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Abstract
The paper describes a numerical method for aeroacoustic analysis of an axisymmetric prob-
lem of self-sustained flow oscillations (the hole-tone problem). The method is based on
the Powell-Howe theory of vortex sound and the special boundary element method for thin
bodies, developed by Tbrai. A specific case is analyzed and compared with experiments;
reasonably good agreement is found.
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1 Introduction

The present work is concemed with computation of the sound generated by self-sustained flow
oscillations in the so-called hole-tone problem. Here a jet issued from a circular nozzle impinges
upon a similar hole in a thin plate fixed a little downstream from the nozzle. The problem
is described in Lord Rayleigh’s Theory of Sound $(1945)^{1}$ , \S 371; it is also considered in Howe
(1998). Comprehensive reviews, covering also related problems, have been given by Rockwell
and Naudascher (1979) and Rockwell (1983).

A number of experimental studies on the hole tone problem have been published (Chanaud
and Powell 1965, Nakano et al. 2004). Theoretical and numerical studies are however few. The
authors have previously carried out a numerical study of the problem, based on an axisymmetric
discrete vortex method and an aeroacoustic model based on Curle’s equation (Howe 1998). The
problem is however one of ‘pure’ vortex sound, and the theory developed by Powell (1964) and
Howe (1975) is the proper one to use.

The aim of the present work is thus to develop a numerical method for the hole-tone problem,
based on the theory of vortex sound, in an axisymmetric setting2. The experimental measure-
ments, to which the numerical results are to be compared, are carried out not too far away from
the jet, within the outer edge of the end plate. In order to take the scattering of the end plate
properly into account, a special boundary element method for thin bodies, developed by Terai
(1980), is employed, rather than often applied compact Green’s function method.

lOriginally published 1877 (1. ed.) and 1894 (2. ed.).
2Rayleigh (1945) pointed out that the disturbances remain axisymmetric. This was also the conclusion of

Chanaud and Powell (1965).
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2 Modeling of the basic jet flow

An axisymmetric jet of radius $r=r_{0}$ is discharging from a nozzle at $x=0$ in the axisymmetric
cylindrical polar coordinate system $(x, r)$ ; see Fig. 1. The shear layer of the jet is impinging
upon the edge of a circular hole, also of radius $r_{0}$ , in a parallel end plate, placed at $x=\ell$ . The

Figure 1: Axisymmetric cylindrical polar coordinates used to describe the basic jet flow. A cut
through the nozzle (with mean-flow-generating vortices on the back) and the end plate is also
shown.

shear layers of the jets issued from the nozzle and from the end plate are thought to be first
represented by continuous vortex sheets. The nozzle and the end plate are represented by bound
vortex sheets. These vortex sheets are then discritized into necklaces of discrete vortex rings.

Vortex ring theory

The vortex ring model of Nitsche and Krasny (1994) is used. This is a ‘desingularized’ version
of the thin-cored circular vortex ring described in, e.g., Lamb’s Hydrodynamics (1993). The
induced velocity $u=(u_{x}, u_{r})$ at a location $(x, r)$ , from a single vortex ring of strength $\Gamma$ and
located at $(x_{i}, r_{i})$ , is obtained $hom$

$u_{x}= \frac{1}{r}\frac{\partial\Psi}{\partial r}$ ,

where the stream function $\Psi$ is given by

$u_{r}=- \frac{1}{r}\frac{\partial\Psi}{\partial x}$ , (1)

$\Psi(x, r, x_{i}, r_{i})$ $=$
$\underline{r}_{(\eta_{1}}+\eta_{2})\{K(\lambda)-E(\lambda)\}$ , (2)
$2\pi$

