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Introduction

In this article we give the survey of some results which have been received in $[1]-[2]$ . We
consider the singular volume integral equations describing the electromagnetic wave
scattering in three-dimensional bounded inhomogeneous media. We analyze the problem of
finding the spectrum of these non-selfadjoint integral operators. A closed-form expression
describing the continuous part of the spectrum on the complex plane is presented. For low-
ffequency scattering problems, by using differential formulation of the problems, we find a
domain on the complex plane where the discrete spectrum of our integral equations is located.
We describe a generalized simple iteration method and, using the information of the
spectrum, show that it can be very effective tool in low-ffequency scattering problems.

1. Formulation of the problem

We will consider the following class of electromagnetic problems. The medium in a fmite $3D$

domain $Q$ is characterized by a dielectric permittivity function $\epsilon$ that is a Holder continuous
everywhere and constant $\epsilon=\epsilon_{0}=$ const outside $Q$; the permeability is constant everywhere,
$\mu=\mu_{0}=$ const. The problem is to find the electromagnetic field excited in the medium by an
extemal field with time dependence given by the factorexp$(-i\omega t)$ . The corresponding
mathematical problem is stated as follows: find unknown vector hnctions $\vec{E}$ and $\vec{H}$

satis$\mathfrak{h}^{\gamma}ing$ Maxwell equations

rot $\vec{H}=-i\omega\epsilon\vec{E}+\overline{J}^{0}$ , rot $\vec{E}=i\omega\mu_{0}\overline{H}$ (1)

and the radiation condition at infinity

$\lim_{rarrow\infty}[r(\frac{\partial u}{\partial r}-ik_{0}u)]=0$ , (2)

where $k_{0}=\omega\sqrt{\epsilon_{0}\mu_{0}}$ . In (1) $\overline{J}^{0}$ is the extemal current generatmg the extemal field $\vec{E}^{0},\overline{H}^{0}$ ;
and ${\rm Im}\epsilon_{0}\geq 0,$ ${\rm Im}\mu_{0}\geq 0$ , and ${\rm Im} k_{0}\geq 0$ .
Using the polarization current and known formulas for the vector potentials, one can obtain
the integral-differential equation with respect to electric field $\overline{E}$

$\vec{E}(x)-k_{0}^{2}\int_{Q}(\epsilon_{r}(y)-1)\vec{E}(y)G(R)\phi-graddiv\int_{Q}(\epsilon_{r}(y)-1)\overline{E}(y)G(R)\phi=\vec{E}^{0}(x)$
. (3)

In (3) $G$ is the Green function of the Helmholtz equation
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$G(R)= \frac{\exp(ik_{0}R)}{4\pi R},$ $R=|x-y|,x=(x_{1},x_{2},x_{3}),y=(y_{1},y_{2},y_{3}),$ $\epsilon_{r}=\epsilon/\epsilon_{0}$ . (4)

In (3) $\vec{E}^{0}(x)$ is the electric field generated by known current $\vec{J}^{0}$ in the homogeneous space
with parameters $\epsilon_{0}$ and $\mu_{0}$ . If we know the electric field we can calculate magnetic field by
using second equation (1).
Note that we cannot apply grad $div$ under the integral sign in (3) because in this case one must
differentiate function $G$ twice with respect to coordinates which yields the term $\sim 1/R^{3}$ in the
kemel of the integral equation and the corresponding improper integrals diverge. Equation (3)
can be reduced to the singular volume integral equation

$\vec{E}(x)+\frac{1}{3}(\epsilon_{r}(x)-1)\vec{E}(x)-p.v.\int_{Q}((\epsilon_{r}(y)-1)\vec{E}(y),grad)gradG(R)dy-$

$k_{0}^{2} \int_{Q}(\epsilon_{r}(y)-1)\vec{E}(y)G(R)dy=\vec{E}^{0}(x),$
$x\in Q$. (5)

Here $p.v. \int$ denotes a singular integral, for which an infinitely small ball occupying the
vicinity of the point $x=y$ is extracted ffom the domain of integration; and $(*,*)$ denotes the
inner product of three-dimensional vectors.
We will consider integral equation (5) with respect to vector fimction $\vec{E}$ in a domain $Q$ . The
electric field outside $Q$ is represented through the value of $\vec{E}$ in this domain by formula (5),
where, obviously, singular integral should be considered as proper ones.

