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Abstract

In this paper we designed a simple algorithm to generate all ordered trees
with specified degree sequence. The algorithm generates each tree in $O(1)$

time for each on average.

1 Introduction
Generating all graphs having some property without duplicates has many applica-
tions, including unbiased statistical analysis[M98]. A lot of algorithms to solve these
problems are already known, and can be found in good textbooks [G93, KS98, K06].

Trees are one of basic model frequently used in many areas, including searching
for keys, modeling computation, parsing a program, etc.

Given a rooted tree $T$ with $n$ inner (non-leaf) vertices, the degree sequence of
$T$ is the list of $n$ integers such that (1) each integer corresponds to the number
of children of each inner vertex in $T$ , and (2) the integers appear in nonincreasing
order. Note that each rooted tree has a unique degree sequence, while a degree
sequence may correspond to many rooted trees.

There are some algorithms to generate all ordered trees having specified degree
sequence. The algorithm in [ZR79] generates all such ordered tree in $O(n)$ time for
each, and loopless algorithms in [KL99, KLOO, KL02] generate all such ordered trees
in $O(1)$ time for each.

In this paper first we give a simple algorithm to generate all ordered trees having
specified degree sequence in $O(1)$ time for each.

The outline of our algorithm is as follows.
Let $O_{D}$ be the set of all ordered trees having specified degree sequence. First

we define a tree structure $FT_{D}$ among the trees in $O_{D}$ so that each vertex in $FT_{D}$

corresponds to each tree in $O_{D}$ . Next we design a simple but efficient algorithm to
compute all child vertices of a given vertex in $FT_{D}$ . Applying the algorithm recur-
sively from the root of $FT_{D}$ , we can list all vertices in $FT_{D}$ , and also corresponding
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Figure 1: The family tree of $O_{D}^{1}$ .

trees in $O_{D}$ . Many listing algorithms have designed based on such tree structures
but with some other ideas[LN01, N02, N04, NU04].

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 defines the teee structure $FT_{D}$ among $O_{D}$ . Section 4 gives a simple but effi-
cient algorithm to list all trees in $O_{D}$ . Our algorithm generates all ordered trees with
specified degree sequence in $O(1)$ time for each. Finally Section 5 is a conclusion.

2 Preliminary
A graph is a tree if it is connected and has no cycle. A tree $T$ is rooted if one vertex
$r$ is designated as the root of $T$ .

For each vertex $v$ in a rooted tree, let $P(v)$ be the unique path from $v$ to the
root $r$ . The depth of $v$ is the number of edges in $P(v)$ . The parent of $v\neq r$ is its
neighbor on $P(v)$ , and the ancestors of $v$ are the vertices on $P(v)$ . The parent of
$r$ is not defined. We say if $v$ is the parent of $u$ then $u$ is a child of $v$ , and if $v$ is
an ancestor of $u$ then $u$ is a descendant of $v$ . Note that each vertex is always a
descendant of itself. We denote by $d(v)$ the number of children of $v$ . The height of
a vertex $v$ is the number of edges on the longest path from $v$ to a descendant of $v$ ,
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Figure 2: A subtree of the family tree $FT_{D}$ .
and denoted by $h(v)$ . A vertex is a leaf if it has no child, otherwise it is an inner
vertex. The height of a leaf is always $0$ , and the height of a vertex is always larger
than the height of its child by one.

The degree sequence of a rooted tree $T$ having $n$ inner vertices is the list of $n$

integers such that (1) each integer corresponds to the number of children of each
inner vertex in $T$ , and (2) the integers appear in nonincreasing order. Note that each
rooted tree has a unique degree sequence, while a degree sequence may correspond
to many rooted trees.

Assume that $D=(d_{1}, d_{2}, \cdots, d_{n})$ is the degree sequence of a rooted tree $T$ . Let
$n_{i}$ be the number of occurences of integer $i$ in $D$ . Then the number of edges in $T$ is
$\Sigma_{i=1}^{n-1}in_{i}$ .

A rooted tree is an ordered tree if the children of each vertex are ordered linearly
left-to-right, otherwise, it is an unordered tree.