$\lambda$ $=$ $(\eta_{2}-\eta_{1})/(\eta_{2}+\eta_{1})$ ,

$\eta_{1}$ $=$ $\{(x-x_{i})^{2}+(r-r_{i})^{2}+\epsilon^{2^{1}}\}^{f}$ ,

$\eta_{2}$ $=$ $\{(x-x_{i})^{2}+(r+r_{i})^{2}+\epsilon^{2}\}^{\frac{1}{2}}$

Here $K(\lambda)$ and $E(\lambda)$ are the complete elliptic integrals of first and second kind, respectively
(Abramowitz and Stegun 1972). The parameter $\epsilon$ in the $\eta_{1}$ and $\eta_{2}$ functions is a smoothing,
or regularization, parameter, corresponding in effect to a finite vortex sheet thickness. It may
also be thought of as ‘artificial’ viscosity; artfficial in the sense that it does not bring about any
dissipation of energy.

We are not aware of any studies dealing with a theoretical determination of $\epsilon$ . Comprehensive
studies have been carried out to determine numerically the ‘optimum’ value (Langthjem and
Nakano 2005).
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Modeling of solid surfaces

As mentioned above, thejet nozzle and the end plate are represented by bound vortex rings. The
inviscid boundary condition of zero normal velocity is imposed at control points between these
rings. The mean jet flow is also provided by a number of vortex rings placed on the ‘back’ of the
nozzle tube. The strengths of the bound vortex rings are dictated by the boundary condition
and by the mean jet velocity.

Modeling of vortex shedding

A vortex ring is released $hom$ the nozzle at each time step in the simulation. The strength of
this ring is dictated by the Kutta condition, which demands that the pressure a little above
the nozzle edge equals the pressure a little below. Once released, the vortex rings keep their
strengths throughout the simulation. The convection velocity of a shed vortex ring is dictated
by the induced velocities from all other vortex rings, plus the self-induced velocity.

3 Aeroacoustic model
The equation of vortex sound and its formal solution in terms of integral equations
For evaluating the sound generated by the self-sustained flow oscillations, the start point is taken
in Howe’s equation for vortex sound at low Mach numbers (Howe 2003). Let $\omega=\nabla\cross u$ denote
the vorticity. The sound pressure $p(x, t)$ is related to the vortex force $\mathcal{L}(x, t)=\omega(x, t)\cross u(x, t)$

via the non-homogeneous wave equation

$( \frac{1}{*}\frac{\partial^{2}}{\partial t^{2}}-\nabla^{2})p=\rho\nabla\cdot \mathcal{L}$. (3)

The boundary conditions are

$\frac{\partial p}{\partial n}=0$ on the end plate, $parrow 0$ for $|x|arrow\infty$ , (4)

where $n$ denotes the normal vector.
We define Fourier transform with respect to time $t$ and frequency $\nu$ as

$P( x, \nu)=\frac{1}{2\pi}\int_{-\infty}^{\infty}p(x, t)e^{i\nu t}dt$ , (5)

$p( x,t)=\int_{-\infty}^{\infty}P(x, \nu)e^{-i\nu t}d\nu$ . (6)

Applying (5) to (3) gives
$(\nabla^{2}+k^{2})P=-\rho\nabla\cdot L$ (7)

where $L(x, \nu)$ is the Fourier transform of $\mathcal{L}(x, t)$ , and $k=\nu/c_{0}$ is the wave number. To solve
(7) use is made of the free-space Green’s function $G(x, y;\nu)$ which is a solution of the equation

$(\nabla^{2}+k^{2})G=-\delta(x-y)$ , (8)

where $\delta(x-y)$ is Dirac’s delta function. Here and in the sequel, $x$ denotes the location of an
observation point and $y$ the location of an acoustic source. Finally it is noted that $G$ satisfies
the second of the boundary conditions (4).

