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ABSTRACT. Cluster tilting theory reveals combinatorial structure of 2-Calabi-Yau triangulated cate-
gories and is applied to categorIfy Fomln-Zelevinsky cluster algebras by many authors (Buan, Marsh,
Reineke, Reiten Todorov, Caldero, Chapoton, Schiffler, Keller,...). In the flrst section, we will introduce
cluster tilting theory in 2-Calabi-Yau triangulated category. In particular, a combinatorial description
of change of endomorphism algebras of cluster tilting objects via mutation process is given in terms
of Fomin-Zelevinsky quiver mutation rule. In the second section, a class of examples of 2-Calabi-Yau
triangulated categories containing cluster tilting objects will be constructed from preprojective algebras
and elements in the corresponding Coxeter groups.

In recent years, cluster tilting theory becomes amajor subject in representation theory of associative
algebras. It has the following three aspects:

(1) Categorification of combinatorics of Fomin-Zelevinsky cluster algebras [FZ2],
(2) Calabi-Yau analogue of claesical tilting theory,
(3) Three dimensIonal Auslander-Reiten theory.

The sspect (2) with its application to (1) turns out to be so fruitful that there are alot of applications
outside of representation theory. Among others, Zamolodchikov’s periodicity conjecture on $Y$-systems
and $T$-systems associated to pairs of Dynkin diagrams is solved by Keller [Ke3] and $Inouearrow I.$-Kuniba-
Nakanishi-Suzuki $[$IIKNS].

In this paper, we will present results in cluster tilting theory from the viewpoint (2). $l^{\urcorner}hea{\rm Im}$ of
representation theory is to understand the category of moduies over finite dimensionai algebras, and
cluster tilting theory concerns special claes of modules called cluster tilting objects. It turns out that the
combinatorial behaviour of cluster tilting objects is very nioe in 2-Calabi-Yau triangulated categories. In
Section 1, we Introduce domain of cluster tilting theory by giving aclass of 2-Calabi-Yau triangulated
categories associated with elements in Coxeter groups. In Section 2, we introduce the foUowing three
kinds of fundamental operations

$($ I $)$ Cluster tiltlng mutation $($Theorem 2.2 $)$ ,
$($ ii $)$ Quiver mutation $($DefinItion 2.5$)$ ,
(iii) QP ( $=$quivers with potentials) mutation (Definition 2.15)

in cluster tilting theory and give resuits on comparison of them. We are interested in the interreiation
between categorical operation (i) and combinatoriai operations (ii) and (iii).

We refer to surver articles [BM, GLS4, Ke3, Re, Ri] for more details in cluster tilting theory. We refer
to $[I1\rangle I2]$ for the aspect (3) for experts in representation theory. We refer to [ARS, ASS] for general
background In representation theory of associative $algebra\epsilon,$ and to $[H, AHK]$ for classical tilting theory.

1. EXAMPLES OF $2arrow$ CY CATEGORIES WITH CLUSTER TILTING OBJECTS

Throughout this section, let $K$ be an algebraically closed field, and let $C$ be a K-linear triangulated
category with the suspension functor $\Sigma$ : $Carrow C\sim$ . We assume the following conditions:. $C$ is Hom-finite, i.e. $\dim_{K}Hom_{C}(X, Y)<\infty$ for any $X,$ $Y\in C$ .

$eC$ is Krull-Schmidt, i.e. any object is isomorphic to a finite direct sum of objects whose endomor-
phism algebras are local.

There are the following important examples for any finite dimensional K-algebra A [H],. The bounded derived category $\mathcal{D}^{b}(mod \Lambda)$ of the category $mod \Lambda$ of finite dimensional $\Lambda$-modules
is a Hom-finite Krull-Schmidt triangulated category.
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OSAMU IYAMA. If $\Lambda$ is selfinjective i.e. $\Lambda$ is an injective $\Lambda$-module, then the stable category $\underline{mod}\Lambda$ [ARS, ASS, $H$]
of $mod \Lambda$ is a Hom-finite Krull-Schmidt triangulated category.

The following terminology was introduced by Kontsevich [Ko] (see [Ke2]).
Deflnition 1.1. We say that $C$ is 2-Calabi-Yau (2-CY) if there exists a functorial isomorphism

$Hom_{C}(X, Y)\simeq DHom_{C}(Y, \Sigma^{2}X)$

for any $X,$ $Y\in C$ , where $D=Hom_{K}$ $(-, K)$ is the K-dual.
We introduce the path algebras of quivers [ARS, ASS].