3 The Family Tree
Let $O_{D}$ be the set of all ordered trees having specified degree sequence $D=(d_{1}, d_{2}, \cdots-, d_{n})$ .
In this section we define a tree structure $FT_{D}$ among the trees in $O_{D}$ . Then in the
next section we give a simple but efficient algorithm to list all ordered trees in $O_{D}$ .
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$T$ $P(T)$

Figure 4: Illustration for Case 1.

Assume that $T$ is an ordered tree.
The last inner vertex of $T$ in preorder is called the $p$runing vertex of $T$ . Note

that all the child vertices of the pruning vertex are leaves.
The path $(\ell_{1}, \ell_{2}, \cdots, \ell_{q})$ in $T$ is called the left-down path of $T$ if (1) $\ell_{1}$ is the root,

(2) the leftmost child of $\ell_{q}$ is a leaf, and (3) $\ell_{i+1}$ is the leftmost child of $\ell_{i}$ for each
$i=1,2,$ $\cdots,$ $q-1$ . The leftmost child of $\ell_{q}$ is called the leftmost leaf of $T$ .

Given $D=(d_{1}, d_{2}, \cdots, d_{n})$ , let $T_{r}^{D}$ be the ordered tree derived from the path
$(\ell_{1}, \ell_{2}, \cdots, \ell_{n})$ by attaching $d_{i}-1$ leaves to $\ell_{i}$ for $i=1,2,$ $\cdots,$ $n-1$ and $d_{n}$ leaves
to $\ell_{n}$ so that $(\ell_{1}, \ell_{2}, \cdots, \ell_{n})$ is the left-down path of $T_{r}^{D}$ . See an example in Fig. 3.
Thus $T_{r}^{D}\in O_{D}$ and $O_{D}\neq\phi$ holds. The ordered tree $T_{r}^{D}$ is called the root tree of
$O_{D}$ .

For each ordered tree $T\in O_{D}-\{T_{r}^{D}\}$ with $D=(d_{1}, d_{2}, \cdots, d_{n})$ , we define an
ordered tree, called the parent tree $P(T)$ of $T$ , as follows. We have two cases. Note
that for each case $T$ and $P(T)$ have the same degree sequence. Thus $P(T)\in O_{D}$

holds. Let $I(T)$ be the subgraph of $T$ induced by all inner vertices of $T$ .
Case 1: $I(T)$ is the left-down path of $T$ .

Let $LD=(\ell_{1}, \ell_{2}, \cdots, \ell_{n})$ be the left-down path of $T$ . Since $d(\ell_{1})\geq d(\ell_{2})\geq\cdots\geq$

$d(\ell_{n})$ holds only for $T_{r}^{D}$ , and by assumption $T\in O_{D}-\{T_{r}^{D}\}$ , there is some $i$ such
that $d(\ell_{i})<d(\ell_{i+1})$ . Let $a$ be the smallest index such that $d(\ell_{a})<d(\ell_{a+1})$ . $P(T)$
is the ordered tree derived from $T$ by (1) removing $d(\ell_{a+1})-d(\ell_{a})$ child leaves from
$\ell_{a+1}$ , then (2) attaching the removed child leaves to $\ell_{a}$ so that the left-down path
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$T$ $P(T)$

$T$ $P(T)$ $P(P(T))$ $P(P(P(T)))$ $P(P(P(P(T))))$

Figure 6: The sequence $T,$ $P(T),$ $P(P(T)),$ $\cdots$ .

remain as it was. See an example in Fig. 4. Intuitively $P(T)$ is derived from $T$ by
swapping $\ell_{a}$ and $\ell_{a+1}$ .
Case 2: $I(T)$ is not the left-down path of $T$ .

$P(T)$ is the ordered tree derived from $T$ by swapping (1) the subtree consisting
of the pruning vertex $p$ of $T$ and its children, and (2) the leftmost leaf $\ell_{q}$ of $T$ . See
an example in Fig. 5. Note that all children of $p$ are leaves since $p$ is the last inner
vertex in preorder. Also note that $p$ is not in $I(T)$ since Case 1 does not occur.

