A survey on Shapovalov determinants of (generalized) quantum groups at roots of 1

Hiroyuki Yamane

Abstract

This is an informal survey on a joint work [HY08b] with Istvan Heckenberger.

1 A quantum group $U(\chi)$ defined for any bicharacter χ

Recently study of Nichols algebras has been achieved very actively for the view-point of classification of Hopf algebras, see [AS98], [AS02], [Hec06]. One of their examples is the positive part $U^+(\chi)$ of a generalized quantum group $U(\chi)$ defined below.

Let k be a field and $k^* = k \setminus \{0\}$. For $n \in \mathbb{Z}_{\geq 0}$ and $x \in k$, let

(1)
$$[n]_x = \sum_{m=1}^n x^{m-1}, \quad [n]_x! = \prod_{m=1}^n [m]_x.$$

For two elements X_1 and X_2 of a k-algebra we use the convention:

(2)
$$X_1 \quad X_2 \quad \stackrel{\longleftrightarrow}{\rightleftharpoons} \quad \exists x \in \mathbb{k}^{\times} \ X_1 = xX_2.$$

Let I be a finite index set. Let $\mathbb{Z}\Pi = {}_{i \in I}\mathbb{Z}\alpha_i$ be a rank |I| free \mathbb{Z} -module with a basis $\Pi = \{\alpha_i | i \in I\}$. We say that a map $\chi : \mathbb{Z}\Pi \times \mathbb{Z}\Pi \to \mathbb{k}^\times$ is a bi-character if $\chi(a+b,c) = \chi(a,c)\chi(b,c)$, and $\chi(a,b+c) = \chi(a,b)\chi(a,c)$ for all $a,b,c \in \mathbb{Z}\Pi$.

Let χ be any bi-character. Then, as we explain more precisely in Section 2, Lusztig's definition [L, 3.1.1] of the quantum groups can be applied to define the Hopf k-algebra $U(\chi)$ with the generators

(3)
$$K, L (\lambda \in \mathbb{Z}\Pi), E_i, F_i (i \in I),$$

for which K L $(\lambda, \mu \in \mathbb{Z}\Pi)$ are linearly independent and the following equations hold:

(4)
$$K_0 = L_0 = 1$$
, $K_+ = KK$, $L_+ = LL$, $KL = LK$,

(5)
$$K L E_j(K L)^{-1} = \frac{\chi(\lambda, \alpha_j)}{\chi(\alpha_j, \mu)} E_j, \quad K L F_j(K L)^{-1} = \frac{\chi(\alpha_j, \mu)}{\chi(\lambda, \alpha_j)} F_j,$$

- (6) $E_i F_j \quad F_j E_i = \delta_{ij} (K_i \quad L_i).$
- (7) $\Delta(K L) = K L \quad K L, \ \varepsilon(K L) = 1, \ S(K L) = (K L)^{-1},$
- (8) $\Delta(E_i) = E_i \quad 1 + K_i \quad E_i, \ \Delta(F_i) = F_i \quad L_i + 1 \quad F_i,$
- (9) $\varepsilon(E_i) = \varepsilon(F_i) = 0, \ S(E_i) = K_i^{-1}E_i, \ S(F_i) = F_iL_i^{-1}$

Let $U^0(\chi) := \int_{\mathbb{Z}\Pi} \mathbb{k} K \ L$. Let $U^+(\chi)$ and $U^-(\chi)$ be the subalgebra of $U(\chi)$ generated by E_i and F_i with all $i \in I$ respectively. Then $U(\chi) = U^+(\chi) \quad U^0(\chi)$ $U^-(\chi)$, as a \mathbb{k} -linear space. We have the $\mathbb{Z}_{\geq 0}\Pi$ -grading $U^\pm(\chi) = \mathbb{E}_{\geq 0}\Pi U^\pm(\chi)_\pm$ defined by $U^+(\chi)_i = \mathbb{k} E_i$, $U^-(\chi)_- = \mathbb{k} F_i$, and $U^\pm(\chi)_- = \mathbb{k} U^\pm(\chi)_+ = \mathbb{k} U^\pm(\chi)_+ = \mathbb{k} U^\pm(\chi)_+ = \mathbb{k} U^\pm(\chi)_- = \mathbb{k} U^\pm(\chi)_+ = \mathbb{k} U^\pm$

