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A survey on Shapovalov determinants

of (generalized) quantum groups
at roots of 1

Hiroyuki Yamane

Abstract

This is an informal survey on a joint work [HY08b] with Istvan Heck-
enberger.

1 A quantum group U(x) defined for any bi-
character x

Recently study of Nichols algebras has been achieved very actively for the view-
point of classification of Hopf algebras, see [AS98], [AS02], [Hec06]. One of their

examples is the positive part U (x) of a generalized quantum group U(x) defined
below.

Let k be a field and k* =k \ {0}. For n € Z>o and z €k, let

n

(1) [n]e = me”lv [n].! = H[m]x

m=1

For two elements X; and X, of a k-algebra we use the convention:

(2) X1 X Iz € k* X1 = zXs.

<
def
Let I be a finite index set. Let ZIl = ;¢;Za; be a rank |I| free Z-module with
a basis IT = {oy|i € I'}. We say that a map x : ZII x ZII — k* is a bi-character
if x(a + b,¢) = x(a,c)x(b,c), and x(a,b+ ¢) = x(a,b)x(a,c) for all a, b, c € ZII.

Let x be any bi-character. Then, as we explain more precisely in Section 2,
Lusztig’s definition [L, 3.1.1] of the quantum groups can be applied to define the
Hopf k-algebra U(x) with the generators

(3) K,L (\€ZIl), B, F,(i € I),
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for which K L (A, pu € ZII) are linearly independent and the following equations
hold:

(4 Ko=Ly=1, K, =KK, L, =LL, KL =LK,

-1 __ x(A, O‘J) - X(aj’ 1)
(5) K L E,; (I{ L)~ X(a],#)E K L F;(K L ) X0, aJ)FJ’
) EF, FE=6yK, L))
(7)) AKL)=KL KL,E(KL)———I,S(KL)z(KL)—l,
8) AE)=E 1+K, E;, A(F;)=F, L ,+1 F,
9) e(B)=e(F) =0, S(E)= K 'E, S(F)= FL™

Let U%x) :== | cznkK L . Let U*(x) and U~ (x) be the subalgebra of U(x)
generated by E; and F; with all i € I respectively. Then U(x) =U%(x) U 0(x)
U~ (x), as a k-linear space. We have the Zoll-grading U*(x) =  ez,onU*(X)x
defined by U*(x) . = kE;, U~ (x)- , = kF;, and U%(x) U%(x) < U*(x) + .
We also have dim U~ (x)- =dimU +(x) for all A € ZoIl.

2 Drinfeld pairing of U(x)

Here we will explain how to define U(x) more precisely. By abuse of notation,
we use the same symbols as above for the generators of the algebras introduced
in this paragraph. Let U*(x) and be U~(x) the free k-algebras (with 1) with
the generators {E;|i € I} and {Fi|i € I} respectively. Let U °(x) be the k-linear
space with the basis {K L |\, p € ZI}. Let U(x) = U*(x) »U°(x) % U~ (x).
Identify X € Ut(x), Z€ U%x) andY e U~(x) with X 1 1,1 Z 1and
1 1 Y respectively, and regard U+ (x), U%(x) and U~ (x) as subspaces of U(x)
in this way. Then U (x) can be regarded as the k-algebra (with 1) presented by
the same generators as the ones for U(x) and the relations (4), (5) and (6) (cf. [L,
Prop. 3.2.4]). Further U(x) can be regarded as the Hopf k-algebra with the same
equalities as (7), (8) and (9). Let U+¥(x) be the subalgebra of U(x) generated
by E;’'s and K ’s. Let UL (x) be the subalgebra of U(x) generated by F;’s and
L ’s. Then there exists a unique k-bilinear form

(10) (Y OPR ) x TP () — k
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with
1) ({LY)=eY), (X,1) =¢(X), (S(X),Y) = (X,57(V)),
(12)  (XiX2,Y) =) (X5, V) (X1, Y?),

