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Abstract

Detection and enumeration of steady-states in biological information networks is im-
portant in bioinformatics and systems biology. In this article, we focus on the Boolean
network and review algorithms developed by the author and collaborators, where the
Boolean network is known as a mathematical model of a genetic network.

1 Introduction

Analysis of various kinds of biological information networks is an important topic in bioin-
formatics, computational biology, and systems biology. In order to analyze these networks,
various kinds of mathematical models have been proposed. Among them, the Boolean network
(BN, in short) has received much attention [11]. BN is a model of genetic networks and is
quite simple: each node corresponds to a gene and takes either 0 (inactive) or 1 (active), and
the states of nodes change synchronously according to regulation rules given as Boolean func-
tions. Thus, a BN with n nodes has a total of 2" possible global states. Since each global state
transits to one global state, beginning from any initial global state, the system will eventually
evolve into a limited set of stable states called attractors. An attractor consisting of only one
state is called a singleton attractor or a fized point. Otherwise, it is called a cyclic attractor.

Since attractors are associated to distinct cell states, extensive studies have been done on
the distribution of attractors (6, 11, 17]. In particular, many studies have been done on the
average case numbers and lengths of attractors in BNs with maximum or average indegree
K (i.e., each node has K incoming edges at the maximum or on the average), where the
assumption of the indegree is reasonable because most nodes in real genetic networks do not
have large indegrees. However, no conclusive results have not yet been obtained.

From a computational viewpoint, not so much attention had been paid for detection and/or
enumeration of attractors. However, maybe due to the need for analyzing models of real genetic
networks, extensive studies have recently been done on detecting and enumerating attractors.
Akutsu et al. showed that deciding existence of a singleton attractor is NP-complete and
counting the number of singleton attractors is #P-complete [1]. They also proposed an algo-
rithm for enumerating all singleton attractors using a feedback vertex set [1]. Tosi¢ showed
that the counting problem remains #P-complete even if graphs are restricted to be planer
bipartite graphs [23]. Kosub showed that the existence problem can be solved in polynomial
time for several special cases relating with bounded treewitdth [12]. Several heuristic methods
have also been proposed for enumeration of fixed points and/or cyclic attractors [5, 7, 9].
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In this article, we briefly review our recent results on detection and enumeration of at-
tractors. After introducing BN and the attractor problems, we review SAT-based algorithms
proposed in (3], [19] and [21], where SAT denotes the Boolean satisfiability problem. As an
extension of the simple reduction of the singleton attractor detection problem to SAT [19], we
newly provide a reduction from the cyclic attractor detection problem to SAT, which gives
an o(2") time algorithm for the cyclic attractor detection problem for fixed period and K.
We also review branch-and-bound type algorithms for enumerating singleton and small cyclic
attractors [25]. Though these algorithms are simple, they work much faster than the naive
algorithm both in theory (in the sense of the average case time complexity) and in practice.
Finally, we conclude with future work.

2 Preliminaries

2.1 Boolean Network

A BN is represented by a set of nodes and a set of regulation rules for nodes, where each node
corresponds to a gene when BN is regarded as a model of a genetic network. Each node takes
either 0 or 1 at each discrete time ¢: 1 (resp. 0) means that the corresponding gene is active
(resp. inactive) at time t. A regulation rule for each node is given in the form of a Boolean
function and the states of nodes change synchronously. An example is given in Fig. 1. In this
example, the state of node v; at time ¢ + 1 is determined by the state of node vs at time ¢.
The states of node v; and v3 at time t + 1 are determined by logical AND of the state of node
v and negation of the state of node v; at time ¢ and by logical AND of the state of node v,
and negation of the state of node v, at time ¢, respectively. We use z Ay, zVy, z @ Y, T to
denote logical AND of z and y, logical OR of z and y, exclusive OR of z and y, and logical
NOT of z, respectively. Dynamics of a BN is well-described by a state transition table and a
state transition diagram shown in Fig. 1. For example, the fourth row of the table means that
if the state of BN is [0, 1, 1] at time ¢ then the state will be [1,0,0] at time ¢ + 1, and the arc
from 111 to 100 in the diagram means that if the state of BN is [1,1,1] at time ¢ the state
will be [1,0,0] at time ¢ + 1.

