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EXCEPTIONAL SEQUENCE ON TRANSLATION QUIVER

TOKUJI ARAYA

ABSTRACT. A complete exceptional sequence is very useful to investigate the category
of finitely generated modules over a finite dimensional algebra. The aim of this note is to
show how to find the all complete exceptional sequences over the path algebra of Dynkin
quiver of type (A,).

1. INTRODUCTION

Let A be the path algebra of Dynkin quiver of type (A,) over a field k. We denote
by mod A the category of finitely generated left A-modules. The concept of exceptional
sequences was introduced by Gorodentsev and Rudakov [1]. It is very useful to investigate
mod A. A finitely generated left A-module E is called ezceptional if Homy(E, E) & k and
Extl(E,FE) = 0. We remark that E is exceptional if and only if it is indecomposable.
Indeed A is the path algebra of (A,). A pair (E, F) of exceptional modules is called an
ezxceptional pair if Homy(F, E) = Extj(F,E) = 0. A sequence € = (Ey, Es,--- , E.) of
exceptional modules is called an ezceptional sequence of length r if (E;, E;) is an excep-
tional pair for each i < j. An exceptional sequence € is called complete if the length of €
is equal to n. (Here, n is the number of simple modules in mod A). We put & the set of
complete exceptional sequences. Siedel [2, Proposition 1.1] proved that the cardinality of
€ is equal to (n + 1)1, There are a number of complete exceptional sequences. But it
is not easy to find all complete exceptional sequence. The main purpose is to get how to
find the complete exceptinal sequences completely by using the conbinatorics.

2. MAIN RESULT

First of all, we give a remark that € is independent of the orientation of (A,). Indeed,
let A’ be a path algebra of Dynkin quiver of type (A,) whose orientation is not equal to
A, and let & be the set of complete exceptional sequences in mod A’. In this case, A and
A’ are derived equivalent and there exists a equivalence ¢ : D’(mod A) — D*(mod A).
Therefore we can get the one to one correspondence % : mod A — modA’ by ¢ and
the suspension functor in D?(mod A’). One can easily check that 3 gives the one to one
correspondence between € and &'. Thus we may assume the orientation of (A,) as follows;

€1 €2 €n
® e —> @ — -t — @

Let I" be the Auslander-Reiten quiver of mod A. We identify the set Iy of vertices in I"
with the class {X; ;| 0 < ¢ < j < n} of indecomposable A-modules. Then T is as follows;

The detailed version of this paper will be submitted for publication elsewhere.
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XO,I X1,2 Xn—2,'n—1 Xn—l,n
We consider a circle with n + 1 points labeled 0,1, 2, - -- , n counter clockwise on it.- We

put (%, ) the chord between the points ¢ and j. We denote by C,; the set of chords in

the circle. Since Cpy; = {c(4,7)| 0 < i < j < n}, there exists a one to one correspondence
® : Ty — Chryy defined by (X, ;) = c(4, ).

1 O

n

2

For € = (Ey, E,--- ,E,),¢ = (B}, Ej,--- ,E}) € €, we define e ~ ¢ by @, E; &
@i, F;. Then ~ is an equivalent relation on &.
We call a graph T a non crossing spanning tree if the following conditions are satisfied;
(i) the chords in T form a tree,
(i) the chords in T meet only at endpoints.

We put 7 the set of non crossing spanning trees.

Theorem 1. @ gives a one to one correspondence between €/ ~ and T by P(e) :=
{®(Ey1), ®(E2), -+ ,2(Ey)} for each € = (Ey, Eq, -+ , E,).