2 Drinfeld pairing of $U(\chi)$

Here we will explain how to define $U(\chi)$ more precisely. By abuse of notation, we use the same symbols as above for the generators of the algebras introduced in this paragraph. Let $\widetilde{U}^+(\chi)$ and be $\widetilde{U}^-(\chi)$ the free k-algebras (with 1) with the generators $\{E_i|i\in I\}$ and $\{F_i|i\in I\}$ respectively. Let $\widetilde{U}^0(\chi)$ be the k-linear space with the basis $\{K\ L\ | \lambda,\mu\in\mathbb{Z}\Pi\}$. Let $\widetilde{U}(\chi)=\widetilde{U}^+(\chi)$ $_{\mathbf{k}}\widetilde{U}^0(\chi)$ $_{\mathbf{k}}\widetilde{U}^-(\chi)$. Identify $X\in\widetilde{U}^+(\chi),\ Z\in\widetilde{U}^0(\chi)$ and $Y\in\widetilde{U}^-(\chi)$ with $X=1-1,\ 1-Z=1$ and 1-1 Y respectively, and regard $\widetilde{U}^+(\chi),\ \widetilde{U}^0(\chi)$ and $\widetilde{U}^-(\chi)$ as subspaces of $\widetilde{U}(\chi)$ in this way. Then $\widetilde{U}(\chi)$ can be regarded as the k-algebra (with 1) presented by the same generators as the ones for $U(\chi)$ and the relations (4), (5) and (6) (cf. [L, Prop. 3.2.4]). Further $\widetilde{U}(\chi)$ can be regarded as the Hopf k-algebra with the same equalities as (7), (8) and (9). Let $\widetilde{U}^{+,K}(\chi)$ be the subalgebra of $\widetilde{U}(\chi)$ generated by E_i 's and K 's. Let $\widetilde{U}^{L,-}(\chi)$ be the subalgebra of $\widetilde{U}(\chi)$ generated by E_i 's and E is Then there exists a unique k-bilinear form

(10)
$$\langle , \rangle : \widetilde{U}^{+,K}(\chi) \times \widetilde{U}^{L,-}(\chi) \to \mathbb{k}$$

with

(11)
$$\langle 1, Y \rangle = \varepsilon(Y), \ \langle X, 1 \rangle = \varepsilon(X), \ \langle S(X), Y \rangle = \langle X, S^{-1}(Y) \rangle,$$

(12)
$$\langle X_1 X_2, Y \rangle = \sum_{q} \langle X_2, Y_g^{(1)} \rangle \langle X_1, Y_g^{(2)} \rangle,$$

(13)
$$\langle X, Y_1 Y_2 \rangle = \sum_h \langle X_h^{(1)}, Y_1 \rangle \langle X_h^{(2)}, Y_2 \rangle,$$

(14)
$$\langle E_i, F_j \rangle = \delta_{ij}, \langle K, L \rangle = \chi(\lambda, \mu), \langle E_i, L \rangle = \langle K, F_i \rangle = 0$$

for $X, X_1, X_2 \in \widetilde{U}^{+,K}(\chi)$ with $\Delta(X) = \sum_h X_h^{(1)} \quad X_h^{(2)}$, and $Y, Y_1, Y_2 \in \widetilde{U}^{L,-}(\chi)$ with $\Delta(Y) = \sum_g Y_g^{(1)} \quad Y_g^{(2)}$ and for $i, j \in I$ and $\lambda, \mu \in \mathbb{Z}\Pi$. We see

(15)
$$\langle \widetilde{E}K, \widetilde{F}L \rangle = \langle \widetilde{E}, \widetilde{F} \rangle \langle K, L \rangle$$

for $\widetilde{E} \in \widetilde{U}^+(\chi)$ and $\widetilde{F} \in \widetilde{U}^-(\chi)$. Further, letting $\widetilde{U}^\pm(\chi) = \underset{\in \mathbb{Z}_{\geq 0}}{\in \mathbb{Z}_{\geq 0}} \widetilde{U}^\pm(\chi)_\pm$ be the $\mathbb{Z}_{\geq 0}\Pi$ -grading on $\widetilde{U}^\pm(\chi)$ defined in a way similar to the one on $U^\pm(\chi)$, we have $\langle \widetilde{U}^+(\chi), \widetilde{U}^-(\chi)_- \rangle = \{0\}$ if $\lambda \neq \mu$. Let

$$(16) \qquad \widetilde{J}^{+}(\chi) = \{ \widetilde{E} \in \widetilde{U}^{+}(\chi) | \langle \widetilde{E}, \widetilde{U}^{-}(\chi) \rangle = \{0\} \},$$