Now we will give a formal definition of BN. A Boolean network G(V, F) consists of a set
V = {vi,...,v,} of nodes and a list F = (fi,..., f,) of Boolean functions, where a Boolean
function f;(v;,,...,v;,) with inputs from specified nodes Vi, ..., V4, i8 assigned to each node
vi. We use IN(v;) to denote the set of input nodes vy,, . . ., v;, to v;. Each node takes either 0
or 1 at each discrete time t, and the state of node v; at time ¢ is denoted by v;(t). Then, the
state of node v; at time ¢ + 1 is determined by

vt + 1) = fi(vi, (8),. .., v, (1))

Here we let v(t) = [v1(?),...,vn(t)], which is called a Gene Activity Profile (GAP) or a global
state at time t. We also write v;(t + 1) = fi(v(t)) and v(t + 1) = f(v(¢)) to denote the
regulation rule for v; and the regulation rule for the whole BN, respectively. We define the
set of edges E by E = {(v;,,v;)|vi; € IN(v;)}. Then, G(V, E) is a directed graph representing
the network topology of a BN. The number of input nodes to v; is called the indegree of v;.
We use K to denote the mazimum indegree of a BN, which strongly affects the computational
complexities of various algorithms.



112

(A) V) (B) time ¢ time t+1
Vi » W Vi » v

0O 0 O 0 0 O

0 0 1 1 0 O

0 1 0 0 0 O

%) V3 01 1/1 0 0
o IR
VZ(H-I) = V](t)/\;;(_t) 1 1 0 0 1 O
vi(t+1) = vi(t) Av:(D 1 1 1 1 0 0

©) G719 (111)  (o01)

o o
o N
o o

011

Figure 1: Example of a Boolean network. Dynamics of BN (A) is well-described by a state
transition table (B) and by a state transition diagram (C).

2.2 Attractor

Starting from an initial GAP v(0), a BN will eventually reach a set of global states, called an
attractor, which is a directed cycle in the state transition diagram. An attractor consisting of
only one global state (i.e., v = f(v)) is called a singleton attractor or a fired point. Otherwise,
it is called a cyclic attractor with period p if it consists of p global states {v!,v?,...,v?}
(ie, v = f(vP) = ff(vP71)) = - = f(£(---f(v!)--+)), and v! # v9 for all ¢ # 1).
The set of all GAPs that eventually evolve into the same attractor is called the basin of
attraction. Different basins of attraction correspond to different connected components in the
state transition diagram, and each connected component contains exactly one directed cycle.
For example, in Fig. 1, 000 and 101 are singleton attractors, {011,100} is a cyclic attractor
with period 2, and {001,011, 100, 111} is the basin of attraction for the attractor {011, 100}.
On detection and enumeration of attractors, we consider the following four problems:

Singleton attractor detection: Given a BN, decide whether or not there exists a singleton
attractor,

Singleton attractor enumeration: Given a BN, output all singleton attractors,

Cyclic attractor detection: Given a BN and a period p, decide whether or not there exists
a cyclic attractor with period p,

Cyclic attractor enumeration: Given a BN and a period p, output all cyclic attractors
with period p.
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3 SAT-based Algorithms

Since BN is a logic-based system, it is reasonable to try to apply existing algorithms developed
for predicate logic to attractor detection and enumeration problems. In particular, it would be
useful to apply algorithms for SAT because a number of algorithms have been developed for
solving SAT [4, 10, 13, 16, 24]. In this section, we review SAT-based algorithms for detection
and enumeration of singleton and small attractors in BN.

3.1 Simple Reduction to SAT

The singleton attractor detection problem for BNs with maximum indegree K can be trans-
formed into (K + 1)-SAT with n variables [19] in a simple manner. Recall that K-SAT is,
given a set of clauses (i.e., a set of disjunctions of literals) over a set of Boolean variables, to
decide whether or not there exists a 0-1 assignment to variables that satisfies all the clauses,
where each clause consists of at most K literals.