Multiplying (7) by $G$ and (8) by $P$ gives, after integration and use of Green’s second identity,

$\sigma P(x, \nu)$ $=$ $\rho\int\int\int G(x,y)\nabla_{y}\cdot L(y, \nu)d^{3}y$ (9)

$-$ $\int\int[G(x,y_{\beta})\frac{\partial}{\partial n_{\beta}}P(y_{\beta}, \nu)-P(y_{\beta}, \nu)\frac{\partial}{\partial n_{\beta}}G(x, y_{\beta})]d^{2}y_{\beta}$.
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The subscript $y$ on the del-operator in the first term on the right hand side indicates differenti-
ation with respect to the source coordinates $y$ . The subscript $\beta$ on $y_{\beta}$ indicates a point on the

end plate and $n\beta$ the normal vector at that point. The notation $d^{3}y$ is used for $dy_{1}dy_{2}dy_{3}$ and
$d^{2}y\beta$ for $dy_{\beta 1}dy_{\beta 2}$ . The parameter $\sigma$ is given by

$\{$

1 when $x$ is in the acoustic medium,
$\sigma=$

$\frac{1}{2}$ when $x$ is on a solid boundary,
$0$ when $x$ is outside the acoustic medium.

(10)

Proofs of these results can be found in Petrovsky (1991).
The first of the equations (4) gives that $\partial P/\partial n_{\beta}=0$ . Thus the right hand side of (9) includes

only two terms. The first term can, via integration by parts, be rewritten as

$- \int\int\int\nabla_{y}G\cdot Ld^{3}y=-\sum_{j}\int\int\int\frac{\partial G}{\partial y_{j}}L_{j}d^{3}y$ . (11)

Considering a plate of vanishing thickness, Terai (1980) has shown that the pressure at a
point $x$ away from the plate can be expressed as

$P( x, \nu)=-\rho\sum_{j}\int\int\int\frac{\partial G(x,y)}{\partial y_{j}}L_{j}(y, \nu)d^{3}y+\int\int\tilde{P}(y_{\beta}, \nu)\frac{\partial G(x,y_{\beta})}{\partial n_{\beta}}d^{2}y_{\beta}$
, (12)

where $\tilde{P}(y_{\beta}, \nu)$ is the pressure difference across the plate. To determine this quantity, use will be

made of the normal derivative of (12) at a point $x_{a}$ on the end plate. Since $\partial P(x_{\alpha}, \nu)/\partial n_{\alpha}=0$

we obtain

$\int\int\overline{P}(y_{\beta})\frac{\partial^{2}G(x_{\alpha},y_{\beta})}{\partial n_{\alpha}\partial n_{\beta}}d^{2}y_{\beta}=\rho\sum_{i}\sum_{j}\int/\int\frac{\partial^{2}G(x_{\alpha},y)}{\partial x_{i}\partial y_{j}}n_{\alpha i}L_{j}(y, \nu)d^{3}y$. (13)

This is a IFlredholm integral equation of the first kind for determining the unknown pressure
difference $\tilde{P}$ .

The Green’s function in spherical coordinates

For the specffic solution of (9), (13) spherical coordinates will be employed (rather than cylin-

drical coordinates). Let $x=(r, \theta, \phi)$ and $y=(r_{*}, \theta_{*}, \phi_{*})$ . In the present axisymmetric case the
polar axis $\theta=0$ is the axis of symmetry. The azimuthal angle $\phi$ is eliminated by integration
over this parameter $(0\leq\phi\leq 2\pi)$ . Following this, the problem is expressed in terms of $(r, \theta)$ , as
defined in Fig. 2. The Green’s function expressed in these coordinates, $G(r, \theta;\nu)$ , is the solution

Figure 2: Axisymmetric spherical coordinates used in the acoustic analysis.
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of the equation

$\frac{1}{r^{2}}\frac{\partial}{\partial r}(r^{2}\frac{\partial G}{\partial r})+\frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial G}{\partial\theta})+k^{2}G=-\frac{\delta(r-r_{*})\delta(\theta-\theta_{*})}{r^{2}\sin\theta}$ . (14)

Consider first the homogeneous form of (14). Assuming a product solution on the form
$G(r, \theta)=R(r)\Theta(\theta)$ (15)

we obtain the separated equations

$\frac{1}{r^{2}}\frac{d}{dr}(r^{2}\frac{dR}{dr})+(k^{2}-\frac{n(n+1)}{r^{2}})R=0$ , (16)

