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INTRODUCTION TO CLUSTER TILTING IN 2-CALABI-YAU CATEGORIES

OSAMU IYAMA

ABSTRACT. Cluster tilting theory reveals combinatorial structure of 2-Calabi-Yau triangulated cate-
gories and is applied to categorify Fomin-Zelevinsky cluster algebras by many authors (Buan, Marsh,
Reineke, Reiten Todorov, Caldero, Chapoton, Schiffier, Keller,...). In the first section, we will introduce
cluster tilting theory in 2-Calabi-Yau triangulated category. In particular, a combinatorial description
of change of endomorphism algebras of cluster tilting objects via mutation process is given in terms
of Fomin-Zelevinsky quiver mutation rule. In the second section, a class of examples of 2-Calabi-Yau
triangulated categories containing cluster tilting objects will be constructed from preprojective algebras
and elements in the corresponding Coxeter groups.

In recent years, cluster tilting theory becomes a major subject in representation theory of associative
algebras. It has the following three aspects:

(1) Categorification of combinatorics of Fomin-Zelevinsky cluster algebras [FZ2],
(2) Calabi-Yau analogue of classical tilting theory,
(8) Three dimensional Auslander-Reiten theory.

The aspect (2) with its application to (1) turns out to be so fruitful that there are a lot of applications
outside of representation theory. Among others, Zamolodchikov’s periodicity conjecture on Y-systems
and T-systems associated to pairs of Dynkin diagrams is solved by Keller [Ke3] and Inoue-I.-Kuniba-
Nakanishi-Suzuki [ITKNS].

In this paper, we will present results in cluster tilting theory from the viewpoint (2). The aim of
representation theory is to understand the category of modules over finite dimensional algebras, and
cluster tilting theory concerns special class of modules called cluster tilting objects. It turns out that the
combinatorial behaviour of cluster tilting objects is very nice in 2-Calabi-Yau triangulated categories. In
Section 1, we introduce domain of cluster tilting theory by giving a class of 2-Calabi-Yau triangulated
categories associated with elements in Coxeter groups. In Section 2, we introduce the following three
kinds of fundamental operations

(i) Cluster tilting mutation (Theorem 2.2),
(ii) Quiver mutation (Definition 2.5),

(iif) QP (=quivers with potentials) mutation (Definition 2.15)
in cluster tilting theory and give results on comparison of them. We are interested in the interrelation
between categorical operation (i) and combinatorial operations (ii) and (iii).

We refer to surver articles [BM, GLS4, Ke3, Re, Ri] for more details in cluster tilting theory. We refer
to [I1, I2] for the aspect (3) for experts in representation theory. We refer to [ARS, ASS] for general
background in representation theory of associative algebras, and to [H, AHK] for classical tilting theory.

1. EXAMPLES OF 2-CY CATEGORIES WITH CLUSTER TILTING OBJECTS

Throughout this section, let K be an algebraically closed field, and let C be a K-linear triangulated
category with the suspension functor ¥ : C 5 C. We assume the following conditions:
o C is Hom-finite, i.e. dimg Home(X,Y) < oo for any X,Y € C.
o Cis Krull-Schmidt, i.e. any object is isomorphic to a finite direct sum of objects whose endomor-
phism algebras are local.
There are the following important examples for any finite dimensional K-algebra A [H].
e The bounded derived category DP(mod A) of the category mod A of finite dimensional A-modules
is a Hom-finite Krull-Schmidt triangulsted category.
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o If A is selfinjective i.e. A is an injective A-module, then the stable category modA [ARS, ASS, H]
of mod A is a Hom-finite Krull-Schmidt triangulated category.

The following terminology was introduced by Kontsevich [Ko] (see [Ke2}).
Definition 1.1. We say that C is 2-Calabi-Yau (2-CY) if there exists a functorial isomorphism
Hom¢(X,Y) ~ DHome (Y, 22X)
for any X,Y € C, where D = Homg (—, K) is the K-dual.
We introduce the path algebras of quivers [ARS, ASS].

Definition 1.2. Let Q = (Qo, Q1) be a quiver with the set Qo of vertices and the set Q; of arrows.
(1) We call a sequence
ai asz ag
Ly — Tz — - — Tiql
of arrows a path of length . For example, vertices are paths of length zero, and arrows are paths

of length one. We denote by Q; the set of paths of length i. Let K@Q; be the K-vector space with
the basis Q.