(13)  (X,1Ys) =) (X, viNX 2, 7,),
h
(14) <EzaF,'7> = 0y, (K ,L)= x(A, 1), (Ei, L ) =(K , Fj) =0

for X, Xy, Xp € UHX(x) with A(X) = ¥, XV X2, and ¥, 13, ¥; € U5 (x)
with A(Y) =37, Y ¥® and for t,7 €1 and A\, u € ZII. We see

(15) (EK ,FL )= (E, F)Y(K ,L)

for E € U*(x) and ﬁ~e U-(x). Further, letting U%(x) = ez5onU%(x)x be
the Z>oll-grading on U*(x) defined in a way similar to the one on U %(x), we
have (U*(x) ,U™(x)- ) = {0} if X\ # u. Let

(1) T () ={E e U*((E, T~ () = {0}},

A7) J700 ={F e U-GolT*(x), F) = {0}},

(18)  J(x) = Spany(J* () T° ()T~ (x) + T+ () T () T~ (x)).

Then J (x) is the kernel of the Hopf algebra epimorphism from U (x) to U(x)
sending the generators to the ones denoted by the same symbols.

Theorem 1. (Kharchenko [Kha99]) There ezist M € N U {oo} and elements
E;eU(x); 1 i M) for some f; € Zxoll \ {0} such that we have the
k-basis of U*(x) formed by the elements _

EmEP:  ETM  if M is finite, that is M € N,
{ Em g ET for some M' € N if M = oo
with0 m; h , and h  :=Max{n|[n] (, ,'#0} € NU{+oo}.
Let
(20) R,={B1 ¢ M}

Note that |[R,| M, that is, 5; and B; may be the same for some i % ;.
We say that x is finite-type if |R, | < +o0o. See [H09] for the classification.
Note that if dim U(x) < oo, then Y is finite-type.

(19)
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Theorem 2. (see [HY08b, Theorems 4.8, 4.9]) Assume that x 1is finite-type.

Then |R,| = M as for (20). We write E , = E; if E; € U(x) ,. Then after
: X

re-choosing E , (as in (51)), we may assume that E™ =0 if h < 400 and

that E \E , x(Bi,08;)E ,E , €(E i <r <j) for any i < j, so

Mf@) p™e(2) T f (M) ,
(21) £ £(1) E £(2) E £(M) 0 mi kA .-}

is a k-basis of U(x) for any bijective map f :{1,2,..., M} — {1,2,...,M}.

Convention. Let xi1, x2 : ZII x ZIl — k* be two bi-characters. Let fi,
f2: U(x1) — U(xz) be two k-algebra homomorphisms. Then we write

(22) fi=fo
if
(23) (K L) = fo(K L), fi(E)) fo(E:), f1(Fi)  f2Fr)

forall \, u€ ZITland i € I.

3 Heckenberger’s Lusztig-type isomorphisms

Here we explain a generalization [H07] of Lusztig-type isomorphisms [L].
Assume x to be any bi-character. Let

(24) [X.Y]"=XY x(O\pY X,

(25) [X.Y]"=XY x(\p'YX,
(26) X .Y =XY x(mMYX,
(27) X . Y] =XY x(wN'YX

for X eU(x) andY € U(x) with A\, p € ZII. Let ¢, j € I be such that ¢ # j.
Let
E+. = Ej, E~ = Ej,
7 2
- - V,—
(28) E+,+m i = l[Ei7E+j+(m—.1) iIl’ E j+m = [[Ei’E j+(m—1) iII )
Vb e _ - -
Ft-+m i IIE’Ft-—f—(m—l) i]l ’ F jtm ¢ = [[Fi’F j+(m—1) ;11
for m € N. For m € Z>(, we have

ml o o TIO (e a) (e ag)x(e, 06)) # 0

29 =t
(29) = E L, FOSE L, #FO0=F  #O0=F ., #0

< a; + ma; € R,.
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We also have
(30)
[E+j+m i’F_t'-l-m z] = (X(a“ai)m_lx(a“O{J)X(aj’a'l))m[E—J-}-m ,-7F.;-+m i]

:( l)m([m] (4 i)!H(l X(ai’ai)S_IX(Q‘ha.’i)X(ajaai))(K j+m L j+m i)'
s=1

Theorem 3. ([HO7]) Let i € I. Assume that for all j € I \ {z}, there ezist

+ + =
my; € Zxo such that E Ay 70 and E sHmG+1) o T 0.