$\frac{1}{\sin\theta}\frac{d}{d\theta}(\sin\theta\frac{d\Theta}{d\theta})+n(n+1)\Theta=0$ . (17)

The complete solution to (16) is

$R(r)=B_{1}j_{n}(kr)+B_{2}y_{n}(kr)$ , (18)

where $B_{1}$ and $B_{2}$ are constants, and $j_{n}(z)$ and $y_{n}(z)$ are the spherical Bessel functions of first and
second kind, respectively, both of degree $n$ . These functions are related to the cylindrical Bessel
functions of first and second kind, $J_{\nu}(z)$ and $Y_{\nu}(z)$ , as follows (Abramowitz and Stegun 1972):

$j_{n}(z)=\sqrt{\frac{\pi}{2z}}J_{n+\frac{1}{2}}(z)$ , $y_{n}(z)=\sqrt{\frac{\pi}{2z}}Y_{n+\frac{1}{2}}(z)$ . (19)

The Green’s function $G$ needs to satisfy the boundary condition at infinity specified in (4).
That is, it must exhibit the behavior of an outgoing wave. This is achieved if $R(r)$ satisfies the
Sommerfeld radiation condition (Crighton et al. 1992)

$\lim_{rarrow\infty}r(\frac{\partial R}{\partial r}-ikR)=0$ . (20)

The solution (18) must then be expressed as
$R(r)=\tilde{B}_{1}j_{n}(kr)+\tilde{B}_{2}h_{n}^{(1)}(kr)$ , (21)

where $h_{n}^{(1)}(z)$ is the spherical Hankel function, given by $h_{n}^{(1)}(z)=j_{n}(z)+iy_{n}(z)$ . This function
satisfies (20) and thus has the appropriate outgoing wave behavior.

The complete solution to (17) is

$\Theta(\theta)=C_{1}P_{n}(\cos\theta)+C_{2}Q_{n}(\cos\theta)$ , (22)

where $P_{n}$ is the Legendre polynomial (i.e. the Legendre function of first kind) of degree $n$ and
$Q_{n}$ is the Legendre function of the second kind, degree $n$ (Abramowitz and Stegun 1972). It is
noted that $Q_{n}(\cos\theta)arrow\infty$ for $\cos\thetaarrow 1$ , i.e. for $\thetaarrow 0$ . The constant $C_{2}$ must then necessarily
be $0$ .

It is recalled that $P_{n}$ is equal to $P_{n}^{0}$ , where $P_{n}^{m}$ are the associated Legendre functions; these
are related to $P_{n}$ by:

$P_{n}^{m}(z)=(-1)^{m}(1-z^{2})^{\frac{m}{2}}$ $f_{dz^{m}}^{f^{n}P_{n}(z)}$ . (23)

It is to be noted that $P_{n}^{m}(z)\equiv 0$ for $n<m$ . For later use, it is also noted here that use of (23)
gives

$\frac{\partial P_{n}(\cos\theta)}{\partial\theta}=P_{n}^{1}(\cos\theta)$ , (24)

$\frac{\partial^{2}P_{n}(\cos\theta)}{\partial\theta^{2}}=\cot\theta P_{n}^{1}(\cos\theta)+P_{n}^{2}(\cos\theta)$ .
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Next the delta function $\delta(\theta-\theta_{*})/\sin\theta$ is expanded in a series in terms of $P_{n}(\cos\theta)$ . The

result is
$\frac{\delta(\theta-\theta_{*})}{\sin\theta}=\frac{1}{2}\sum_{n=0}^{\infty}(2n+1)P_{n}(\cos\theta_{*})P_{n}(\cos\theta)$. (25)

The Green’s function $G(r, \theta)$ is expanded in the same way:

$G(r, \theta)=\frac{1}{2}\sum_{n=0}^{\infty}(2n+1)P_{n}(\cos\theta_{*})P_{n}(\cos\theta)G_{n}(r)$ . (26)

Inserting this expression into (14) gives again (16), but with $-\delta(r-r_{*})/r^{2}$ as the right hand side.