Let $O_{D}^{1}$ be the subset of $O_{D}$ consisting of all $T$ such that $I(T)$ is the left-down path
of $T$ . If $I(T)$ is the left-down path of $T$ then $P(T)$ is defined by Case 1 and $I(P(T))$
is also the left-down path of $T$ . For any $T\in O_{D}^{1}-\{T_{r}^{D}\}$ , repeatedly finding the
parent tree of the derived tree results in the sequence $T,$ $P(T),$ $P(P(T)),$ $\cdots$ , which
always end at the root tree $T_{r}^{D}$ of $O_{D}$ . By merging the sequence above for each
$T\in O_{D}^{1}$ we can define a tree structure among trees in $O_{D}^{1}$ . See an example in Fig. 1.

Also note that if $I(T)$ is not the left-down path of $T$ then $P(T)$ is defined by Case
2 and the number of vertices in the left-down path of $P(T)$ is increased by one from
that of $T$ . Again repeatedly finding the parent tree of the derived tree results in the
sequence $T,$ $P(T),$ $P(P(T)),$ $\cdots$ , in which Case 1 eventually occurs somewhere, and
after that the sequence always end at the root tree $T_{r}^{D}$ of $O_{D}$ as mentioned above.
See an example in Fig. 6.

By merging the sequence above for each $T\in O_{D}-\{T_{r}^{D}\}$ we can define the family
tree $FT_{D}$ , in which each vertex in $FT_{D}$ corresponds to a tree in $O_{D}$ , and each edge
corresponds to each relation between some $T$ and $P(T)$ . See an example in Fig. 2.
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4 Listing Ordered Trees
In this section we give a simple but efficient algorithm to list all ordered trees in
$O_{D}$ .

If we have an algorithm to list all child trees of an ordered tree in $0_{D}$ , then
by recursively applying the algorithm starting at the root tree $T_{r}^{D}$ , we can list all
ordered trees in $O_{D}$ . Now we are going to design such an algorithm.

Let $T$ be an ordered tree in $O_{D}$ . We have two cases. Note that $T\in O_{D}^{1}$ means
$I(T)$ is the left-down path of $T$ .
Case 1: $T\in O_{D}^{1}$ .

In this case $T$ may have some child trees both in $O_{D}^{1}$ and $O_{D}-O_{D}^{1}$ . Let
$(\ell_{1}, \ell_{2}, \cdots, \ell_{n})$ be the left-down path of $T$ . Since $I(T)$ is the left-down path of
$T$ all but the leftmost children of $\ell_{i}$ are leaves for each $i=1,2,$ $\cdots,$ $n-1$ , and all
children of $\ell_{n}$ are leaves.
Child trees in $O_{D}^{1}$

Let $T[i]$ be the ordered tree derived from $T$ by transfering some leaf children of
either $\ell_{i}$ or $\ell_{i+1}$ to the other so that (1) the degree of $\ell_{i}$ and $\ell_{i+1}$ are exchanged and
(2) the left-down path remains as it was.

By the definition of the parent tree in Section 3, each child tree $T_{c}$ of $T$ in $0_{D}^{1}$

is $T[i]$ for some $i$ . However not all $T[i]$ are child trees of T. $T[i]$ is a child tree of $T$

only if $P(T[i])=T$ holds.
If $T=T_{r}^{D}$ , then $d(\ell_{1})\geq d(\ell_{2})\geq\cdots\geq d(\ell_{n})$ holds, and $T[i]$ is a child tree of $T$

for each $i=1,2,$ $\cdots,$ $n-1$ if $d(\ell_{i})<d(\ell_{i+1})$ .
Otherwise, $d(\ell_{1})\geq d(\ell_{2})\geq\cdots\geq d(\ell_{n})$ does not hold. Let $s$ be the smallest index

such that $d(\ell_{s})<d(\ell_{\epsilon+1})$ . Now $T[i]$ is a child tree of $T$ for each $i=1,2,$ $\cdots,$ $s-1$
if $d(\ell_{i})<d(\ell_{i+1})$ . $T[s]$ is not a child of T. $T[s+1]$ is a child tree of $T$ only if
$d(\ell_{s+2})\leq d(\ell_{\epsilon})$ . $T[i]$ is not a child tree of $T$ for each $i=s+2,$ $s+3,$ $\cdots,$ $n-1$ .