(2) The K-vector space

KQ:=PKQ;
i>0
forms a K-algebra where we define the multiplication by connecting paths. We call KQ the path

algebra of Q.

The following class of 2-CY triangulated categories was introduced by Buan-Marsh-Reiten-Reineke-
Todorov [BMRRT, Kel].

Example 1.3. Let Q be a finite connected acyclic quiver and KQ the path algebra of Q. Let mod KQ
be the category of finite dimensional KQ-modules and D = D°(mod KQ) the bounded derived category
of mod KQ. We call

L ~
v:=DKQ)®kxq—:D>D
the Nakayama functor. This gives a Serre functor of D [H] in the sense of Bondal-Kapranov [BK], i.e.
there exists a functorial isomorphism
Homp(X,Y) ~ DHomp(Y,vX)
for any X,Y € D. We put
F:=vo[-2]:D5D.
We define the cluster category C := D/F of @ as follows:
¢ ObC = ObD,
e Home(X,Y) := @,z Homp (X, F*Y) for any X,Y € C.
The composition of morphisms is defined naturally. Then C is a 2-CY triangulated category.
We can describe the derived category D = DP(mod KQ) and the cluster category C by drawing their
Auslander-Reiten quivers [ARS, ASS, H], which display the structure of categories diagrammatically.

Their vertices are isomorphism classes of indecomposable objects, and their arrows are certain morphisms
called irreducible.

Example 1.4. Let Q be 1 — 2 —> 3. Then the Auslander-Reiten quiver of D is given by the following.

N o A Ny N N\ Ny A\
A N o N o N o X\ & N\ 4 N\ 4 N\

Identifying vertices in the same F-orbit, we obtain the following Auslander-Reiten quiver of C.

. 3 . 1 . . . 3
\21 LN AN N 4 \21 N g N\ ’\24
A N A XN o N ¥ N o X\ & N\ 4 N\

1 . . . . -

3 1
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In particular, there are 9 isomorphism classes of indecomposable objects in C.

For a Dynkin quiver Q, there are n + m isomorphism classes of indecomposable objects in the cluster
category of @, where n is the number of vertices in Q and m is the number of positive roots in the root
system associated to @ [BMRRT].

We give another class of 2-CY triangulated categories [CB, GLS2].

Example 1.5. Let Q be a finite connected quiver. Define a new quiver Q@ by adding a new arrow
a*:j —1ito Q for each arrow a : i — j in Q. We call

A:=KQ/( E (aa* - a*a))
a€Q:
the preprojective algebra of Q (see Example 1.12).
(1) If Q is Dynkin (i.e. ADE), then A is finite dimensional selfinjective and modA is a 2-CY trian-
gulated category.
(2) If Q is non-Dynkin, then DP(mod A) is a 2-CY triangulated category.
The following is a key concept.
Definition 1.8. Let C be a 2-CY triangulated category. We say that an object T' € C is cluster tilting if
addT = {X € C | Hom¢(T,XX) = 0}.
We give a few examples.
Example 1.7. (1) The cluster category of @ has a cluster tilting object KQ [BMRRT).
(2) The stable category modA of a preprojective algebra A of Dynkin type has a cluster tilting object

[GLS1].
(3) DP(mod A) for a preprojective algebra A of non-Dynkin type does not have a cluster tilting object.

Example 1.8. Let Q be 1 —=2—3 and C the cluster category of Q in Example 1.4. There are the
following 14 basic cluster tilting objects in C (see Section 2 for the meaning of basic).

Ti=|e . I, =] . o - Ty =| o .. Ty=|. °
[ . 'Y . . 'Y . . ®
® [ ] [ J [
Ts =1 . . Ts = T = Iy =
Ty = Ty = Ty = T2 =
Tz = Ty =
[ [ ] [ ]

Notice that 14 is the Catalan number £(}). In general, the number of basic cluster tilting objects in the
cluster category is given by the generalized Catalan number [FZ1].

Aim 1.9. Construct a class of 2-CY triangulated categories with cluster tilting objects including Example
1.7(1) and (2).