Here, we only show a reduction procedure for the cases of BNs with maximum indegree 2,
from which extensions to the other cases are straight-forward. '

Let v be a GAP of a BN. Recall that v is a singleton attractor if v; = f;(v) holds for all
¢ =1,...,n, where we also use v; to denote the state of v; in a singleton attractor. In the
following, l; denotes either v; or 7;. We begin with the empty set. For ¢ = 1 to n, we add
clause(s) to the set according to the following rules:

vi=1; Vi @VELVE) A (v VI Vi)

@VLVE) A (Vv (GAL))

@GmVLEVE) A (V) A (Vi)

@V AL) A (VAT

@mVLE) A @mVER) A (VG V),

@V (GVIAGVE) A (VG Vi) AGYER)
@VEVE) A @GVEVE) A VGV VG VE)
@GVEVE) AN @GVLEVIE) A (0 VEVE) A (VG V).

’U,'=lj/\lk

vi=1; @l

rereesny

Then, it is seen that a regulation rule for a node v; is transformed into at most four clauses
in 3-SAT. It is to be noted that any Boolean function with two inputs can be represented
by v; = 0, v; = 1, v; = l;, or one of the above rules, where the cases of v; = 0, v, =1 and
v; = l; can also be transformed into 3-SAT clauses. Thus, the singleton attractor detection
problem for BNs with maximum indegree 2 is reduced to 3-SAT with n variables and at most
4n clauses. By extending it to general K, we have the following.

Proposition 1 [19] Any instance of the singleton attractor detection problem for a BN of
mazimum indgree K with n nodes can be reduced in polynomial time to an instance of (K +1)-
SAT with at most 25+ . n clauses and n variables.

This result can be extended for the cyclic attractor detection problem with period p. For
simplicity, we consider the case of p = 2. Then, it is straight-forward to see that {v,f(v)}
is a cyclic attractor of period 2 if and only if v = f(f(v)) and v # f(v) hold. Furthermore,
we can see that the first condition for a given instance can be represented by an instance of
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(K2 +1)-SAT with at most 25*+1.n clauses and n variables, and the second condition can be
represented by an instance of (K + 1)-SAT with at most 25+! . n clauses and n variables. By
extending it to general p, we have the following.

Theorem 1 Any instance of the cyclic attractor detection problem with period p for a BN
of mazrimum indgree K with n nodes can be reduced in polynomial time to an instance of
(KP + 1)-SAT with at most (TX | 257+1) . n clauses and n variables.

Combining with this result with o(2") time algorithms for K-SAT [4], we can see that the
cyclic attractor detection problem can be solved in o(2") time for fixed p and K. Furthermore,
we can see that the above mentioned reduction preserves the number of solutions. Therefore,

counting the number of cyclic attractors might be done in 0(2") time for fixed p and K using
algorithms for #K-SAT problems [13].

3.2 Combination of SAT with Other Techniques

SAT algorithms can be used for developing algorithms for other special cases of BNs. Indeed,
we considered AND/OR BNs, in which each Boolean function is limited to AND or OR
of literals whereas there is no restriction on the maximum indgree [19, 21]. We developed
algorithms for the singleton attractor detection problem for these AND/OR BNs. Here, we
briefly review the basic idea used in these algorithms.

Suppose that the following function is assigned to a node v;:

Ui(t + 1) = 'Ul(t) A ’Uz(t) A A ’Uh(t).

Consider four possible assignments for (v;,v;): (0,0), (0,1), (1,0) and (1,1). Among these
assignments, three satisfy the condition of a singleton attractor whereas one (i.e., (0,1)) does
not satisfy it. Therefore, by examining three assignments, we can eliminate two nodes. If we
could continue this procedure until there is no remaining node, we would have the complexity
of O(3"2) ~ 0(1.733") by solving

9(2) =3, g(k)=3-g(k-2).

- However, we cannot continue the above mentioned procedure until there is no remaining node.
Therefore, we developed the following algorithm [19].