Deflnition 1.2. $I_{J}etQ=(Q_{0}, Q_{1})$ be a quiver with the set $Q_{0}$ of vertices and the set $Q_{1}$ of arrows.
(1) We call a sequence

$x_{1}arrow X_{2}a_{1}arrow a_{2}$ $...arrow X_{i+1}a$

of arrows a path of length $i$ . For example, vertices are paths of length zero, and arrows are paths
of length one. We denote by $Q_{i}$ the set of paths of length $i$ . Let $KQ_{i}$ be the K-vector space with
the basis $Q_{i}$ .

(2) The K-vector space

$KQ:= \bigoplus_{i\geq 0}KQ_{i}$

forms a K-algebra where we define the multiplication by connecting paths. We call $KQ$ the path
algebra of $Q$ .

The following class of 2-CY triangulated categories was introduced by Buan-Marsh-Reiten-Reineke-
Todorov [$B$MPRT, Kel].
Example 1.3. Let $Q$ be a finite connected acyclic quiver and $KQ$ the path algebra of $Q$ . Let $mod KQ$
be the category of finite dimensional KQ-modules and $\mathcal{D}=\mathcal{D}^{b}(mod KQ)$ the bounded derived category
of $mod KQ$ . We call

$\nu:=D(KQ)^{L}\otimes_{KQ}-:\mathcal{D}arrow \mathcal{D}\sim$

the Nakayama functor. This gives a Serre functor of $\mathcal{D}\mathbb{H}$ in the sense of Bondal-Kapranov [BK], i.e.
there exists a functorial isomorphism

$Hom_{\mathcal{D}}(X, Y)\simeq DHom_{\mathcal{D}}(Y, \nu X)$

for any $X,$ $Y\in \mathcal{D}$ . We put
$F:=\nu 0[-2]:\mathcal{D}arrow\sim \mathcal{D}$ .

We define the cluster category $C$ $:=\mathcal{D}/F$ of $Q$ as follows:. $O\mathfrak{X}=Ob\mathcal{D}$ ,. $Hom_{C}(X, Y)$ $:=\oplus_{i\in Z}Hom_{P}(X,F^{i}Y)$ for any $X,$ $Y\in C$ .
The composition of morphisms is defined naturally. Then $C$ is a 2-CY triangulated category.

We can describe the derived category $\mathcal{D}=\mathcal{D}^{b}(mod KQ)$ and the cluster category $C$ by drawing their
Auslander-Reiten quivers [ARS, ASS, $H$], which display the structure of categories diagrammatically.
Their vertices are isomorphism classes of indecomposable objects, and their arrows are certain morphisms
called irreducible.
Example 1.4. Let $Q$ be $1arrow 2arrow 3$ . Then the Auslander-Reiten quiver of $\mathcal{D}$ is given by the following.

...
$\backslash$ ’ $\backslash$ ’ X’ $\backslash$ ’ $\backslash$ ’ $\backslash$ ’ X’... ...
$’$ $\backslash$ ’ $\backslash$ ’ $\backslash$ ’ $\backslash$ ’ $\backslash$ ’ $\backslash$ ’ $\backslash$....

Identifying vertices in the same F-orbit, we obtain the following Auslander-Reiten quiver of $C$ .

.. . $1^{\backslash _{2_{\backslash ^{3}}’}.\backslash }.$ $:$

.
$:^{t^{1}}\backslash$

.
$:2:_{3^{J}}^{\backslash }$

. $:$ ; . $*_{1}"\backslash _{2_{*}^{\prime^{3}}}$

.
$\cdot\cdot\cdot$
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INTRODUCTION TO CLUSTER TILTING IN 2-CALABI-YAU CATEGORIES

In particular, there are 9 isomorphism classes of indecomposable objects in $C$ .
For a Dynkin quiver $Q$ , there are $n+m$ isomorphism classes of indecomposable objects in the cluster

category of $Q$ , where $n$ is the number of vertices in $Q$ and $m$ is the number of positive roots in the root
system associated to $Q$ [BMRRT].