In the rest of this section, we explain results by Buan-I.-Reiten-Scott in [BIRSc]. There is a related
work by Geiss-Leclerc-Schrier [GLS3] by quite different methods.

Let @ be a finite connected quiver without loops which is non-Dynkin, and let Qo = {1,2,--- ,n} be
the set of vertices. We denote by A the preprojective algebra of Q. Then we have primitive orthogonal
idempotents

l=e1+---+e,

51
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of A. Let
I :=A(1-¢)ACA
be a two-sided ideal of A. We denote by
(I, -, In)

the ideal semigroup of A generated by I,--- , I,.
The first observation is the following [IR, BIRSc).

Proposition 1.10. (1) Any I € (I,--- ,1I,) is a tilting A-module.
(2) I =1I.
(8) Lil; = L;I; if there is no arrow between i and j in Q,
(4) LI;I; = I;I;1; if there is precisely one arrow between i and j in Q.
The above relations remind us braid relations. We denote by W the Cozeter group of Q (e.g. [BB]),
i.e. W is presented by generators 8;,--- , 8, with the following relations:
e s2=1,
® 3;9; = 8;8; if there is no arrow between 7 and j in Q,
® 3;38j8; = 5;8;8; if there is precisely one arrow between 7 and j in Q.
We say that an expression w = s;, - -+ 8;, of w € W is reduced if k is the smallest possible number.
We have the following description of (I,--- ,I ) [IR, BIRSc].

Proposition 1.11. We have a well-defined bijection W = (I, --- ,I,,) given by
w=8; -8 — Ly =L ---I;,
for any reduced expression w = 8;, - - - 8;, .
We give a simple example.

a

—_—
— b
Example 1.12. Let Q be 1 ﬁ 2. Then Qis 1 <—=2, and A is the factor algebra of K Q@ by two
b a
b.
relations aa™ + bb* = 0 and a*a + b*b = 0. Then (I, I) consists of the following ideals.

1
1213 2 2. 2
A=Ae1BAes=|2"2"2201°1°1°1

J U
1222 1,1 ! 2oty
2 2 1 11
L=|2 22 28171"1"1 L=|2"2 2@1°1 1
U U
1.1
1.1 1 2.2 2 111 2 2 2
IL1=]2 2 2 2¢1 1 1 1 LIb=|2 2 2 2¢1 1 1 1
Y U
2 2 2 1.1 1
LLL=(2222g1 1 1 1 LIL=[22 2 2g1111
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For w € W, we put
Ay = A/L,.
We have the following properties [BIRSc].

Proposition 1.13. (1) Ay i3 a finite dimensional k-algebra.
(2) Ay is Iwanaga-Gorenstein of dimension at most one, i.e.

inj.dim, (Ay) = inj.dim(Ay)a, < 1.
We define a full subcategory of mod A, by
SubAy := {X € mod Ay, | X is a submodule of a projective A,-module}.
This forms a Frobenius category in the sense of Happel [H|. In particular, the stable category
Cw = SubA,,

forms a triangulated category. Moreover, we have the following property [BIRSc].
Proposition 1.14. C,, is a 2-CY triangulated category.

As special cases of Cy,, we recover Examples 1.3 and 1.5.

Example 1.15. (1) Let ¢ = 81 ---8, € W be a Coxeter element. Then the category C.» associated
to ¢ € W is equivalent to the cluster category of @ given in Example 1.3.
(2) Let Q' be a full subquiver of @ which is Dynkin. Let w be the element of W corresponding to
the longest element of Q’. Then we have

Aw =~ A and Cp ~ modA’
for the preprojective algebra A’ of Q'.

Now we will construct cluster tilting objects in our 2-CY triangulated category Cy,.
Fix a reduced expression w = 8;, - - - 8;,. Then we have a decreasing chain

ASL, D 1;, o DIy, - Ly, =1,
of two-sided ideals of A. In particular, we have a chain
AL, — AL Ly -~ AL L, T, = Ay
of surjective K-algebra homomorphisms. In particular, we can regard each A/I;, ---I;, as a A,-module.

We put

k
T(ir, i) = E@A/Ly -+ T, € mod Ay,
=1
Now we can state the following main result in [BIRSc].