1. Let all the nodes be non-assigned.

2. While there exists a non-assigned node pair (u,v) € E, examine all possible 3 assign-
ments on (u.v) recursively.

3. Let U be the set of nodes whose values were already assigned.

4. If |U| > an, examine all possible assignments on the remaining nodes and then check
the condition of a singleton attractor. Otherwise, compute an appropriate assignment
using [24] and then check the condition of a singleton attractor.

By letting o = 0.767, we proved that this algorithm works in O(1.792") time [19]. By com-
bining with some other techniques, we obtained the following result.

Theorem 2 [21] The singleton attractor detection problem for AND/OR BNs can be solved
in O(1.757™).
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We also considered a special case of AND/OR BNs in which G(V, E) is planar. In this
case, by utilizing the planar separator theorem [14], we showed that the singleton attractor
detection problem for planar AND/OR BNs can be solved in O((1 + ¢)") time where ¢ is an
arbitrarily small positive constant.

In Section 3.1, we showed that the singleton attractor detection problem for BNs with
maximum indegree K can be reduced to (K + 1)-SAT. However, it is natural to ask whether
or not there exist better algorithms. For the case of K = 2 (which remains NP-complete [19]),
we showed that the answer is YES. By extending the idea mentioned in the first part of this
subsection and combining it with the fastest 3-SAT algorithm [16], we developed an algorithm
[3] that is very slightly faster than the simple reduction based algorithm (which also uses [16]).

4 Simple Recursive Algorithms and Their Average Case
Analyses

Though SAT-based algorithms might be useful for the singleton attractor detection problems,
these might not be so useful for the singleton attractor enumeration problems. Furthermore,
we need to use existing SAT solvers in practice and it may be difficult to customize them in
order to cope with some other constraints. Therefore, we developed several algorithms for
enumerating singleton attractors and cyclic attractors with short periods [25], which do not
use SAT algorithms. In this section, we briefly review a basic version of these algorithms,
which is referred to as the basic recursive algorithm.

The number of singleton attractors in a BN depends on the regulatory rules of the network.
If the rules are v;(¢t + 1) = v;(¢) for all ¢, the number of singleton attractors is 2®. Thus, it
would take at least O(2") time in the worst case if all the singleton attractors are to be
enumerated. On the other hand, it is known that the average number of singleton attractors
is 1 regardless of n and K [8, 15]. The basic recursive algorithm was designed based on these
facts. It examines much smaller number of GAPs than 2" in the average case.

In the basic recursive algorithm, a partial GAP (i.e., [vy,...,vn] for m < n) is extended
one by one towards a complete GAP (i.e., singleton attractor), according to a given ordering
of nodes (i.e., a random gene ordering). As soon as it is found that a partial GAP cannot be
extended to a singleton attractor, the next partial GAP is examined. The pseudocode of this
algorithm is given below, where it is invoked with m = 1.

Procedure EnumerateSingletonAttractor(v, m)

ifm=n+1
then Output [vq,v;,--,v,] and return
forb=0to 1 do

Uy = b

if it is found that f;(v) 5 v; for some i < m

then continue

else EnumerateSingletonAttractor(v,m + 1)
return

This algorithm extends a partial GAP by one node at a time in a recursive manner. At
the m-th recursive step, the states of the first m — 1 nodes (i.e., a partial GAP) are already
determined. Then, the algorithm extends the partial GAP by letting v,, = 0. If f;(v) = v;
holds or the value of v; is not determined for each i = 1,...,m (i.e., there is a possibility that
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Table 1: Average case time complexities of basic, outdegree-based, and BFS-based algorithms
for the singleton attractor detection problem [25].

K 2 3 4 3] 6

basic 1.35" 1.43™ 1.49™ 1.53" 1.57"
outdegree-based | 1.19" 1.27" 1.34" 1.41™ 1.45"
BFS-based 1.16™ 1.27" 1.35" 1.41™ 145"

the current partial GAP can be extended to a singleton attractor), the algorithm proceeds to
the next recursive step. Otherwise, it modifies the partial GAP by letting v,, = 1 and executes
a similar procedure. After examining both v, = 0 and v,, = 1, the algorithm returns to the
previous recursive step. Since the number of singleton attractors is small in most cases, it is
expected in most cases that the algorithm does not examine many partial GAPs with large
m. The average case time complexity is estimated as follows [25].