We give another class of 2-CY trIangulated categories [CB, GLS2].
Example 1.5. Let $Q$ be a finite connected quiver. Define a new quIver $\overline{Q}$ by adding a new arrow
$a^{*}$ : $jarrow i$ to $Q$ for each arrow $a$ : $iarrow j$ in $Q$ . We call

$\Lambda:=K\overline{Q}/\langle\sum_{a\in Q_{1}}(aa^{*}-a^{*}a)\rangle$

the preprojective algebm of $Q$ (see Example 1.12).
(1) If $Q$ is Dynkin (i.e. ADE), then $\Lambda$ is finite dimensional selfinjective and $mod\Lambda$ is a 2-CY trian-

gulated category.
(2) If $Q$ is non-Dynkin, then $\mathcal{D}^{b}(mod \Lambda)$ is a 2-CY triangulated category.

The following is a key concept.
Deflnition 1.6. Let $C$ be a 2-CY triangulated category. We say that an object $T\in C$ is cluster tilting if

add $T=\{X\in C|Hom_{C}(T, \Sigma X)=0\}$ .
We $gIve$ a few examples.

Example 1.7. (1) The cluster category of $Q$ has a cluster tilting object $KQ$ [BMRRT].
(2) The stable category $\underline{mod}\Lambda$ of a preprojective algebra $\Lambda$ of Dynkin type has a cluster tilting object

[GLSI].
(3) $\mathcal{D}^{b}(mod \Lambda)$ for a preprojective algebra $\Lambda$ of non-Dynkin type does not have a cluster tilting object.

Example 1.8. Let $Q$ be $1arrow 2arrow 3$ and $C$ the cluster category of $Q$ in Example 1.4. There are the
following 14 basic cluster tilting objects in $C$ (see Section 2 for the meaning of basic).

$T_{1}=$ . $T_{2}=$ . $T_{3}=$ . $T_{4}=$. .
$\circ$ .

$T_{5}=$ . $T_{6}=$ . . .
$T_{9}=$ . $\cdot$ $T_{10}=$
$T_{13}=$ . $T_{14}=$ ..

$T_{7}=$ . $T_{8}=$..
$T_{11}=$ . . $T_{12}=$ .. .

Notice that 14 is the Catalan number $\vec{5}1(\begin{array}{l}84\end{array})$ . In general, the number of basic cluster tilting objects in the
cluster category is given by the generalized Catalan number [FZl].
Aim 1.9. Construct a class of 2-CY triangulated categories with cluster tilting objects including Example
1.7(1) and (2).

In the rest of this section, we explain results by Buan-I.-ReIten-Scott in [BIRSc]. There is a related
work by Geiss-Leclerc-Schr\"oer [GLS3] by quite different methods.

Let $Q$ be a finite connected quiver without loops which is non-Dynkin, and let $Q_{0}=\{1,2, \cdots , n\}$ be
the set of vertices. We denote by $\Lambda$ the preprojective algebra of $Q$ . Then we have primItive orthogonal
idempotents

$1=e_{1}+\cdots+e_{n}$
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of $\Lambda$ . Let
$I_{i}:=\Lambda(1-e_{i})\Lambda\subset$ A

be a two-sided ideal of $\Lambda$ . We denote by
$\langle I_{1},$

$\cdots,$
$I_{n}\rangle$

the ideal semigroup of $\Lambda$ generated by $I_{1},$ $\cdots,$
$I_{n}$ .

The first observation is the following [IR, BIRSc].

Proposition 1.10. (1) Any $I\in\langle I_{1},$ $\cdots,$
$I_{n}\rangle$ is a tilting $\Lambda$ -module.

(2) $I_{t}^{2}=I_{i}$ .
(3) $I_{1}I_{j}=I_{j}I_{t}$ if there is no $amw$ between $i$ and $j$ in $Q$ ,
(4) $I_{i}I_{j}I_{i}=I_{j}I_{i}I_{j}$ if there is precisely one $amw$ between $i$ and $j$ in $Q$ .

The above relations remind us braid relations. We denote by $W$ the Coxeter group of $Q$ (e.g. [BB]),
i.e. $W$ is presented by generators $s_{1},$ $\cdots,$ $s_{n}$ with the following relations:. $s_{i}^{2}=1$ ,. $s_{i}s_{j}=s_{j}s_{i}$ if there is no arrow between $i$ and $j$ in $Q$ ,. $s_{i}s_{j}s_{i}=s_{j}s_{i}s_{j}$ if there is precisely one arrow between $i$ and $j$ in $Q$ .
We say that an expression $w=s_{t_{1}}\cdots s_{i_{k}}$ of $w\in W$ Is reduced if $k$ is the smallest possible number.