Using the standard solution technique (e.g. Sobolev (1989)), the solution (Green’s function) for

this problem takes the form

$G_{n}(r)=ik\{$

$j_{n}(kr)h_{n}^{(1)}(kr_{*})$ , $r<r_{*}$ , (27)
$j_{n}(kr_{*})h_{n}^{(1)}(kr)$ , $r>r_{*}$ .

Inserting (27) into (26) we finally obtain

$G(r, \theta)=\frac{ik}{2}\sum_{n=0}^{\infty}(2n+1)P_{n}(\cos\theta_{*})P_{n}(\cos\theta)\{\begin{array}{l}j_{n}(kr)h_{n}^{(1)}(kr_{*}), r<r_{*},j_{n}(kr_{*})h_{n}^{(1)}(kr), r>r_{*}.\end{array}$ (28)

4 Near- and far-field approximations

Taylor expansion in the near fleld

To facilitate a relatively simple evaluation of $\tilde{p}$ , the sound pressure difference across the end

plate, a Taylor expansion is used for both $j_{n}(z)$ , and $h_{n}^{(1)}(z)$ , assuming that the argument $z\ll 1$

$(z=kr or kr_{*})$ :

$j_{n}(z)$ $\approx b_{jn}z^{n}$ , $b_{jn}= \frac{1}{1\cdot 3\cdot 5\cdots(2n+1)}=\frac{\sqrt{\pi}}{2^{n+1}}\frac{1}{\Gamma(n+\frac{3}{2})}$ (29)

$y_{n}(z)$ $\approx b_{yn}z^{-(n+1)}$ , $b_{yn}=-1 \cdot 3\cdot 5\cdots(2n-1)=-\Gamma(n+\frac{1}{2})\frac{2^{n}}{\sqrt{\pi}}$, (30)

where $\Gamma(n)$ is the gamma function (Abramowitz and Stegun 1972). Thus

$h_{n}^{(1)}(z)\approx b_{jn}z^{n}+ib_{yn}z^{-(n+1)}$ . (31)

These expressions are used in (28). Application of the inverse Fourier transform (6) gives, for

$r>r_{*}$ , the time-domain ‘near-field’ Green’s function

$\emptyset(r, \theta)$ $=$ $\frac{1}{2}\sum_{n=0}^{\infty}(2n+1)P_{n}(\cos\theta)P_{n}(\cos\theta_{*})\cross$
(32)

$\cross\{(-1)^{n+1}\frac{b_{jn}^{2}}{c_{0}^{2n+1}}(rr_{*})^{2}\delta^{(2n+1)}(t)-b_{jn}b_{yn}\frac{r_{*}}{r^{2}}\delta(t)\}$ , $\frac{r}{r_{0}}\ll 1$ ,

where $\delta^{(2n+1)}(t)=\partial^{2n+1}\delta(t)/\partial t^{2n+1}$ . It is noted that (32) does not involve evaluation at a
retarded time, due to the near-field assumption, i.e., the use of (29) and (30). For $r<r_{*},$ $r$ and
$r_{*}$ should simply be interchanged in (32).

The derivatives of the delta function in (32) are to be interpreted in terms of the theory of

generalized functions. That is, they are to be moved over to act on the ‘ordinary’ functions of

the integrand in which they appear, via integration by parts.
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Asymptotic expansion in the far field

For evaluating the sound pressure away from the end plate, an asymptotic expansion is used for
$h_{n}(z)$ , assuming that $z=kr\gg 1$ :

$h_{n}^{(1)}(z)\sim z^{-1}e^{i(z-n\frac{\pi}{2}-\frac{\pi}{2})}$. (33)

Using again that $z_{*}=kr_{*}\ll 1$ , and thus that $r>r_{*}$ , the Taylor expansion (29) is still applied
for $j_{n}(z_{*})$ .

