2001, LNCS 2076, (2001) 433-443.

[M98] B. D. McKay, Isomorph-ffee Exhaustive Generation, Journal of Algorithms,
Vol. 26, (1998) pp.306-324.

[N02] S. Nakano, Efficient Genemtion of Plane Trees, Information Processing Let-
ters, 84, (2002), pp.167-172.

[N04] S. Nakano, Efficient Generation of 71niconnected Plane ffiangulations, Com-
putational Geometry Theory and Applications, 27(2), (2004) 109-122.

[NU04] S. Nakano and T. Uno, Constant Time Generation of $\mathfrak{R}es$ with Specified
Diameter“, Proc. of WG 2004, LNCS 3353, (2004) 33-45.

[ZR79] S. Zaks and D. Richards, Generating $\mathcal{I}hes$ and Other Combinatorial Objects
Lexicographically, SIAM Journal on Computing, Vol. 8, (1979), pp.73-81.

62