Theorem 1.186. (1) T(i1,+-+ ,ix) € SubA,,.
(2) T(41,--+ ,ix) is a cluster tilting object in Cy,.

Remark 1.17. (1) T(31,-- - , i) has precisely k indecomposable direct summands
(A/Ih)eila (A/IilI‘iQ )eiz: ] (A/Iii Ii: T Iik)eik

up to isomorphisms.

(2) The quiver of the endomorphism algebra of T'(i1,--- ,ik) is given in [BIRSc]. Moreover, it is
shown in [BIRSm] that the endomorphism algebra is isomorphic to the Jacobian algebra of a
quiver with a potential (see Definition 2.12).

We give an example.
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Example 1.18. Let Q be 2 Then Q is 2

a b
X 23
1£°_,3. . . e g s
————— %3,

[+
Let w = 51825183518293 be a reduced expression. Then T°(1,2,1,3,1,2,3) and the quiver of its endo-
morphism algebra is the following:

\%/ ~
\\//'

We end this section by giving other classes of 2-CY triangulated categories.

Example 1.19. (1) Let (R,m, K) be a commutative complete local K-algebra and CM(R) the cat-
egory of maximal Cohen-Macaulay R-modules [Y]. If R is a Gorenstein isolated singularity of
dimension three, then the stable category CM(R) is a 2-CY triangulated category by a classical
result in Auslander-Reiten theory [Au]. See also [BIKR, 12, IR, IY].

(2) Based on a work of Keller [Ked], Amiot introduced generalized cluster categories [Am1, Am2)
associated to finite dimensional K-algebras of global dimension at most two and to quivers with
potentials (see Definition 2.12). These categories play a key role in the solution of periodicity
conjecture in [Ke3, IIKNS].

2. CLUSTER TILTING MUTATION IN 2-CY TRIANGULATED CATEGORIES

Throughout this section, let K be an algebraically closed field, and let C be a 2-Calabi-Yau triangulated
category over K with the suspension functor Z.
Let T be a cluster tilting object in C. We always assume that T is basic, i.e.

T=T o ---6T,
with mutually non-isomorphic indecomposable objects T; € C. We denote by
Qr
the quiver of the endomorphism algebra Endc(7") [ARS, ASS|. Then we have a presentation
Ende(T) ~ KQr/I
of End¢(T) for some ideal I of the path algebra KQr.
Aim 2.1. Study Qr and I.

The following result was given by I.-Yoshino [IY] (see also [BMRRT)).

Theorem 2.2. (cluster tilting mutation) Let C be a triangulated category end T =T & --- ®T, €C a
basic cluster tilting object. Let k € {1,--- ,n}.

(1) There ezists a unique indecomposable object Ty € C such that Ty # Tk and ux(T) := (T/Tv)o Ty
18 a basic cluster tilting object in C.
(2) There exist triangles (called exchange sequences)
Ty LU LT =517 and T S Ul L1 - 213
such that f and f' are right add(T' /T )-approzimations and g and g’ are left add(T'/Tx)-approzimations.
Clearly we have pg o pp(T) =~ T
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Example 2.3. Let Q be 1 —2-—>3 and C the cluster category of Q given in Example 1.4. Consider
a basic cluster tilting object

T = . 3
2
1

given in Example 1.8. Then cluster tilting mutation of T is given by the following.

p(T) =

2

3

1*

p2(T) =

1

3

2*

us(T) =

3*

1

2

Moreover, the behaviour of cluster tilting mutation for 14 basic cluster tilting objects in C given in
Example 1.8 is the following graph.

/ T13
| \
T Ts T1o
’/_—)—'—m
T Ty —Ts Tg — 1Ty T2
N ~N 7 ~N ~

yd
T3

In general, the behaviour of cluster tilting mutation in the cluster category is described by the generalized
Stasheff associahedron [FZ1].

Cluster tilting mutation plays a key role in the study of cluster tilting objects in 2-CY triangulated
categories. For example, we have the following result for cluster categories [BMRRT).

Theorem 2.4. LetC be the cluster category of a quiver Q. Then any cluster tilting object in C is reachable
from the cluster tilting object KQ € C by a successive cluster tilting mutation.