We have the following description of $\langle I_{1},$

$\cdots,$
$I_{n}\rangle$ [IR, BIRSc].

Proposition 1.11. We have a well-defined bijection $Warrow\sim\langle I_{1}\cdots,$ $I_{n}\rangle$ given by
$w=s_{i_{1}}\cdots s_{i_{k}}\mapsto I_{w}:=I_{i_{1}}\cdots I_{i_{k}}$

for any reduced expression $w=s_{i_{1}}\cdots s_{i_{k}}$ .
We give a simple example.

Example 1.12. Let $Q$ be $1=_{b}^{a}2$ . Then $\overline{Q}$ is $1^{arrow}2$$\underline{\underline{ab}}$

, and $\Lambda$ is the factor algebra of $Kp$ by two
$\frac{a}{b}$

relations $aa^{*}+bb^{*}=0$ and $a^{*}a+b^{*}b=0$ . Then $\langle I_{1},$ $I_{2}\rangle$ consists of the following ideals.

$\Lambda=\Lambda e_{1}\oplus\Lambda e_{2}=2^{1_{2^{1}2^{1}2}^{2^{1}2}}\oplus 1^{2_{111}^{1_{2}^{2}1_{2}}}$

. . $:$ :
$\cup$

$I_{1}=2^{1_{2}^{2}1_{2}^{2}1_{2}}\oplus 1^{2_{111}^{1_{2}^{2}1_{2}}}$

$:$ : :. :.
$\cup$

$\cup$

$2^{}$ 2 1 1
$I_{2}=2^{1}2^{1}2^{1}2\oplus 1^{2}1^{2}1^{2}1$

.: : : :.
$\cup$

$I_{2}I_{1}=2^{1}2^{1}2^{1}2\oplus 1^{2_{1}^{1}2_{1}^{1}2_{1}}$

$:$ : $:$ :
$\cup$

2 2
$I_{1}I_{2}=2^{1}2^{1}2^{1}2\oplus 1^{2}1^{2}1^{2}1$

$:$ : $:$ :
$\cup$

$I_{1}I_{2}I_{1}=2222_{\oplus}1^{2}1^{2}1^{2}1$

$:$ : $:$ :
$\cup$

$I_{2}I_{1}I_{2}=2^{1}2^{1}2^{1}2\oplus 1111$

$:$ : $:$ :
$\cup$

: :

52



INTRODUCTION TO CLUSTER TILTING IN 2-CALABI-YAU CATECORIES

For $w\in W$ , we put
$\Lambda_{w}:=\Lambda/I_{w}$ .

We have the following properties [BIRSc].

Proposition 1.13. (1) $\Lambda_{w}$ is a finite dimensional k-algebra.
(2) $\Lambda_{w}$ is Iwanaga-Gorenstein of dimension at most one, $i.e$ .

inj. $\dim_{\Lambda_{w}}(\Lambda_{w})=$ inj $d{\rm Im}(\Lambda_{w})_{\Lambda_{w}}\leq 1$ .
We define a full subcategory of $mod \Lambda_{w}$ by

Sub $\Lambda_{w}$ $:=$ { $X\in mod \Lambda_{w}|X$ is a submodule of a projective $\Lambda_{w}$-module}.
This forms a Frobenius category in the sense of Happel [H]. In particular, the stable category

$C_{w}:=\underline{Sub}\Lambda_{w}$

forms a triangulated category. Moreover, we have the following property [BIRSc].

Proposition 1.14. $C_{w}$ is a 2-CY triangulated category.

As special cases of $C_{w}$ , we recover Examples 1.3 and 1.5.
Example 1.15. (1) Let $c=s_{1}\cdots s_{n}\in W$ be a Coxeter element. Then the category $C_{c^{2}}$ associated

to $c^{2}\in W$ is equivalent to the cluster category of $Q$ given in Example 1.3.
(2) Let $Q’$ be a full subquiver of $Q$ which is Dynkin. Let $w$ be the element of $W$ corresponding to

the longest element of $Q’$ . Then we have
$\Lambda_{w}\simeq\Lambda’$ and $C_{w}\simeq mod\Lambda’$

for the preprojective algebra $\Lambda’$ of $Q’$ .
Now we will construct cluster tilting objects in our 2-CY triangulated category $C_{w}$ .
Fix a reduced expression $w=s_{i_{1}}\cdots s_{i_{k}}$ . Then we have a decreasing chain