Employing the inverse Fourier transform (6), the timedomain ‘far-field’ Green’s function
can be evaluated as

$\emptyset(r, \theta)=\frac{1}{2}\sum_{n=0}^{\infty}(2n+1)P_{n}(\cos\theta)P_{n}(\cos\theta_{*})\frac{b_{jn}}{c_{0}^{n}}\frac{r_{*}^{n}}{r}\delta^{(n)}(t-r/c_{0})$, $\frac{r}{r_{0}}\gg 1$ , (34)

where $\delta^{(n)}=\partial^{n}\delta/\partial t^{n}$ . It is noted that (34) involves evaluation at the retarded time $t-r/c_{0}$ , on
the contrary to (32); this enters via the exponential function of (33).

Applying again the inverse Fourier transform (6) to (12) gives, with use of (34), the far-field
pressure as

$p(r, \theta, t)$ $=$ $\frac{\rho}{2}\sum_{i=1n}^{I_{vtx}}\sum_{=0}^{\infty}(2n+1)[P_{n}(\cos\theta)P_{n}(\cos\theta_{i})\cross$ (35)

$x$ $\{[\frac{\partial^{n}}{\partial t^{n}}(u_{\theta}.\Gamma_{i})]_{t_{r}}\frac{r_{i}^{n-1}}{r}\frac{b_{jn}}{\not\in}+[\frac{\partial^{n+2}}{\partial t^{n+2}}(u_{\theta_{i}}\Gamma_{i})]_{t_{r}}\frac{r_{i}^{n+1}}{r}\frac{b_{jn+1}}{c_{0}^{n+2}}\}$

$+P_{n}( cos\theta)P_{n}^{1}(\cos\theta_{i})[\frac{\partial^{n}}{\partial t^{n}}(u_{r_{i}}\Gamma_{i})]_{t_{r}}\frac{r_{i}^{n-1}}{r}\frac{b_{jn}}{c_{0}^{n}}]$

$+$ $\int_{\beta}\int_{\theta_{\beta}}\frac{1}{2}\sum_{n=0}^{\infty}(2n+1)[P_{n}(\cos\theta)P_{n}(\cos\theta_{\beta})x$

$x$ $\{[\frac{\partial^{n}\tilde{p}}{\theta t^{n}}]_{t_{r}}\frac{r_{\beta}^{n-1}}{r}\frac{b_{jn}}{\not\in}+[\frac{\partial^{n+2}\tilde{p}}{\partial t^{n+2}}]_{t_{r}}\frac{r_{\beta}^{n+1}}{r}\frac{b_{jn+1}}{c_{0}^{n+2}}\}n_{r_{\beta}}$

$+P_{n}( \cos\theta)P_{n}^{1}(\cos\theta_{\beta})[\frac{\partial^{n}\tilde{p}}{\theta t^{n}}]_{t_{r}}\frac{r_{\beta}^{n-1}}{r}\frac{b_{jn}}{c_{0}^{n}}n_{\theta_{s}]r_{\beta\beta\beta}^{2_{\sin\theta drd\theta_{\beta}}}}$ ,

which is valid for $r/r_{0}\gg 1$ . In (35) the vortex ring coordinates $r_{i},$
$\theta_{i}$ play the role of the source

coordinates $r_{*},$
$\theta_{*}$ . Square brackets with subscript $t_{r}$ indicate evaluation at the retarded time $t_{r}$ .

It is to be remarked that (35) is valid only when the observation point radius $r>r_{i}$ . [The case
$r<r_{i}$ is not of interest here. $]$ Evaluation of the pressure difference $\tilde{p}$ is discussed in the next
section.

Equation (35) is a multipole expansion of the sound field. A term of order of magnitude
$c_{0}^{-n}\partial^{n}/\partial t^{n}$ correspond to a pole of order $2^{n}$ (Howe 1998). Thus, terms proportional to $g=\omega\cross u$

and $\tilde{p}$ correspond to monopoles; terms proportional to $\partial \mathcal{L}/\partial t$ and $\partial\tilde{p}/\partial t$ correspond to dipoles;
and terms proportional to $\partial^{2}\mathcal{L}/\partial t^{2}$ and $\partial^{2}\tilde{p}/\partial t^{2}$ correspond to quadrupoles.