We say that a path in a quiver is a cycle if the head coincides with the tail. A cycle of length one is
called a loop, and a cycle of length two is called a 2-cycle.
The following combinatorial operation was introduced by Fomin-Zelevinsky [FZ2).

Definition 2.5. (quiver mutation) Let Q be a quiver without loops. Let k € Qg be a vertex which is
not contained in 2-cycles. We define a quiver fix(Q) by applying the following (i)-(iii) to Q.

. i, b . : ., [ab] .
(i) For each pair i = k = j of arrows in Q, create a new arrow i letl, j-

(ii) Replace each arrow i % k by a new arrow i «<*— k.
(iii) Replace each arrow k 2 j by a new arrow k <— 7.
Define a quiver ux(Q) by applying the following (iv) to fix(Q).

(iv) Remove a maximal disjoint collection of 2-cycles.

Remark 2.6. (1) px(Q) has no loops and & is not contained in 2-cycles in ux(Q).

(2) We have px o ux(Q) ~ Q.
(3) We can regard quiver mutation as a generalization of Bernstein-Gel’fand-Ponomarev reflection

[BGP).

We give an example.
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Example 2.7. For the following quiver Q of type As, we calculate u;(Q), u2(Q) and p2 o p2(Q). (For
simplicity we denote a** and b** by a and b respectively.)

Q= (1_‘;2_';3) o, <1<°_2_°>3)
luz

[6%a®)

((£:5) 2 (E.2) @ (1s.2)
In the rest of this section, we assume that C has a cluster structure [BIRSc], i.e. @1 has no loops and
2-cycles for any cluster tilting object T° € C. In this case, we have the following.
Remark 2.8. Combining the exchange sequences in Theorem 2.2, we have a complex
7 S up L8 U Lo

such that the sequences

Home(T, UL) L% Home(T, Us) £ Je(T, i) — o,

Home (Ux, T) 2% Home (UL, T) £ Je(Tk, T) — 0

are exact for the Jacobson radical Je of C. Such a complex is called a 2-almost split sequence in [I1] and

an AR {-angle in [IY]. Consequently the quiver and relations of End¢(T") can be controlled by exchange
sequences.

Example 2.9. The 2-CY triangulated category C, given in Proposition 1.14 has a cluster structure
[BIRSc]. In particular, cluster categories in Example 1.3 and the stable category modA for preprojective
algebras A of Dynkin type in Example 1.5(1) have a cluster structure.

Using Remark 2.8, we have the following result [BIRSc] which shows that cluster tilting mutation is
compatible with quiver mutation.

Theorem 2.10. Let C be a 2-CY triangulated category with a cluster structure and T € C a cluster tilting
object. Then Q. (1) = ur(Qr) holds for any k € (Qr)o.

For example, cluster tilting mutation given in Example 2.3 is compatible with quiver mutation in
Example 2.7.

As an appication of Theorem 2.10, we have the following result [BIRSm)].

Corollary 2.11. Let C; be a cluster category and T; € C; a cluster tilting object fori = 1,2. If Qr, ~ Qr,,
then Ende, (T1) ~ Endc, (T3).

The following was introduced by Derksen-Weyman-Zelevinsky [DWZ].

Definition 2.12. Let Q be a quiver without loops.

(1) We denote by Q; the set of paths of length 7, and by Q; cyc the set of cycles of length i. Let KQ;
be the K-vector space with the basis Q;, and let KQ; cyc the subspace of KQ; spanned by Q; cyc-
Similar to the path algebra KQ, the K-vector space

I’(b = H K Qi
i>0
forms a K-algebra which we call the complete path algebra of Q. The Jacobson radical of I?a
is given by Jg5 = Hizl KQ;. We regard KQ as a topological algebra with respect to the
(Jig)-adic topology.
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(2) A quiver with a potential (or QP) is a pair (Q, W) consisting of a quiver Q without loops and an
element

We l__[ KQi,cyc

i>2

called a potential. It is called reduced if W € H,-23 K Qi cyc. Define 9, W € @ by

Ba(ay -+ ag) := Z Qit1 " QA1 -~ A1

ai=a

and extend linearly and continuously. The Jacobian algebra is defined by
P(Q,W):= KQ/(B.W |a € Qy)
where T is the closure of 1.