Note that if $T[i]$ is a child tree of $T$ then the index $s$ of $T[i]$ is always $i$ .
Child trees in $O_{D}-O_{D}^{1}$

For each $i,j$ such that $i=1,2,$ $\cdots,$ $n-1$ and $j=2,3,$ $\cdots,$ $d(\ell_{i})$ , let $T[i,j]$ be the
ordered tree derived $homT$ by swapping (1) the subtree rooted at $p_{n}$ and (2) the
j-th child of $\ell_{i}$ . Note that all children of $\ell_{n}$ are leaves.

By the definition of the parent tree in Section 3, for each $i,j$ such that $i=$
$1,2,$ $\cdots,$ $n-1$ and $j=2,3,$ $\cdots,$ $d(\ell_{i}),$ $T[i,j]$ is a child tree of $T$ .
Case 2: $T\not\in O_{D}^{1}$ .

In this case $T$ has no child tree in $O_{D}^{1}$ , since the parent of each tree in $O_{D}^{1}$ is also
in $O_{D}^{1}$ . However $T$ may have child trees in $O_{D}-O_{D}^{1}$ .

Let $(\ell_{1},\ell_{2}, \cdots, \ell_{q})$ be the the left-down path of $T$ .
The path $(r_{1}, r_{2}, \cdots, r_{p})$ is the right-down path of $T$ if (1) $r_{1}$ is the root, (2)

all child of $r_{p}$ are leaves, and (3) $r_{i+1}$ is the rightmost non-leaf child of $r_{i}$ . Let
$(r_{1}, r_{2}, \cdots, r_{p})$ be the right-down path of $T$ for each $i=1,2,$ $\cdots,p-1$ . For $i=$
$1,2,$ $\cdots,p-1$ define $c(i)$ so that $r_{i+1}$ is the $c(i)$-th child of $r_{i}$ from the left.

60



Child trees in $O_{D}-O_{D}^{1}$

If $T$ is the parent tree of some tree, then all the children of $\ell_{q}$ are leaves. Thus
if $\ell_{q}$ has a non-leaf child, then $T$ has no child tree. Assume otherwise. Now all the
children of $\ell_{q}$ are leaves, and in this case $T$ has one or more child trees, as follows.

Let $T[i,j]$ be the ordered tree derived from $T$ by swapping (1) the subtree rooted
at $\ell_{q}$ and (2) the subtree rooted at j-th child of $r_{i}$ .

By the definition of the parent tree in Section 3, for each $i,j$ such that $i=$
$1,2,$ $\cdots,p-1$ and $j=c(i)+1,$ $c(i)+2,$ $\cdots,$ $d(r_{i}),$ $T[i,j]$ is a child tree of $T$ , and for
each $i,j$ such that $i=p$ and $j=1,2,$ $\cdots,$ $d(r_{p}),$ $T\lceil p,j]$ is a child tree of $T$ . Note that
for each $i$ and $j$ above the subtree rooted at j-th child of $r_{i}$ is just a leaf. Intuitively,
we swap the subtree rooted at $\ell_{q}$ only with a leaf locating to “the right” of “the
right-down path”.

Based on the case analysis above, given an ordered tree $T$ in $0_{D}$ , we can find
all child trees of $T$ in $O_{D}$ . We can find each child tree in $O(1)$ time on average.
Then recursively applying the algorithm from the root tree $T_{D}^{r}$ one can generate all
ordered trees in $O_{D}$ . Thus we have the following theorem.

Theorem 4.1 One can generate all ordered trees in $O_{D}$ in $O(|O_{D}|)$ time.

5 Conclusion
In this paper we designed a simple algorithm to generate all ordered trees with
specified degree sequence. The algorithm generates each tree in $O(1)$ time for each
on average. Can we generate all unordered trees with specified degree sequence in
$O(1)$ time for each?
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