(17)
$$\widetilde{J}^{-}(\chi) = \{ \widetilde{F} \in \widetilde{U}^{-}(\chi) | \langle \widetilde{U}^{+}(\chi), \widetilde{F} \rangle = \{0\} \},$$

(18)
$$\widetilde{J}(\chi) = \operatorname{Span}_{\mathbf{k}}(\widetilde{J}^{+}(\chi)\widetilde{U}^{0}(\chi)\widetilde{U}^{-}(\chi) + \widetilde{U}^{+}(\chi)\widetilde{U}^{0}(\chi)\widetilde{J}^{-}(\chi)).$$

Then $\widetilde{J}(\chi)$ is the kernel of the Hopf algebra epimorphism from $\widetilde{U}(\chi)$ to $U(\chi)$ sending the generators to the ones denoted by the same symbols.

Theorem 1. (Kharchenko [Kha99]) There exist $M \in \mathbb{N} \cup \{\infty\}$ and elements $\widehat{E}_i \in U^+(\chi)$, $(1 \quad i \quad M)$ for some $\beta_i \in \mathbb{Z}_{\geq 0}\Pi \setminus \{0\}$ such that we have the \mathbb{k} -basis of $U^+(\chi)$ formed by the elements

(19)
$$\begin{cases} \widehat{E}_{1}^{m_{1}}\widehat{E}_{2}^{m_{2}} & \widehat{E}_{M}^{m_{M}} & \text{if } M \text{ is finite, that is } M \in \mathbb{N}, \\ \widehat{E}_{1}^{m_{1}}\widehat{E}_{2}^{m_{2}} & \widehat{E}_{M'}^{m_{M'}} & \text{for some } M' \in \mathbb{N} \text{ if } M = \infty \end{cases}$$

with 0 m_i h_i , and $h_i := \max\{n|[n]_{(i,i)}! \neq 0\} \in \mathbb{N} \cup \{+\infty\}$. Let

$$(20) R_+ := \{\beta_i | 1 \quad i \quad M\}.$$

Note that $|R_+|$ M, that is, β_i and β_j may be the same for some $i \neq j$. We say that χ is finite-type if $|R_+| < +\infty$. See [H09] for the classification. Note that if dim $U(\chi) < \infty$, then χ is finite-type. **Theorem 2.** (see [HY08b, Theorems 4.8, 4.9]) Assume that χ is finite-type. Then $|R_+| = M$ as for (20). We write $E_i = \widehat{E}_i$ if $\widehat{E}_i \in U(\chi)_i$. Then after re-choosing E_i (as in (51)), we may assume that $E^{h_{\beta}^{\chi}+1} = 0$ if $h < +\infty$ and that $E_i E_j = \chi(\beta_i, \beta_j) E_j E_i \in \langle E_r | i < r < j \rangle$ for any i < j, so

(21)
$$\{E_{f(1)}^{m_{f(1)}} E_{f(2)}^{m_{f(2)}} - E_{f(M)}^{m_{f(M)}} | 0 - m_i - h_i \}$$

is a k-basis of $U(\chi)$ for any bijective map $f: \{1, 2, ..., M\} \rightarrow \{1, 2, ..., M\}$.

Convention. Let $\chi_1, \chi_2 : \mathbb{Z}\Pi \times \mathbb{Z}\Pi \to \mathbb{k}^{\times}$ be two bi-characters. Let $f_1, f_2 : U(\chi_1) \to U(\chi_2)$ be two \mathbb{k} -algebra homomorphisms. Then we write

$$(22) f_1 = f_2$$

if

(23)
$$f_1(K L) = f_2(K L), f_1(E_i) \quad f_2(E_i), f_1(F_i) \quad f_2(F_i)$$
 for all $\lambda, \mu \in \mathbb{Z}\Pi$ and $i \in I$.