(1) There exist a bi-character r;(x) : ZII x ZII — k* and k-algebra isomor-
phisms

(31) L=T":Ur() - UK, Ty :U(r(x) = Ux)
such that
(32) T;.:‘:(K ) =K_ 3 T;;i(L J=L_,
(33) Tz:t(K j) =K +tmf o Tii(L j) =L tmy o
(34) ’-Z-fL(E'L) = FiL— FE) ﬂ(ﬂ) = K— iEi7
(35) T (Bi) = K- |F, 7 (Fi) = BiL-
(36) THE) B o TE(F) FEL
J ij t J i 4

where j € I\ {i}.

(2) ri(ri(x)) exists in the same way as above with r;(x) in place of x. Further
ri(ri(x)) = x, myy' ) =my; for all j € I\ {3}.

(3) Let Ti : U(ri(x)) — U(x) be as in (31). Let Ty : U(x) — U(ri(x)) be
the one as in (31) defined with r;i(x) in place of x. Then T, T; = idy(ry( y) and
LTy = idy( ). |

(4) Define the Z-module isomorphism 0{‘( ) = ¢, : ZI1 — ZI0 by TE(U(ri(x)) ) =
U(x) i) for all X € ZI1. Then

(37) 0':"( ) = o, O a:’( ) = idzm
and
(38) o OREO o)) = B\ e}, o] e = o

Theorem 4. ([HO07]) Assume x to be finite-type. Let i, j € I to be such that
i#j. Let M = |R, N (Zxoi Zyoe;)|. Forn € {1,2,..., M}, define two bi-
characters xn, X}, two Z-module automorphism On, Gy, of ZI1 and two k-algebra
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isomorphisms Tn : U(xa) = U(x), T : U(xs) = U(x) in the way that xa = X =
X, 01 =01 =1dzn, T1 = 1] = idy( ), and

— _ ‘o ’ ’ _ /
(39) X2n = Ti(X?n—l)v X2n+1 = "’j(X2-n)’ Xon = rj(x2n—l)’ Xa2n+1 = "'i(in),
- = on = = bl =1 =/ 2n =/ — =l 2n4l
‘ (40) Oon = O2n—10; ", O2ny1 = O2n0; ", Ogn = O2n-19; "y Oong1 = 02003
A 3 _ R = g
(41) T2n - T2n—1T¢, T2n+1 - TZn']?j) T2n - TZn—lT.'?') T2n+1 - T2nn'

Then we have

(42) XM = X
(43) Om =Gy

and

(44.) T]\,I = TII\,I.

4 Longest elements of Weyl groupoids

In this section we always assume x to be finite-type, and refer to [CHO8] for
categorical definitions of Weyl groupoids.

Convention. For a category C, we denote the product of the morphisms by .
That is, for two morphism f; € Mor(ay, b;) and fo € Mor(az, by) with a;, by, a;
and b, € Ob(C), we denote their product by

(45) fi fo ifby=a;.
Set
(46) C(X) = {X} U U{Th Tin (X)Iil’ cee ,in € I}

Let W = W/(x) be the category with Ob(W) = C(x) and generated by the
maps o; € Morw(x’,ri(x')) with X' € Ob(W) and i € I. Let W = W(x)
be the (abstract) category with Ob(W) = C(x) defined by generators s,-' €
Morw (X', ri(x’)) with x’ € Ob(W) and i € I and relations

’

(47) s; st =100,
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oani( ) rim( ) — o () riri()
5 y =s5; s s;

(both sides are composed of |R, N (Za; Zaj)|-factors).