5 Numerical implementation

Discretization of the boundary integrals

The boundary integrals appearing in (35) and in the time-domain version of (12) are evaluated
numerically by employing the boundary element method $(BEM)$ . The end plate, which is the
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only acoustically significant boundary in the present problem, is discretized into $N_{e}$ elements.

The pressure difference across each element is represented by

$p_{e}(r_{\beta}, \theta_{\beta})=\sum_{n=1}^{N_{nod}}\psi_{n}(r_{\beta}, \theta_{\beta})\tilde{p}_{en}$, (36)

where $\psi_{n}(r_{\beta}, \theta_{\beta})$ are interpolation functions, and $N_{nod}$ the number of nodes within each element.
Inserting (36) into (13) gives, with application of (6),

$\sum_{e=1}^{N_{e}}\sum_{n=1}^{N_{nod}}\int_{-\infty}^{\infty}\tilde{P}_{en}\int\int\psi_{n}\frac{\partial^{2}G(r_{\alpha},\theta_{\alpha};r\theta)}{\partial n_{\alpha}\partial n_{\beta e}}r_{\beta e}^{2}\sin\theta_{\beta e}dr_{\beta e}d\theta_{\beta e}e^{-i\nu t}d\nu$

$= \rho\sum_{i=1}^{I_{vtx}}\int_{-\infty}^{\infty}\frac{\partial^{2}G(r_{\alpha},\theta_{\alpha};r_{i},\theta_{i})}{\partial n_{\alpha}\partial(r_{i},\theta_{i})}\ (r_{i}, \theta_{i}, \nu)e^{arrow i\nu t}d\nu$ , (37)

$\alpha=1,2,$
$\ldots,$

$N_{e}$ ,

where $\partial^{2}G/\partial n_{\alpha}\partial(r_{t}, \theta_{i})$ stands for $\partial^{2}G/\partial n_{\alpha}\partial r_{i}+\partial^{2}G/\partial n_{\alpha}\partial\theta_{i}$ .

Time integration of the plate pressure difference $\tilde{p}$

Evaluation of (37) at the $Ne$ elements gives an equation system on the form

$A_{0}\tilde{p}+A_{2}\frac{1}{c_{0}^{2}}\frac{\partial^{2}\tilde{p}}{\theta t^{2}}+\cdots=b_{0}(t)+b_{2}(c_{0}^{-2}\partial^{2}L/\partial t^{2})+\cdots$ . (38)

(No terms proportional to $c_{0}^{-1}\partial\tilde{p}/\partial t$ and $c_{0}^{-1}\partial \mathcal{L}/\theta t$ are present.)
Equation (38) is solved in a time-stepping fashion, including up to second derivatives. At

step $n$ , say, the system is then solved with respect to $\partial^{2}\tilde{p}_{n+1}/\partial t^{2}$ , with the first term on the left

hand side moved to the right hand side, as follows:

$A_{2}\frac{1}{c_{0}^{2}}\frac{\partial^{2}\tilde{p}_{n+1}}{\partial t^{2}}=b(L, \partial^{2}\mathcal{L}/\theta t^{2}, \ldots)-A_{0}\tilde{p}_{n}$ . (39)

The pressure and its first derivative are updated using the trapezoidal rule:

$\frac{\partial_{\tilde{P}n+1}}{\partial t}$ $=$
$\frac{\theta\tilde{p}_{n}}{\partial t}+\frac{\Delta t}{2}\frac{\partial^{2}\tilde{p}_{n}}{\partial t^{2}}+\frac{\partial^{2}\tilde{p}_{n+1}}{\theta t^{2}}$ , (40)

$Pn+1$ $=$ $Pn+\frac{\Delta t}{2}(\frac{\partial p_{n}}{\partial t}+\frac{\partial p_{n+1}}{\partial t})$ .