$\Lambda\supset I_{i_{1}}\supset I_{i_{1}}I_{i_{2}}\supset\cdots\supset I_{i_{1}}I_{i_{2}}\cdots I_{i_{k}}=I_{w}$

of two-sided ideals of $\Lambda$ . In particular, we have a chain

$\Lambda/I_{i_{1}}arrow\Lambda/I_{i_{1}}I_{i_{2}}arrow\cdotsarrow\Lambda/I_{i_{1}}I_{i_{2}}\cdots I_{i_{k}}=\Lambda_{w}$

of surjective K-algebra homomorphisms. In particular, we can regard each $\Lambda/I_{i_{1}}\cdots I_{i\ell}$ as a $\Lambda_{w}$-module.
We put

$T(i_{1}, \cdots, i_{k}):=\bigoplus_{\ell=1}^{k}\Lambda/I_{l_{1}}\cdots I_{i_{\ell}}\in mod \Lambda_{w}$.

Now we can state the following main result in [BIRSc].

Theorem 1.16. (1) $T(i_{1}, --, i_{k})\in$ Sub $\Lambda_{w}$ .
(2) $T(i_{1}, \cdots, i_{k})$ is a cluster tilting object in $C_{w}$ .

Remark 1.17. (1) $T(i_{1}, \cdots, i_{k})$ has precisely $k$ indecomposable direct summands
$(\Lambda/I_{i_{1}})e_{i_{1}}$ , $(\Lambda/I_{i_{1}}I_{i_{2}})e_{i_{2}}$ , $\cdots$ , $(\Lambda/I_{i_{1}}I_{i_{2}}\cdots I_{i_{k}})e_{i_{k}}$

up to isomorphisms.
(2) The quiver of the endomorphism algebra of $T(i_{1}, \cdots,i_{k})$ is given in [BIRSc]. Moreover, it is

shown in [BIRSm] that the endomorphIsm algebra is isomorphic to the Jacobian algebra of a
quiver with a potential (see Definition 2.12).

We $gIve$ an example.
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We end this section by giving other classes of 2-CY triangulated categories.

Example 1.19. (1) Let $(R, m, K)$ be a commutative complete local K-algebra and CM$(R)$ the cat-
egory of maximal Cohen-Macaulay R-modules [Y]. If $R$ is a Gorenstein isolated singularity of
dimension three, then the stable category CM$(R)$ is a 2-CY triangulated category by a classical
result in Auslander-Reiten theory [Au]. See also [BIKR, I2, IR, $rY$].

(2) Based on a work of Keller [Ke4], Amiot introduced generalized cluster categories [Aml, Am2]
associated to finite dimensional K-algebras of global dimension at most two and to quivers with
potentials (see Definition 2.12). These categories play a key role in the solution of periodicity
conjecture in [Ke3, IIKNS].

2. CLUSTER TILTING MUTATION IN $2-CY$ TRIANGULATED CATEGORIES

Throughout this section, let $K$ be an algebraically closed field, and let $C$ be a 2-Calabi-Yau triangulated
category over $K$ with the suspension functor $\Sigma$ .

Let $T$ be a cluster tilting object in $C$ . We always assume that $T$ is basic, i.e.
$T=T_{1}\oplus\cdots\oplus T_{n}$

with mutually non-isomorphic indecomposable objects $T_{i}\in C$ . We denote by
QT

the quiver of the endomorphism algebra $End_{C}(T)$ [ARS, ASS]. Then we have a presentation
$End_{C}(T)\simeq KQ_{T}/I$

of $End_{C}(T)$ for some ideal $I$ of the path algebra $KQ_{T}$ .
Aim 2.1. Study $Q_{T}$ and $I$ .

The following result was given by I.-Yoshino [IY] (see also [BMRRT]).

Theorem 2.2. (cluster tilting mutation) Let $C$ be a triangulated category and $T=T_{1}\oplus\cdots\oplus T_{n}\in C$ a
basic cluster tdting object. Let $k\in\{1, \cdots, n\}$ .

(1) There exists a unique indecomposable object $T_{k}^{*}\in C$ such that $T_{k}^{*}\neq T_{k}$ and $\mu_{k}(T)$ $:=(T/T_{k})\oplus T_{k}^{*}$

is a basic cluster tilting object in $C$ .
(2) There estst triangles (cdled exchange sequences)

$T_{k}^{*}arrow gU_{k}arrow fT_{k}arrow\Sigma T_{k}^{*}$ and $T_{k}arrow U_{k}’g’arrow T_{k}^{*}f’\cdotarrow\Sigma T_{k}$

such that $f$ and $f’$ are right add$(T/T_{k})$ -approximations and $g$ and $g’$ are left add $(T/T_{k})$ -approximations.