Remark 2.13. (1) The behaviour of Jacobian algebras is very nice thanks to the completion.
(2) Two potentials W and W’ are called cyclically equivalent if W-W' € [KQ, KQ], where [KQ, KQ)]

is the K-vector subspace of KQ Q spanned by commutators. In this case, we clearly have P(Q, W) =
P(Q,W').

We give an example.

Example 2.14. Let (@, W) be a (non-reduced) QP

c

d
(1@3 ,cd+abd).
NS

Then 6, W = bd, oW = da, 8.W = d and 83W = c + ab. Thus the Jacbian algebra P(Q, W) coincides
with the Jacobian algebra of

Q,W") = (1—“>2—b>3,0).

In general, for any QP (Q, W), a reduced QP (Q’, W’) satisfying P(Q, W) ~ P(Q’, W’) was associated
in [DWZ] and called the reduced part of (Q, W). We omit the detailed definition here. For example, the
reduced part of the QP (Q, W) in Example 2.14 is given by (Q’, W) there.

The following operation is introduced by Derksen-Weyman-Zelevinsky [DWZ].

Definition 2.15. (QP mutation) Let (Q, W) be a QP. Assume that k € Qo is not contained in 2-cycles.
Replacing W by a cyclically equivalent potential, we assume that no cycles in W start at k. Define a QP
Ak (Q, W) := (fix(Q), [W] + A) as follows:

o [ix(Q) is given in Definition 2.5.
e [W] is obtained by replacing each factor i % k 2 jin Wby i o], J-
o A:= > a*[ablb*.

(i2k25) in @

Define a QP ux(Q, W) as a reduced part of [ix(Q, W).

Remark 2.16. Clearly k is not contained in 2-cycles in ux(Q, W). Moreover, ux o ux(Q, W) is right-
equivalent to (Q, W) [DWZ] in the following sense:

Two QP’s (Q,W) and (Q' W') are called right-equivalent if Qo = Q) and there exists a K-algebra
isomorphism ¢ : K Q — KQ' such that dlg, = id and ¢(W) and W’ are cyclically equivalent. In this
case ¢ induces an isomorphism P(Q, W) ~ P(Q', W').

We give an example.
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Example 2.17. For a QP (Q, W) below, we calculate u2(Q, W) and us o u2(Q, W).

(Q,W)=<1—°>z—b>3,0> £, (13.—23.—3,a'[ab]b‘)
e
(b*a”]

PN
£, (1—"»2—"»3,[ab][b‘a‘]+b[b‘a‘]a) Teduced, (1—‘5>2-P>3,0)
NEY

The reduced part of [iz o u2(Q, W) was calculated in Example 2.14.
The following result [BIRSm] shows that cluster tilting mutation is compatible with QP mutation.

Theorem 2.18. Let C be a 2-CY triangulated category and T € C a cluster tilting object. Let (Q, W) be
a QP. If Ende(T) = P(Q, W), then Ende(uk(T)) =~ P(ux(Q, W)).

Immediately we have the following.

Corollary 2.19. Let C be a 2-CY triangulated category and T € C a cluster tilting object. If Endc(T)
ts a Jacobian algebra of a QP, then so is End¢(T") for any cluster tilting object T' € C reachable from T
by a successive cluster tilting mutation.

For example, we have the following.

Example 2.20. (1) Cluster tilted algebras (=endomorphism algebras of cluster tilting objects in
cluster categories) are Jacobian algebras of QP’s by Theorem 2.4 and Corollary 2.19 since KQ =
P(Q,0).

(2) Let Cy be a 2-CY triangulated category in Proposition 1.14 and T(ij,--- ,ix) € Cy a cluster
tilting object in Theorem 1.16. For any cluster tilting object T € C,, reachable from T (i1, - ,ik)
by a successive cluster tilting mutation, End¢, (T") is a Jacobian algebra of a QP by Example
1.17(2) and Corollary 2.19.

We end this note by the following nearly Morita equivalence for Jacobian algebras [BIRSm] (see also
[BMR]), where mod is the category of modules with finite length.

Theorem 2.21. For a QP (Q,W), we have an equivalence
mod P(Q, W)/[Sk] = mod P (ux(Q, W))/[Sk],
where Sy and S}, are simple modules associated with the vertez k.
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