goooboooogn
0 1644 0 2009 O 55-62

Listing All Trees with Specified Degree Sequence

Shin-ichi Nakano
Department of Computer Science, Faculty of Engineering,
Gunma University, Kiryu 376-8515, Japan

Abstract

In this paper we designed a simple algorithm to generate all ordered trees
with specified degree sequence. The algorithm generates each tree in O(1)
time for each on average.

1 Introduction

Generating all graphs having some property without duplicates has many applica-
tions, including unbiased statistical analysis[M98]. A lot of algorithms to solve these
problems are already known, and can be found in good textbooks [G93, KS98, K06].

Trees are one of basic model frequently used in many areas, including searching
for keys, modeling computation, parsing a program, etc.

Given a rooted tree T' with n inner (non-leaf) vertices, the degree sequence of
T is the list of n integers such that (1) each integer corresponds to the number
of children of each inner vertex in T', and (2) the integers appear in nonincreasing
order. Note that each rooted tree has a unique degree sequence, while a degree
sequence may correspond to many rooted trees.

There are some algorithms to generate all ordered trees having specified degree
sequence. The algorithm in [ZR79] generates all such ordered tree in O(n) time for
each, and loopless algorithms in [KL99, KL00, KL02] generate all such ordered trees
in O(1) time for each.

In this paper first we give a simple algorithm to generate all ordered trees having
specified degree sequence in O(1) time for each.

The outline of our algorithm is as follows.

Let Op be the set of all ordered trees having specified degree sequence. First
we define a tree structure F'Tp among the trees in Op so that each vertex in FTp
corresponds to each tree in Op. Next we design a simple but efficient algorithm to
compute all child vertices of a given vertex in FTp. Applying the algorithm recur-
sively from the root of FTp, we can list all vertices in FTp, and also corresponding

56

Figure 1: The family tree of OL.

trees in Op. Many listing algorithms have designed based on such tree structures
but with some other ideas[LNO1, N02, N04, NU04].

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 defines the teee structure FTp among Op. Section 4 gives a simple but effi-
cient algorithm to list all trees in Op. Our algorithm generates all ordered trees with
specified degree sequence in O(1) time for each. Finally Section 5 is a conclusion.

2 Preliminary

A graph is a tree if it is connected and has no cycle. A tree T is rooted if one vertex
r is designated as the root of T'.

For each vertex v in a rooted tree, let P(v) be the unique path from v to the
root 7. The depth of v is the number of edges in P(v). The parent of v # r is its
neighbor on P(v), and the ancestors of v are the vertices on P(v). The parent of
7 is not defined. We say if v is the parent of u then u is a child of v, and if v is
an ancestor of u then u is a descendant of v. Note that each vertex is always a
descendant of itself. We denote by d(v) the number of children of v. The height of
a vertex v is the number of edges on the longest path from v to a descendant of v,

57

Figure 2: A subtree of the family tree FTp.

and denoted by h(v). A vertex is a leaf if it has no child, otherwise it is an inner
vertez. 'The height of a leaf is always 0, and the height of a vertex is always larger
than the height of its child by one.

The degree sequence of a rooted tree T having n inner vertices is the list of n
integers such that (1) each integer corresponds to the number of children of each
inner vertex in T', and (2) the integers appear in nonincreasing order. Note that each
rooted tree has a unique degree sequence, while a degree sequence may correspond
to many rooted trees. _

Assume that D = (d,d,, - -, d,) is the degree sequence of a rooted tree T. Let
n; be the number of occurences of integer 7 in D. Then the number of edges in T is
Z]}:llin,-.

A rooted tree is an ordered tree if the children of each vertex are ordered linearly
left-to-right, otherwise, it is an unordered tree.

3 The Family Tree

Let Op be the set of all ordered trees having specified degree sequence D = (dy, d,, - - 7, d,).
In this section we define a tree structure F7Tp among the trees in Op. Then in the
next section we give a simple but efficient algorithm to list all ordered trees in Op.

58

T P(T)

Figure 4: Illustration for Case 1.

Assume that T is an ordered tree.

The last inner vertex of T in preorder is called the pruning verter of T. Note
that all the child vertices of the pruning vertex are leaves.

The path (¢y,4s,- - -,4,) in T is called the left-down path of T if (1) ¢, is the root,
(2) the leftmost child of ¢, is a leaf, and (3) £, is the leftmost child of ¢; for each
t=1,2,---,9— 1. The leftmost child of ¢, is called the leftmost leaf of T

Given D = (di,dz,--,d,), let T, be the ordered tree derived from the path
(61,43, -+, £,) by attaching d; — 1 leaves to ¢; for s = 1, 2,---,n—1 and d, leaves
to £y so that (¢1,4;,---,£,) is the left-down path of T°. See an example in Fig. 3.
Thus T,” € Op and Op # ¢ holds. The ordered tree T is called the root tree of
Op.