Clearly we have $\mu_{k}0\mu_{k}(T)\simeq T$ .
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Example 2.3. Let $Q$ be $1arrow 2arrow 3$ and $C$ the cluster category of $Q$ given in Example 1.4. Consider
a basic cluster tilting object

given in Example 1.8. Then cluster tilting mutation of $T$ is given by the following.

$\mu_{1}(T)=$ 3 $\mu_{2}(T)=$ 3 $\mu_{3}(T)=$
$3^{\cdot}$

2 2
$1^{\cdot}$ 1 $2^{\cdot}$ 1

Moreover, the behaviour of cluster tilting mutation for 14 basic cluster tilting objects in $C$ given in
Example 1.8 is the following graph.

In general, the behaviour of cluster tilting mutation in the cluster category is described by the generalized
Stasheff associahedron [FZl].

Cluster tilting mutation plays a key role in the study of cluster tilting objects in 2-CY triangulated
categories. For example, we have the following result for cluster categories [BMRRT].

Theorem 2.4. Let $C$ be the cluster category of a quiver Q. Then any cluster tilting object in $C$ is reachable
from the cluster tilting object $KQ\in C$ by a successive cluster tilting mutation.

We say that a path in a quiver is a cycle if the head coincides with the tail. A cycle of length one is
called a loop, and a cycle of length two is called a 2-cycle.

The following combinatorial operation was introduced by Fomin-Zelevinsky [FZ2].

Definition 2.5. (quiver mutation) Let $Q$ be a quiver without loops. Let $k\in Q_{0}$ be a vertex which is
not contained in 2-cycles. We define a quiver $\tilde{\mu}_{k}(Q)$ by applying the following $(i)-(iii)$ to $Q$ .

(i) For each pair $iarrow akarrow bj$ of arrows in $Q$ , create a new arrow $iarrow j[ab]$ .
(ii) Replace each arrow $iarrow ak$ by a new arrow $iarrow ka$ .
(iii) Replace each arrow $karrow bj$ by a new arrow $karrow b\cdot j$ .

Define a quiver $\mu_{k}(Q)$ by applying the following (iv) to $\tilde{\mu}_{k}(Q)$ .
(iv) Remove a maximal disjoint collection of 2-cycles.

Remark 2.6. (1) $\mu_{k}(Q)$ has no loops and $k$ is not contained In 2-cycles in $\mu_{k}(Q)$ .
(2) We have $\mu_{k}\circ\mu_{k}(Q)\simeq Q$ .
(3)

$Wecan[BGP]$
regard quiver mutation as a generalization of Bemstein-Gel’fand-Ponomarev reflection

We give an example.
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Example 2.7. For the following quiver $Q$ of type $A_{3}$ , we calculate $\mu_{1}(Q),$ $\mu_{2}(Q)$ and $\mu_{2}\circ\mu_{2}(Q)$ . (For
simplicity we denote $a^{**}$ and $b$“ by $a$ and $b$ respectively.)

$Q=(1arrow a2arrow b3)$ $arrow^{\mu_{1}}$ $(1arrow 2a.arrow b3)$

$\downarrow\mu_{2}$

$(\begin{array}{l}1\wedge 2\sim 3a.b\cdot\vee|ab|\end{array})$

$arrow^{\mu_{2}\overline}$ $arrow^{(Iv)}$

$(1arrow a2arrow b3)$

In the rest of this section, we assume that $C$ has a cluster structure [BIRSc], i.e. QT has no loops and
2-cycles for any cluster tilting object $T\in C$ . In this case, we have the following.

Remark 2.8. Combining the exchange sequences in Theorem 2.2, we have a complex

$T_{k}arrow U_{k}’g’arrow U_{k}f’garrow fT_{k}$

such that the sequences

$Hom_{C}(T, U_{k}’)arrow Hom_{C}(T, U_{k})f’garrow fJ_{C}(T,T_{k})arrow 0$,

$Hom_{C}(U_{k},T)arrow Hom_{C}(U_{k}’,T)f’garrow g’J_{C}(T_{k},T)arrow 0$

are exact for the Jacobson radical $J_{C}$ of $C$ . Such a complex is called a 2-almost split sequence in [Il] and
an $AR$ 4-angle in [IY]. Consequently the quiver and relations of $End_{C}(T)$ can be controlled by exchange
sequences.