S S

i

(48)

We call W the Weyl groupoid. Define the morphism ¢ : W — W by o(s; "y = o, .
Then ¢ is bijective, see [HY08a, Theorem 1]. Let £(1 /) = 0 for X' € C(x). Let
£s; ) =1. Forw e Morw (x1, x2), let £(w) be the least number £(w’) + £(w")
with w = w' w” for some x3 € C(x), and some w € Morw(x3, X2), some
w” € Morw(x1, x3). By [HY08a, Lemma 8(iii)], we have

(49) l(w) = |[{a € R}}p(w)(e) € R}

Moreover for each x1 € C(x), there exists unique x; € C(x) and 1w, € Morw(x2, X1)
such that ¢( *wo)(R,?) = R,*. Wecall 'wy the longest element since £( *wo)
£(w') for any w' € Morw(xs, x4) for any X3, xs € C(x).
Let W = W(X) be the (abstract) category with Ob(W) = C(x) defined by
generators 5, € Morg;(x', ri(x’)) with x' € Ob(W) and i € I and relations
'gi’ g;_‘t( ) 's";‘jf't( D :'gj
(both sides are composed of |R, N (Za;  Za;)|-factors).

. Coari( 1) A7)
(50) 8; Sj

Let 1, € Morg;(x/, X') denote the identity morphism. Define the morphism

W Why () =5 - _
Let £(1 1) =0 for X’ € C(x). Let £(5; ) = 1. For @ € Morg;(x1, x2), let £(@)

be the least number £(@') + £(W") with @ = @' @" for some x3 € C(X), and some
w’ € Morgs(x3, X2), some @" € Morg;(x1, X3)-

Theorem 5. ([(HY08a, Theorem 5, Corollary 6]) Let x1, x2 € C(x). For w €
Morw(x1, x2) and Wy, Wy € W € Morgps(x1, X2) with g(ibl) = 5(1’62) = w and
l(w) = Z(z?il) = ?(1'52), we have Wy = Wp. Further, if W € Morg(x1, x2) 45
such that £(@) > U$(@)), then & = @ AN 5,2 W' for somei €I, W €

Mor(x1, X3) and @W" € Moryy(Xs, X2) with U@ + e(@") = ow) 2.

Assume wp to be s;' 5,7 Sin, where M = [R,|, m(x1) = x, and
v‘j(xj) = Xj-1- Let Ty =idy( ). For2 n M, define the k-algebra isomorphism
Ty : U(Xn-1) = U(x) by T, = Tp—1Tj,_,. Then as for E , of Theorem 2, we may

put
(51) E,= T;(EJ;)
forl 7 M.
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5 Shapovalov determinants

Let x be a bi-character. We define the Shapovalov matriz Sh in the natural way
for each o € ZxoII. More precisely, Sh is a dimU*(x) x dimU*(x) -matrix
whose components are elements of U%(x). Let p : ZII — k* be the (abelian)
group homomorphism defined by p (o;) = x(ai, ;). We use the Kostant partition
function P (o, 8,t) :=dim E*U*(x) -; , where we define P (o, 3,t) = 0 in case
(04 t,@ ¢ Zzon.

Theorem 6. ([HY08b, Theorem 7.3]) Let x be finite-type. Assume that x(3, 8) #
1 for all B € R,. Then for a € Zxoll, we have
h
detSh =c [ [Ite K  x(8,8)'L )T*C-H
€RX t=1
for some c € k*.
As stated below, for U(x) which is the (ordinary or small) quantum group
of a finite dimensional Lie algebra g, we have the generalization of (1) the one

[dDK90] for ¢ € C* which is not a root of unity, and (2) the one [KL97] for
g € C* which is a primitive p-th root of unity for some prime number p.

Corollary 7. Let g be a finite dimensional simple Lie algebra of type A-G or
a finite dimenstonal simple Lie superalgebra of type A-G. Then the Shapovalov
determinant of the quantum group U,(g) when q is not root of unity or the small
quantum group u.(g) when q is a primitive r-th root of unity for some positive
integer v 2 is given by

h
c I—I H(qz( ’ )K q( ’ )tK—l)Px( ) $t)

ER4 t=1
for some ¢ € C*,

We even recover the original ones due to Shapovalov [Sha72], and Kac [Kac77]
(super cases):

Corollary 8. Let g be as above. Then the Shapovalov determinant of the en-
veloping algebra U(g) is given by

T T + ) L2t

€ER, t=1

for some c € C*.
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