It is known the number of non crossing spanning trees. We get the following corollary.

o . 1 3n
Corollary 2. The cardinality of €/ ~ is equal to 1 ( )

Proof of Theorem 1. For X € I'g, we consider the following four classes.
H(X) = {Y €Ty Homa(X,Y) # 0},
H..(X) = {Y < Fol HomA(Y,X) #* 0},
E+(X) = {Y eTo| Extj(X,Y) # 0},
E-(X) = {Y €T, Extj(Y,X) # 0}.
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Then one can check the followings by using Auslander-Reiten sequence;

Hi(Xij) = {Xegl i<s<j—-1,j<t<n},
H_(Xi;) = {Xet|0<8<4,i+1<t<j},
Er(Xij) = {Xeel0<s<i—-1,i<t<j—1},
E_(Xij) = {Xexli+1<s<jj+1<t<n}.

Furthermore, we consider the following four classes for each X € I'g;
PB(X) = {Y| Both (X,Y) and (Y, X) are exceptional pair.},

PB+(X)

v (X,Y) is an exceptinal pair,
(Y, X) is not an exceptinal pair. [’

P_(X) = { v (Y, X) is an exceptinal pair, }

(X,Y) is not an exceptinal pair.

P(X) = {Y| Both (X,Y) and (Y, X) are not exceptional pair.}.

Note that

P(X) = To\ (H4(X)UEL(X) UH_(X)UE(X)),

Pr(X) = (He(X)UEL(X))\ (H-(X)UE(X)),

P-(X) = (Ho(X)UE(X))\ (H+(X) UEL(X)),
PX) = (He(X)UEL(X)) N (H-(X) UE_(X)),

we get the followings for each X;; € I'y;

PB(Xij) =

P (Xij)
B_(Xij) =
P(Xiy) =

{Xetl 0S8 <t<i}U{Xpli+1<s<t<j—1}

U{Xoel S s <t <n}U{X,e| 0<s<i-1,j+1<t<n},

{(Xeil 0S8 <i—1}U{Xie| 5 +1<t<n}U{X,;|i+1<s<j—1},
Xl i+1€s <5 -1} U{Xsl 0S8 <j—1}U{Xpel j+1 <5 <),
{Xee|0<s<i-1,i+1<t<j—1}

U{Xoel i+1<s<j—1,j+1<t<n}.

We apply @ for each above classes, we get followings;

S (P(X5))
D(P+(Xi5))
O (P (X))

Q(P(Xi5))

= {c(5,t)]0<s<t<i}U{c(s,t)]i+1<s<t<j—1}
Ufe(s,t)] j<s<t<n}u{c(st)|0<s<i—1,j+1<t<n},
= {c(5,4)|0<s<i—-1}U{c(i,t)| j+1<t<n}
U{c(s,9)| i +1<s<j—1},
= {c(t,t)]i+1<s<j—1}U{c(s,j)|0<s<j—1}
U{c(4,t)] 7+ 1 < s <n},
= {c(5,)]0<s<i—1i+1<t<j—1}
Ue(s,t)| i+1<s<j—1,j+1<t<n}.

Thus we have followings;
e Y eP(X) & (YY) does not meet to (X).
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e YeEP,(X) & O(Y) meets P(X) for some vertex i and ®(Y) is the chord moved
®(X) around a vertex i counterclockwise across the interior of the
circle.

o YeP . (X) & &) meets (X) for some vertex i and ®(Y) is the chord moved
®(X) around a vertex 7 clockwise across the interior of the circle.

o Y eP(X) & &(Y) meets to $(X) at interior of the circle.

Therefore for any € € €, each chords in ®(¢) do not meet each other at interior of the
circle.

For X;,Xs, -+, X, € I'g, suppose {®(X;),®(X3), - ,d(X,)} makes a cycle. We may
assume ®(X,) meets ®(Xpy1) at a vertex i, for each £ = 1,2,---,r (where X, ., =
Xl) and i3 > g > o0 > 1. Then, (.X1,X2), (X2,X3)," . ,(X _1,X7.) and (Xr,Xl) are
exceptional pairs but (X3, X1), (X3, X2), -+, (X, Xr—1) and (X3, X,) are not exceptional

pairs. Therefore any permutation of (X;, Xy, .-, X,) is not an exceptional sequence.
Thus we get ®(¢) is a non c1ossing spanning tree for any € € €.
For ¢ = (Ei, Ez, -, Bn), e = (E{,E},--- ,El) € € suppose ®(¢) = ®(¢’). Then

{®(E,), ®(E,),- ,qb(E )} = {®(E)), <I>(E'2) : ,d)(E )}. Since @ : 'y — Cpry; is one to
one, we get € ~ €.