Example 2.9. The 2-CY triangulated category $C_{w}$ given in Proposition 1.14 has a cluster structure
[BIRSc]. In particular, cluster categories in Example 1.3 and the stable category $E24\Lambda$ for preprojective
algebras $\Lambda$ of Dynkin type in Example 1.5(1) have a cluster structure.

Using Remark 2.8, we have the following result [BIRSc] which shows that cluster tilting mutation is
compatible with quiver mutation.

Theorem 2.10. Let $C$ be a 2-CY treangulated category rvith a cluster structure and $T\in C$ a cluster tilting
object. Then $Q_{\mu_{k}\langle T)}\simeq\mu_{k}(Q_{T})$ holds for any $k\in(Q_{T})_{0}$ .

For example, cluster tilting mutation given in Example 2.3 is compatible with quiver mutation in
Example 2.7.

As an appication of Theorem 2.10, we have the following result [BIRSmj.

Corollary 2.11. Let $C_{i}$ be a cluster category and $T_{j}\in C$. a cluster tilting object for $i=1,2$ . If $Q_{T_{1}}\simeq Q_{T_{2}}$ ,
then $End_{C_{1}}(T_{1})\simeq End_{Ca}(T_{2})$ .

The following was introduced by Derksen-Weyman-Zelevinsky [DWZ].

Definition 2.12. Let $Q$ be a quiver without loops.
(1) We denote by $Q_{i}$ the set of paths of length $i$ , and by $Q_{i,cyc}$ the set of cycles of length $i$ . Let $KQ_{i}$

be the K-vector space with the basis $Q_{i}$ , and let $KQ_{i_{{}_{\rangle}C}yc}$ the subspace of $KQ_{i}$ spanned by $Q_{i,cyc}$ .
Similar to the path algebra $KQ$ , the K-vector space

$\hat{KQ}:=\prod_{1>0,arrow}KQ_{1}$

forms a K-algebra which we call the $Comp\downarrow_{ete}A^{ath}$ algebra of $Q$ . The Jacobson radical of $\overline{KQ}$

is given by $J_{\overline{KQ}}= \prod_{i\geq 1}KQ_{i}$ . We regard $KQ$ as a topological algebra with respect to the
$(J_{K\infty})$-adic topology.
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(2) A quiver with a potential $($or $QP)$ is a pair $(Q, W)$ consisting of a quiver $Q$ without loops and an
element

$W \in\prod_{i\geq 2}KQ_{icyc}\}$

called a potential. It is called reduced if $W \in\prod_{t\geq 3}KQ_{i,cyc}$ . Define $\partial_{a}W\in\hat{KQ}$ by

$\partial_{a}(a_{1}\cdots a_{\ell}):=\sum_{a\ell=a}a_{i+1}\cdots a_{1}a_{1}\cdots a_{i-1}$

and extend linearly and continuously. The Jacobian algebm is defined by

$\mathcal{P}(Q, W):=\hat{KQ}/\overline{\langle\partial_{a}W|a\in Q_{1}\rangle}$

where $\overline{I}$ is the closure of $I$ .

Remark 2.13. (1) The behaviour of Jacobian algebras is very nice thanks to the completion.
(2) Two potentials $W$ and $W’$ are called cyclically equivalent if $W-W’\in\overline{[KQ,KQ]}$, where $[KQ, KQ]$

is the K-vector subspace of $\hat{KQ}$ spanned by commutators. In this case, we clearly have $\mathcal{P}(Q, W)=$

$\mathcal{P}(Q, W’)$ .

We give an example.

Example 2.14. Let $(Q, W)$ be a (non-reduced) QP

Then $\partial_{a}W=bd,$ $\partial_{b}W=da,$ $\partial_{c}W=d$ and $\partial_{d}W=c+ab$ . Thus the Jacbian algebra $\mathcal{P}(Q, W)$ coincides
with the Jacobian algebra of

$(Q’, W’)=(1arrow a2arrow b3,0)$ .

In general, for any QP $(Q, W)$ , a reduced QP $(Q’, W‘)$ satisfying $\mathcal{P}(Q, W)\simeq \mathcal{P}(Q’, W’)$ was associated
in [DWZ] and called the reduced part of $(Q, W)$ . We omit the detailed definition here. For example, the
reduced part of the QP $(Q, W)$ In Example 2.14 is given by $(Q’, W’)$ there.