For each ordered tree T € Op — {T;°} with D = (dy,d,,---,d,), we define an
ordered tree, called the parent tree P(T) of T, as follows. We have two cases. Note
that for each case T' and P(T") have the same degree sequence. Thus P(T) € Op
holds. Let I(T") be the subgraph of T induced by all inner vertices of T
Case 1: I(T) is the left-down path of T

Let LD = (41,5, - -, £,) be the left-down path of T". Since d(¢;) > d(£) > --- >
d(¢,) holds only for T}°, and by assumption T € Op — {T'P}, there is some i such
that d(4) < d(£i1). Let a be the smallest index such that d(£,) < d(£,4,). P(T)
is the ordered tree derived from T by (1) removing d(€+1) — d(€,) child leaves from
€541, then (2) attaching the removed child leaves to £, so that the left-down path

(2) (2)
oy
& D) O © D

))
T i

P(T)

Figure 5: Illustration for Case 2.

o

B(T) P(K(T)) P(P(P(T))) P(P(P(P(T))))

Figure 6: The sequence T, P(T), P(P(T)),- - -.

remain as it was. See an example in Fig. 4. Intuitively P(T) is derived from T by
swapping ¢, and £, ;.
Case 2: I(T) is not the left-down path of 7.

P(T) is the ordered tree derived from T' by swapping (1) the subtree consisting
of the pruning vertex p of T and its children, and (2) the leftmost leaf £, of T. See
an example in Fig. 5. Note that all children of p are leaves since p is the last inner
vertex in preorder. Also note that p is not in I(T") since Case 1 does not occur.

Let Op, be the subset of Op consisting of all T such that I (T') is the left-down path
of T. If I(T) is the left-down path of T then P(T’) is defined by Case 1 and I (P(T))
is also the left-down path of T. For any T € O} — {T}P}, repeatedly finding the
parent tree of the derived tree results in the sequence T, P(T), P(P(T)),- - -, which
always end at the root tree T)” of Op. By merging the sequence above for each
T € O we can define a tree structure among trees in Op. See an example in Fig. 1.

Also note that if I(T') is not the left-down path of T then P(T) is defined by Case
2 and the number of vertices in the left-down path of P(T) is increased by one from
that of T'. Again repeatedly finding the parent tree of the derived tree results in the
sequence T, P(T'), P(P(T)),- - -, in which Case 1 eventually occurs somewhere, and
after that the sequence always end at the root tree T2 of Op as mentioned above.
See an example in Fig. 6.

By merging the sequence above for each T € Op — {T}”} we can define the family
tree FTp, in which each vertex in FTp corresponds to a tree in Op, and each edge
corresponds to each relation between some T and P(T'). See an example in Fig. 2.

59

60

4 Listing Ordered Trees

In this section we give a simple but efficient algorithm to list all ordered trees in
Op.

If we have an algorithm to list all child trees of an ordered tree in Op, then
by recursively applying the algorithm starting at the root tree TP, we can list all
ordered trees in Op. Now we are going to design such an algorithm.

Let T be an ordered tree in Op. We have two cases. Note that T € OL, means
I(T) is the left-down path of T.

Case 1: T € O},

In this case T" may have some child trees both in Op and Op — O}. Let
(61,83, --,£,) be the left-down path of T. Since I (T) is the left-down path of
T all but the leftmost children of ¢; are leaves for each i = 1,2, - - - ,n—1, and all
children of ¢,, are leaves.

Child trees in O}

Let T[i] be the ordered tree derived from T by transfering some leaf children of
either £; or £;;; to the other so that (1) the degree of ¢; and ;41 are exchanged and
(2) the left-down path remains as it was. :

By the definition of the parent tree in Section 3, each child tree 7, of T in 0},
is T'[4] for some i. However not all T7i] are child trees of T. T[s] is a child tree of T
only if P(T[¢]) = T holds.

If T = TP, then d(¢1) > d(£2) > --- > d(£,) holds, and T[i] is a child tree of T
foreachi=1,2,---,n —1if d(£;) < d(£;,,).

Otherwise, d(£;) > d(€2) > - - - > d(¢,) does not hold. Let s be the smallest index
such that d({,) < d(£,+1). Now TYi] is a child tree of T for each i = 1,2,---,s -1
if d(4;) < d(€iy1). Tls] is not a child of 7. T[s + 1] is a child tree of T only if
d(£s+2) < d(¢,). T[i] is not a child tree of T for each i = s + 2,5 + 3,---,n—1.