Equations (39) and (40) constitute a method which is stable for any value of the time step $\Delta t$ .

6 Computational details and a numerical example

A numerical example will be given for geometric and physical data corresponding to the exper-
imental setup of Nakano et al. (2004) with nozzle and end plate hole diameter $d_{0}=2r_{0}$ equal

to 50 mm. The experimental end plate is rectangular, with dimensions 200 mm (height) $\cross 270$

mm (width). But in the numeric model it is necessary to consider an axisymmetric (circular)

end plate. The outer diameter $d_{1}$ is taken to be 250 mm; that is, $d_{1}=5d_{0}$ . The gap length
$\ell$ is 50 mm, e.g., equal to $d_{0}$ . The mean velocity $u_{0}$ of the air-jet is 10 $m/s$ . [This velocity

gives the ‘sharpest’ sound in the experiments.] At 2$0^{O}C$ this corresponds to a Reynolds number
$Re=u0d_{0}/\hat{\nu}\approx 3.3\cross 10^{4}$ and a Mach number $M=uo/c_{0}\approx 0.03$ , where the speed of sound $c_{0}$

$=340m/s$ and the kinematic viscosity $\hat{\nu}=1.5\cross 10^{-5}m^{2}/s$.
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Based on the studies in Langthjem and Nakano (2005) the time-step was chosen as $\Delta t=$

$0.025d_{0}/u0$ . Simulations were carried out in 3200 time-steps, in order to obtain transient-free
time series. The frequency spectrum (see below) was obtained by analyzing the last $2^{11}=2048$
of these 3200 data sets via fast Fourier transform (Press et al. 1992). The first 1152 data sets
were discarded, as transients. With the time-step $\Delta t$ as given above, and with $N=2048$ steps,
the resolution of the frequency spectrum is $\Delta f=1/N\Delta t=40u_{0}/Nd_{0}\approx 4$Hz. The Nyquist
critical frequency is $f_{c}=1/2\Delta t=4kHz$ .

The end plate was discretized into 24 uniformly distributed panels. The simplest possible
elements, with one node per element $(N_{nod}=1)$ , were applied. The interpolation function $\psi_{1}$

in (36) is then simply equal to 1, which implies constant pressure within each element.
The differentiation of the velocities in (35) must necessarily be evaluated numerically. A

simple finite difference approach will typically produce too much numerical ‘jitter’, especially
for the second derivatives. To avoid this the differentiation was carried out using a Savitsky-
Golay smoothing filter (Press et al. 1992). A so-called casual filter was applied, which fits a
polynomial to the pressure at the actual time step and a number of earlier pressure data points.
The polynomial is then differentiated. This approach effectively eliminates excessive ‘numerical
noise’. A fourth order polynomial was fitted to 16 data points. Other values of both polynomial
order and number of data points were also tried. The results are not very sensitive to changes
in these values.

Experimental and computational sound pressure spectra for the observation point $(x, r)=$
$(0.5,1.84)d0$ (in terms of cylindrical coordinates) are compared in Figure 3. [In spherical coor-
dinates the observation point is at $(r, \theta)=(1.907d_{0},74.80^{o})$ . It is remarked that this location
basically violates the far field assumption $r/r_{0}\gg 1$ . It was chosen in the experiments (Nakano
et al. 2004) in order to avoid disturbing reflections from walls and things in the room.] The
locations of the main hequency component $f_{0}$ and its higher harmonics, 2$f_{0},4f_{0},$

$\ldots$ , agree well;
the peak values also agree reasonably well. The broadband noise level is however higher in the
computations than in the experiments. This is likely due to the neglect of viscous effects.

Frequency [Hz] Frequency [Hz]

Figure 3: Frequency spectrum of the acoustic pressure at the position $(x, r)=(O.5,1.84)d_{0}$ (in
cylindrical polar coordinates). (a) Experimental. (b) Numerical.
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