The following operation is introduced by Derksen-Weyman-Zelevinsky [DWZ].

Definition 2.15. ( $QP$ mutation) Let $(Q, W)$ be a QP. Assume that $k\in Q_{0}$ is not contained in 2-cycles.
Heplacing $W$ by a cyclically equivalent potential, we assume that no cycles in $W$ start at $k$ . Deflne a QP
$\tilde{\mu}_{k}(Q, W)$ $:=(\tilde{\mu}_{k}(Q), [W]+\Delta)$ as follows:

1 $\tilde{\mu}_{k}(Q)$ is given in Definition 2.5.
1 $[W]$ is obtained by replacing each factor $iarrow akarrow bj$ in $W$ by $iarrow j[ab\}$ .. $\Delta:=$ $\sum$ $a^{*}[ab]b^{*}$ .

$(iarrow karrow j)ab$ in $Q$

Define a QP $\mu_{k}(Q, W)$ as a reduced part of $\tilde{\mu}_{k}(Q, W)$ .

Remark 2.16. Clearly $k$ is not contained in 2-cycles in $\mu_{k}(Q, W)$ . Moreover, $\mu_{k}\circ\mu_{k}(Q, W)$ is right-
equivalent to $(Q, W)$ [DWZ] in the following sense:

Two QP $s(Q,W)\wedge$ and $\wedge(Q’, W’)$ are called right-equivalent if $Q_{0}=Q_{0}’$ and there exists a K-algebra
isomorphism $\phi$ : $KQarrow KQ’$ such that $\phi|_{Q_{0}}=$ id and $\phi(W)$ and $W$‘ are cyclically equivalent. In this
case $\phi$ induces an isomorphism $\mathcal{P}(Q, W)\simeq \mathcal{P}(Q’, W‘)$ .

We give an example.

57



OSAMU IYAMA

Example 2.17. For a QP $(Q, W)$ below, we calculate $\mu_{2}(Q, W)$ and $\mu_{2}\circ\mu_{2}(Q, W)$ .

$arrow^{\mu_{2}\overline}$

The reduced part of $\tilde{\mu}_{2}\circ\mu_{2}(Q, W)$ was calculated in Example 2.14.

The following result [BIRSm] shows that cluster tilting mutation is compatible with QP mutation.

Theorem 2.18. Let $C$ be a 2-CY triangulated category and $T\in C$ a cluster tilting object. Let $(Q, W)$ be
a $QP$. If $End_{C}(T)\simeq \mathcal{P}(Q, W)$ , then $End_{C}(\mu_{k}(T))\simeq \mathcal{P}(\mu_{k}(Q, W))$ .

Immediately we have the following.

Corollary 2.19. Let $C$ be a 2-CY triangulated category and $T\in C$ a cluster tilting object. If $End_{C}(T)$
$\iota s$ a Jacobtan algebra of a $QP$, then so is $End_{C}(T’)$ for any cluster tilting object $T’\in C$ reachable from $T$

by a successive cluster tilting mutation.

For example, we have the following.

Example 2.20. (1) Cluster tilted algebras $(=endomorphism$ algebras of cluster tilting objects in
cluster categories) are Jacobian algebras of QP $s$ by Theorem 2.4 and Corollary 2.19 sinoe $KQ=$
$\mathcal{P}(Q, 0)$ .

(2) Let $C_{w}$ be a 2-CY triangulated category in Proposition 1.14 and $T(i_{1}, \cdots,i_{k})\in C_{w}$ a cluster
tilting object in Theorem 1.16. For any cluster tilting object $T\in C_{w}$ reachable from $T(i_{1}, \cdots, i_{k})$

by a successive cluster tilting mutation, $End_{C_{w}}(T)$ is a Jacobian algebra of a QP by Example
1.17(2) and Corollary 2.19.

We end this note by the following nearly Morita equivalence for Jacobian algebras [BIRSm] (see also
[BMR] $)$ , where mod is the category of modules with finite length.

Theorem 2.21. For a $QP(Q, W)$ , we have an equivalence
mod $\mathcal{P}(Q, W)/[S_{k}]\simeq$ mod $\mathcal{P}(\mu_{k}(Q, W))/[S_{k}’]$ ,

where $S_{k}$ and $S_{k}’$ are simple modules associated with the vertex $k$ .
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