Note that if T'[i] is a child tree of T then the index s of T'[i] is always i.

Child trees in Op — O},

For each i,j such that i = 1,2,---,n—1and j = 2,3, .. -, d(¥;), let Ti, j] be the
ordered tree derived from T by swapping (1) the subtree rooted at ¢, and (2) the
J-th child of ¢;. Note that all children of ¢, are leaves.

By the definition of the parent tree in Section 3, for each i, J such that i =
1,2,---,n—1and j =2,3,---,d(&), T[i,j] is a child tree of T.

Case 2: T ¢ O},

In this case T has no child tree in O}, since the parent of each tree in O} is also
in Op. However T may have child trees in Op — O,

Let (44,45, --,£,) be the the left-down path of T

The path (ry,72,---,7p) is the right-down path of T if (1) r; is the root, (2)
all child of r, are leaves, and (3) r;,; is the rightmost non-leaf child of ri. Let
(r1,72,-+-,7p) be the right-down path of T for each i = 1,2, --- ,p— 1. For i =
1,2,--+,p — 1 define c(i) so that 7,4, is the c(i)-th child of r; from the left.

Child trees in Op — O}

If T is the parent tree of some tree, then all the children of ¢, are leaves. Thus
if £, has a non-leaf child, then T has no child tree. Assume otherwise. Now all the
children of ¢, are leaves, and in this case T has one or more child trees, as follows.

Let T'i, j] be the ordered tree derived from T' by swapping (1) the subtree rooted
at £, and (2) the subtree rooted at j-th child of r;.

By the definition of the parent tree in Section 3, for each 7,7 such that : =
L,2,---,p—land j =c(i) +1,c(i) + 2,---,d(r:), T[i, 7] is a child tree of T, and for
each,jsuch thati =pand j =1,2,..-,d(r,), Tp, j] is a child tree of T. Note that
for each 7 and j above the subtree rooted at j-th child of 7; is just a leaf. Intuitively,
we swap the subtree rooted at ¢, only with a leaf locating to “the right” of “the
right-down path”.

Based on the case analysis above, given an ordered tree T in Op, we can find
all child trees of T in Op. We can find each child tree in O(1) time on average.
Then recursively applying the algorithm from the root tree T}, one can generate all
ordered trees in Op. Thus we have the following theorem.

Theorem 4.1 One can generate all ordered trees in Op in O(|Op|) time.

5 Conclusion

In this paper we designed a simple algorithm to generate all ordered trees with
specified degree sequence. The algorithm generates each tree in O(1) time for each
on average. Can we generate all unordered trees with specified degree sequence in
O(1) time for each?

References

[G93] L. A. Goldberg, Efficient Algorithms for Listing Combinatorial Structures,
Cambridge University Press, New York, (1993).

[K06] D. E. Knuth, The Art of Computer Programming, Fascicle 4, Generating All
Trees, Addison-Wesley Pub, (2006).

[KL99] J. F. Korsh and P. LaFollette, Towers, Beads, and Loopless Generation of
Trees with Specified Degree, Congressus Numerantium, Vol. 139, pp.157—1686.

[KLO0O] J. F. Korsh and P. LaFollette, Multiset Permutations and Loopless Gener-
ation of Ordered Trees with Specified Degree Sequence, Journal of Algorithms,
Vol. 34, (2000), pp.309-336.

[KLO2] J. F. Korsh and P. LaFollette, Loopless Generation of Trees with Specified
Degrees, The Computer Journal, Vol. 45, (2002), pp.364-372.

61

62

[KS98] D. L. Kreher and D. R. Stinson, Combinatorial Algorithms, CRC Press,
Boca Raton, (1998).

[LNO1} Z. Li and S. Nakano, Efficient Generation of Plane Trianglations without
Repetitions, Proc. of ICALP 2001, LNCS 2076, (2001) 433-443.

[M98] B. D. McKay, Isomorph-free Ezhaustive Generation, Journal of Algorithms,
Vol. 26, (1998) pp.306-324.

[NO2] S. Nakano, Efficient Generation of Plane Trees, Information Processing Let-
ters, 84, (2002), pp.167-172.

[NO4] S. Nakano, Efficient Generation of Triconnected Plane Triangulations, Com-
putational Geometry Theory and Applications, 27(2), (2004) 109-122.

[NU0O4] S. Nakano and T. Uno, Constant Time Generation of Trees with Specified
Diameter”, Proc. of WG 2004, LNCS 3353, (2004) 33-45.

[ZR79] S. Zaks and D. Richards, Generating Trees and Other Combinatorial Objects
Lezicographically, SIAM Journal on Computing, Vol. 8, (1979), pp.73-81.