Assume that we have tested the first m out of n nodes, where m > K. For all i < m,
fi(v) 3 v; holds with probability

1

( )
m. . m
P(fi(v)#v) = 0.5- (n ) ~ 0.5'(;)'“ > 0.5-(—5)’{,
k;

where we assume that Boolean functions of k; inputs are selected at uniformly random. If
fi(v) # v; holds for some i < m, the algorithm cannot proceed to the next recursive level.
Therefore, the probability that the algorithm examines the (m + 1)-th node is no more than

m m m
1= PUAW) #0)]™ = [1-05- (T)9)™
Thus, the number of recursive calls executed for the first m nodes is at most
m
f(m) = 2™.[1 *0-5-(g)"]’"-

Let s = 2, and F(s) = [2° - (1 — 0.5 - s¥)*]* = [(2 — s%)*]". Then, the average case time
complexity of the algorithm can be estimated as O((max(g))") for fixed K, where g(s) =
(2 — s¥)°. By means of numerical calculation for max(g), we obtained the average case time
complexities for K = 2,...,6 as in the first row of Table 1. It should be noted that the naive
exhaustive search-based algorithm takes at least O(2") time. Therefore, the basic recursive
algorithm is much faster than the naive algorithm for small K.

We obtained variants of this basic recursive algorithm by sorting nodes before invoking
the recursive procedure [25]. In particular, we used the orderings of nodes according to the
outdegree and BFS (breadth-first search). For these algorithms, we obtained theoretical esti-
mates of the average case time complexity as in Table 1. We also performed computational
experiments to confirm these theoretical results (it is to be noted that some approximations
were included in theoretical analyses). As a result, good agreement was observed. We also

extended the basic recursive algorithm for enumerating cyclic attractors with short periods
[25].
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5 Concluding Remarks

In this article, we reviewed algorithms developed by the author and collaborators for attractor
detection and enumeration problems for BNs. We showed that the singleton and cyclic at-
tractor detection problems for BNs with maximum indegree K are reduced to SAT problems.
We also reviewed other types of algorithms for attractor detection problems for special cases
of BNs. For the singleton and cyclic attractor enumeration problems, we reviewed simple
recursive algorithms. None of the complexity results reviewed in this article was proven to be
optimal. Therefore, improvements of the time complexities are left as open problems. Though
we only considered attractor problems for BNs, there exist other computational problems on
BNs [2]. In particular, control of BNs and more general models might be important because
it might have applications to developments of novel drugs and treatment mecthods for difficult
diseases.

In this article, BNs are considered as a model of genetic networks. However, BN and its
variants can also be used as models of other types of biological information networks. Recently,
BN-like models were proposed for modeling metabolic networks [18, 20, where chemical com-
pounds are regarded as OR nodes and chemical reactions and/or enzymes are regarded as
AND nodes. Using these models, problems of deciding the minimum number of chemical re-
actions/enzymes to be inactivated for preventing production of specified chemical compounds
were studied, which may have applications to identification of multiple drug targets. We stud-
ied one formulation of these problems both from a theoretical viewpoint and from a practical
viewpoint. From a theoretical viewpoint, we showed that the problem is NP-hard [22]. We
also developed an O(1.822") time algorithm for the case where the maximum indegree of re-
action nodes is bounded by 2 [22]. From a practical viewpoint, we developed an algorithm
using integer linear programming and feedback vertex sets [20].

We understand that there is a criticism that BN is too simple as a model of genetic net-
works, metabolic networks, and/or other types of biological information networks. However,
studies on BNs may provide some insights into other models. At least, hardness results should
hold for more general models. Some ideas in positive results might also be useful for design and
analysis of algorithms for more general models. Therefore, extensions of BNs and development
of algorithms for such extended models are important future work.
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