2. Spectrum of integral operator

The spectrum of the operator $\hat{A}$ on the complex plane $Z$ is the set of points $\lambda$ such that the
operator $(\hat{A}-\lambda\hat{I})$ does not have an inverse defined everywhere in the Hilbert space $H$. The
points $\lambda$ such that the operator $(\hat{A}-\lambda\hat{I})$ is not Fredholm belong to the continuous part of the
spectrum of$\hat{A}$ . The points $\lambda$ such that $(\hat{A}-\lambda\hat{I})$ is a Fredholm operator of index zero and
there exists a nontrivial solution $u,\hat{A}u-\lambda u=$ Obelong to the discrete part of the spectrum
of\^A.
First, we have to specify appropriate fimctional space. The integrals of squared field
characteristics stand in the conservation law for electromagnetic scattering problems.
Therefore, one may assume that the Hilbert space of square-integrable vector-
functions $\vec{L}_{2}(Q)$ with the inner product

$( \vec{U},\vec{V})=\int_{Q}\vec{U}(x)\vec{V}^{*}(x)dx$ (6)

is the most appropriate ffom the physical viewpoint as applied to the analysis of the integral
equation (5). In (6) symbol $*$ means the complex conjugation.
The following statement is valid [1].
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Theorem 1. The operator of the singular integral equation (5) is a Fredholm operator in the
Hilbert space $\overline{L}_{2}(Q)$ ifand only ifthe following condition is satisfied

$\epsilon(x),$ $x\in Q$ . (7)

Rewrite integral equation (5) in the symbolic form

$\hat{A}u\equiv u-\hat{S}((\epsilon_{r}-1)u)=f$. (8)

Obviously

$\hat{A}-\lambda\hat{I}=(1-\lambda)[\hat{I}-\hat{S}(\frac{\epsilon_{r}-\lambda}{1-\lambda}-1)]$ . (9)

By comparing (8) and (9) Rom Theorem 1 we fmd that the continuous part of the spectrum of
the operator in equation (5) contains the set $\sigma_{1}$ of points on the complex plane given by the
formula

$\lambda=\epsilon_{r}(x),$ $x\in Q$. (10)

It follows ffom (10) that the point $\lambda=1$ belongs to $\sigma_{1}$ since $\epsilon_{r}=1$ on the boundary of the

domain $Q$. Note that, by virtue of the Holder continuity of the pemittivity function $\epsilon_{r}(x)$ , the
set $\sigma_{1}$ is a connected subset of the complex plane.
Denote the boundary of $\sigma_{1}$ by $\gamma_{1}$ and the set of all points of the complex plane $Z$ lying on and

inside the boundary $\gamma_{1}$ by $\sigma^{+}$ . If, in particular, if $\sigma_{1}$ is a non closed curve then $\sigma^{+}=\sigma_{1}=\gamma 1$ .
It is obvious that the set $Z\backslash \sigma^{+}$ is a connected subset of the complex plane and for any

$\lambda\in Z\backslash \sigma^{+}$ operator $(\hat{A}-\lambda\hat{I})$ is Fredholm. Therefore index of the operator $(\hat{A}-\lambda\hat{I})$ is the

same for any $\lambda\in Z\backslash \sigma^{+}$ . Operator $(\hat{A}-\lambda\hat{I})$ has an inverse if $|\lambda|>\Vert\hat{A}\Vert$ and therefore his

index is zero. Thus we arrive to the following assertion.