Conversely, suppose T = {c1,¢2,+* ,cn} C Cry1 is a non crossing spanning tree. We
put X; := ®~1(c;) for each . If there exists a pair (X;, X;) (¢ # j) such that both (X;, X;)
and (Xj, X;) are not exceptional pair, then c; crosses c; at interior. Thus, there does not
exist a such pair.

If there exists a subsequence {X,,,X,,, X4, } such that (X,,,Xa,), (Xazy Xas)s

vy (Xap_1,Xa,), and (X,,,X,,) are exceptional pairs but (Xa,, Xa,), (Xas,Xaz), )

(Xap, Xa,_1), and (X,,, X,,) are not exceptional pairs, then {cs,,Caz, - , Ca, } makes a cy-
cle. Therefore there exists a permutation o such that (X,(1), Xo(2), - - - Xo(n)) is & complete
exceptional sequence. O

Example 3. If n = 3, the following quiver is the Auslander-Reiten quiver of mod A.

Xo,3
VAN
Xo2 X13
TN N
Xo,1 X122 X23

In this case, there are 16 complete exceptional sequences and 12 non crossing spanning
trees. The followings are the complete exceptional sequences and corresponding non
crossing spanning trees.

NN
1 2 1—2 1—2 1 2
(Xo,1, Xo,2, Xo,3) (X1,2, X1,3, Xo,1) (X2,3, Xo,2, X1,2) (Xo,3, X1,3, X2,3)



0 n T
1—2
(X0,37X2,3> X1,2)

0 7 3

1—2
(Xo,3, X1,2, X1,3)
(X1,2, Xo,3, X1,3)

(‘) —3
1 2
(Xo,1, Xo,3, X2,3)

0 \ 3

1 2
(X2,3, Xo,1, Xo,2)
(Xo,1, X2,3, Xo,2)

0——3
1—2
(X1,27 X0,17 XO,S)

(|)/ 3

1 2
(X1,3, X2,3, Xo0,1)
(X1,3, Xo,1, X2,3)
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0 3

-

1—2
(X2,3, X1,2, Xo,1)

0—3
1—2

(XO,Z’ XO,B; X1,2)
(Xo,2, X1,2, X0,3)

3. ACTION OF THE DIHEDRAL GROUP

Let D, 41 be the dihedral group with rotation ¢ and flip 6. D,; acts on Cp4, by;

o fet—-1,7~1) j#0
7)) = i cj=1m)  j=0

J(C('Iw])) =cn _jan - Z)

Since p(T') is also non crossing spanning tree for any 7' € 7 and p € Cpy1, Dny1 acts
on 7. In the previous section, we give a one-to-one corresponding between &€/ ~ and 7.
Thus, D,,; acts on €. In this section, we see this action.

) v f X1 (E#0) .
It comes from o(X; ;) = { X, 1n  (i=0) for X;; € I'o, we get
_ J 7X (X is not projective.)
o(X) = { vX (X is projective.)

where 7 is the Auslander-Reiten translation and v is the Nakayama functor. We set
o(e) = (0(Ey),0(Ez),---o(Ey)) for € = (Ey, Ea, -+ , E,) € €, we can check that o(e) € &
by Auslander-Reiten duality.
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The natural ring isomorphism A — A% gives a duality ¥ : mod A® — modA. We

put ¢ the composition of dualities mod A 2 modA®” % mod A where D is the k-
dual functor D(—) = Homg(—, k). We remark that §(X) = ¢(X). We set d(e) =
(0(En),6(En-1),--8(F1)) for € = (Ey, Ea,--- , E,) € €, we can check that §(e) € €.
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