Theorem 2. The continuous spectrum ofthe operator ofthe integral equation (5) contains the
set $\sigma_{1}$ on the complex plane given by formula (10). Moreover, the operator $(\hat{A}-\lambda\hat{I})$ is

Fredholm ofindex zero in the Hilbert space $\overline{L}_{2}(Q)$ if $\lambda\in Z\backslash \sigma^{+}$

It follows ffom Theorem 2 that each point $\lambda\in Z\backslash \sigma^{+}$ on the complex plane belongs to either
the resolvent set or the discrete specmim ofthe operator $\hat{A}$ .

3. Spectrum for low-frequency case

In the general case it is impossible to describe the localization domain of the discrete
spectrum of the operator accurately. However, this can be done in a special case which is
important in practice. Consider low-ffequency electromagnetic wave scattering problems such
that the diameter of $Q$ is much less than the wavelength, $D<<\lambda$ , where $\lambda=2\pi/k_{0}$ .
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Equation (5) can be applied when the wave number $k_{0}=0$ , i.e., for the static case. Obviously,
all preceding assertions remain valid in the static case. It follows from (5) that

$( \hat{A}(k_{0})-\hat{A}(0))\vec{V}=-k_{0}^{2}\int_{Q}(\epsilon_{r}-1)\vec{E}(y)G(R)\phi-\int_{Q}((\epsilon_{r}-1)\vec{V}(y),grad)gradG_{0}(R)dy$,

$G_{0}(R)= \frac{\exp(ik_{0}R)-1}{4\ovalbox{\tt\small REJECT}}$ , (11)

where $\hat{A}(k_{0})$ and $\hat{A}(0)$ are the operators in the integral equations for the stationary and static
cases, respectively. The second integral operator in (11) does not contain a singular integral
since the kemel of this operator has no singularity at $x=y$ and is a smooth function of the
coordinates. Therefore, ffom (11) we obtain

$\lim_{k_{0}arrow 0}\Vert\hat{A}(k_{0})-\hat{A}(0)\Vert=0$ . (12)

From (12) we have the following assertion.

Lemma 1. The spectrum ofthe low-frequency integral operator $\hat{A}(k_{0})$ tends to the spectrum

ofthe static operator $\hat{A}(0)$ as $k_{0}arrow 0$ .

The integral equations (3) and (5) are equivalent among themselves. In the static case, the
integral equation (3) can be represented in the form

$\vec{E}(x)-graddiv\int_{Q}(\epsilon_{r}(y)-1)\vec{E}(y)(1/4_{J}R))dy=\vec{E}^{0}(x)$
. (13)

The solution of the homogeneous equation (13) satisfies the differential equations

rot $\vec{E}=0$, $div(\epsilon_{r}\vec{E})=0$ . (14)

The first equation (14) follows ffom the identity rot $grad=0$ , and the second equation
follows Rom the identities grad div $=$ rot rot $+\Delta$ and $div$ rot $=0$ and the differential equation
$\Delta\vec{A}=-\vec{J}$ which is valid for the volume potential $\vec{A}(x)=\int\vec{J}(y)(1/4\pi R)dy$ .
From the first equation in (14), we have $\vec{E}=grad\varphi$ . Then equations (14) can be reduced to a
second-order differential equation for the function $\varphi$

$div(\epsilon_{r}grad\varphi)=0$ . (15)

Let $\psi$ be an everywhere-defined differentiable function. We have an obvious identity

$div(\psi\epsilon_{r}grad\varphi)=\psi div(\epsilon_{r}grad\varphi)+(grad\psi,\epsilon_{r}grad\varphi)$ . (16)

103



Let $\psi=\varphi^{*}$ . Then, by integrating relation (16) over the space and by taking into account (15)

and the divergence theorem, we obtain the integral relation

$\int\epsilon_{r}|gradd^{2}$
$do= \lim_{Rarrow\infty}\int_{s_{R}}\varphi^{*}\frac{\partial\varphi}{\partial n}dS$

, (17)

where $S_{R}$ is the sphere of radius $R$ centered at the origin and $n$ is the normal to the sphere.

Since $\varphi$ is a harmonic function outside $Q$, it follows that $\varphi^{*}\partial\varphi/\partial n$ decreases as $R^{-3}$ at
infinity. Therefore, the limit on the right-hand side in (17) is zero, and each solution of the
homogeneous equation (13) satisfies the integral relation

$\int\epsilon_{r}|grad\varphi|^{2}$ $do= \int\epsilon_{r}|\overline{E}|^{2}dtJ=0$ . (18)

Denote
$\epsilon_{r}^{+}(\lambda,x)=(\epsilon_{r}(x)-\lambda)/(1-\lambda)$ , $\lambda\not\in\sigma_{1}$ . (19)

It follows ffom (9) and (19) that $\lambda$ is a point of the discrete spectrum of the operator (13) if
there exists a nonzero solution $\overline{E}$ of homogeneous integral equation (13) with
permittivity $\epsilon_{r}^{+}(\lambda,x)$ . Moreover, it follows from (18) and (19) that the corresponding value
of$\lambda$ is given by the formula

$\lambda=\frac{\int\epsilon_{r}|\vec{E}(\lambda)|^{2}do}{J\overline{E}(\lambda)1^{2}do}$ . (20)

It is impossible to find the corresponding functions $\vec{E}(\lambda)$ . However, using formula (20), one
can fmd the localization domain of points of the discrete spectrum on the complex plane: the
points of the discrete spectrum of the integral operator (13) can lie only inside the convex
envelope of the set $\sigma_{1}$ given by formula (10). Set $\sigma^{+}$ lies inside convex envelope of the
set $\sigma_{1}$ . Therefore we arrive to the statement.

Theorem 3. Spectrum ofthe integral operator (13) can lie only inside the convex envelope of
the $set\sigma_{1}$ given by theformula (10).

Theorem 3 and Lemma 1 provide approximate information about a convex envelope of the
spectrum of the integral operator for the $low- fi\cdot equency$ case.

$Let^{1}s$ set a simple example.
Let domain $Q$ in the integral equation (5) be a ball and suppose that function of dielectric
permittivity has the following form in the spherical system of the coordinates
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$\frac{\epsilon(r)}{\epsilon_{0}}=\{\begin{array}{l}\epsilon_{2}, d_{2}\geq r\geq 0\epsilon_{2}+(\mathcal{E}_{1}-\mathcal{E}_{2})\frac{r-d_{2}}{d_{1}-d_{2}}, d_{1}\geq r\geq d_{2}\epsilon_{1}+(1-\epsilon_{1})\frac{r-d_{1}}{R-d_{1}}, R\geq r\geq d_{1}\end{array}$ (21)

In (21) $R$ is a radius of a ball, and $R>d_{1}>d_{2}>0$ .

${\rm Im}$

$”””’$

’ $\epsilon_{2}$

$\epsilon_{1}$

$’$
’

$’$
’

$’$

$’$

$’$
’

$\prime’$

$’$
’

$’$
’

$’$
’

$”’$
’

1 ${\rm Re}$

Figure 1; Spectrum ofintegral operator.

On Fig. 1 fat solid line schematically outline the continuous part of spectnun for the case (21).
The spectrum of the integral operator for the low-ffequency case lies inside the triangle.

4. Generalized simple iteration method

In the Banach space $B$, we consider the linear operator equation

$\text{\^{A}} u=f$ ,

where $\hat{A}$ is a bounded operator.
Rewrite Eq. (22) in the equivalent form

(22)

$u-\hat{B}_{\mu}=f/\mu$ . (23)

Here $\hat{B}_{\mu}$ is the linear operator given by the fonnula $\hat{B}_{\mu}=(\mu\hat{I}-\hat{A})/\mu$ and $\mu\neq 0$ is an
arbitrary complex number.
The successive approximations

$u_{n+1}=\hat{B}_{\mu}u_{n}+f/\mu$ , $n=0,1,\ldots$ (24)
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converge to the solution ofEq. (23) and hence of Eq. (22) for any $u_{0},$ $f\in B$ provided that

$\rho_{0}(\mu)=\sup|\eta(\mu)|<1$ , $\eta(\mu)\in\sigma(\hat{B}_{\mu})$ . (25)

One can readily show that there is a one-to-one correspondence between points of the
spectrum $\sigma(\hat{A})$ of the operator $\hat{A}$ and points of the specrum $\sigma(\hat{B}_{\mu})$ of the operator $\hat{B}_{\mu}$ ; this
correspondence is given by the formula

$\eta=(\mu-\lambda)/\mu$ , $\lambda\in\sigma(\hat{A})$, $\eta\in\sigma(\hat{B}_{\mu})$ . (26)

The iterations (24) can be represented in the simpler form

$u_{n+1}=u_{n}- \frac{1}{\mu}(\hat{A}u_{n}-f)$,

One can prove the following statement [1].

$n=0_{9}1,\ldots$ (27)

Theorem 4. A necessary and suffcient conditionfor the existence ofcomplex number $\mu$ such
that the iterations (27) converge to the solution ofEq. (22) for arbitrary $u_{0},$ $f\in B$ is that the

origin ofthe complex plane lies outside a convex envelope ofthe spectrum of $\hat{A}$ .

The convex envelope is illustrated in Fig. 2.

Figure 2; Spectrum and its convex envelope.

The iteration converges to the solution at the rate of a geometric progression; i.e.

$\Vert u_{n}-u\Vert\leq C[\rho_{0}(\mu)]^{n}$ , $C=$ const , (28)

where, by (25) and (26), $\rho_{0}(\mu)$ is given by the formula

$\rho_{0}(\mu)=\frac{\sup|\mu-\lambda|}{|\mu|}$ , $\lambda\in\sigma(\hat{A})$ . (29)
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Obviously, the best convergence of the iterations is attached at the value $of\mu$ for which the
function $\rho_{0}(\mu)$ takes the minimum value. By $S_{\mu}$ we denote the disk on the complex plane

with center $\mu$ and the least radius $R$ which contains all points of the spectrum of $\hat{A}$ .
Obviously, $R= \sup|\mu-\lambda|,$ $\lambda\in\sigma(\hat{A})$. From the origin, we draw the tangents to the disk $S_{\mu}$

and denote the angle between them by $\alpha$ . Then it follows ffom (29) that $\rho_{0}(\mu)=\sin(\alpha/2)$ .
Thus we have proved the following statement.

Theorem 5. Let the origin of the complex plane lies outside the convex envelope of the
spectrum of $\hat{A}$ . Let $S_{0}$ be the disk which contains all points of the spectrum of $\hat{A}$ and is
“seen“from the origin at minimal angle $a_{0}$ . Then the best convergence ofthe iterations (27)

to the solution ofEq. (22) is attained at the complex value $\mu_{0}$ which is the center ofthe disk
$S_{0}$ . The iterations converge to the solution at the rate of a geometric progression with the
denominator $\rho_{0}=\sin(\alpha_{0}/2)$.

Conclusion

The convex envelope of the specffum of an integral operator on a complex plane depending
on the form of the dielectric pemiittivity mnction has been defined above for the integral
equation (3) in the case of low-Requency electromagnetic scattering problems. It follows
ffom Theorems 4 and 5 and relation (10) that the generalized simple iteration method can be
used for Eq. (3) for arbitrary real media; moreover, we can readily evaluate the optimal
iterative parameter $\mu_{0}$ . Numerical experiments have shown that this method is a very
effective tool for the numerical solution oflow-ffequency scattering problems.
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