3 Heckenberger's Lusztig-type isomorphisms

Here we explain a generalization [H07] of Lusztig-type isomorphisms [L]. Assume χ to be any bi-character. Let

$$[X,Y]^+ = XY \qquad \chi(\lambda,\mu)YX,$$

(25)
$$[X, Y]^{-} = X Y \qquad \chi(\lambda, \mu)^{-1} Y X ,$$

(26)
$$[X, Y]^{\vee,+} = X Y \qquad \chi(\mu, \lambda) Y X ,$$

(27)
$$[\![X , Y]\!]^{\vee,-} = X Y \qquad \chi(\mu, \lambda)^{-1} Y X$$

for $X \in U(\chi)$ and $Y \in U(\chi)$ with $\lambda, \mu \in \mathbb{Z}\Pi$. Let $i, j \in I$ be such that $i \neq j$. Let

$$E_{j}^{+} = E_{j}, \quad E_{j}^{-} = E_{j},$$

$$E_{j+m}^{+} = [E_{i}, E_{j+(m-1)}^{+}], \quad E_{j+m}^{-} = [E_{i}, E_{j+(m-1)}^{-}]^{\vee,-},$$

$$F_{j+m}^{+} = [F_{i}, F_{j+(m-1)}^{+}]^{\vee,+}, \quad F_{j+m}^{-} = [F_{i}, F_{j+(m-1)}^{-}]^{-}$$

for $m \in \mathbb{N}$. For $m \in \mathbb{Z}_{>0}$, we have

$$(29) \quad [m]_{(i,i)}! \prod_{s=1}^{m} (1 \quad \chi(\alpha_{i}, \alpha_{i})^{s-1} \chi(\alpha_{i}, \alpha_{j}) \chi(\alpha_{j}, \alpha_{i})) \neq 0$$

$$\iff E^{+}_{j+m} \neq 0 \iff E^{-}_{j+m} \neq 0 \iff F^{+}_{j+m} \neq 0 \iff F^{-}_{j+m} \neq 0$$

$$\iff \alpha_{j} + m\alpha_{i} \in R_{+}.$$

We also have

$$\begin{split} &[E^{+}_{j+m}, F^{+}_{j+m}] = (\chi(\alpha_{i}, \alpha_{i})^{m-1} \chi(\alpha_{i}, \alpha_{j}) \chi(\alpha_{j}, \alpha_{i}))^{m} [E^{-}_{j+m}, F^{-}_{j+m}] \\ &= (1)^{m} ([m]_{(i, i)}! \prod_{s=1}^{m} (1 \chi(\alpha_{i}, \alpha_{i})^{s-1} \chi(\alpha_{i}, \alpha_{j}) \chi(\alpha_{j}, \alpha_{i})) (K_{j+m}, L_{j+m}). \end{split}$$

Theorem 3. ([H07]) Let $i \in I$. Assume that for all $j \in I \setminus \{i\}$, there exist $m_{ij} \in \mathbb{Z}_{\geq 0}$ such that $E^+_{j+m^{\chi}_{ij}} \neq 0$ and $E^+_{j+(m^{\chi}_{ij}+1)} = 0$.

(1) There exist a bi-character $r_i(\chi): \mathbb{Z}\Pi \times \mathbb{Z}\Pi \to \mathbb{k}^{\times}$ and \mathbb{k} -algebra isomorphisms

(31)
$$T_i = T_i^+ : U(r_i(\chi)) \to U(\chi), \quad T_i^- : U(r_i(\chi)) \to U(\chi)$$

such that

(32)
$$T_i^{\pm}(K_i) = K_{-i}, T_i^{\pm}(L_i) = L_{-i},$$

(33)
$$T_i^{\pm}(K_j) = K_{j+m_{ij-i}^{\chi}}, T_i^{\pm}(L_j) = L_{j+m_{ij-i}^{\chi}},$$

(34)
$$T_{i}(E_{i}) = F_{i}L_{-i}, T_{i}(F_{i}) = K_{-i}E_{i},$$

(35)
$$T_{i}^{-}(E_{i}) = K_{-i}F_{i}, T_{i}^{-}(F_{i}) = E_{i}L_{-i},$$

(36)
$$T_i^{\pm}(E_j) = E_{j+m_{ij}}^{\pm}, T_i^{\pm}(F_j) = F_{j+m_{ij}}^{\pm},$$

where $j \in I \setminus \{i\}$.

- (2) $r_i(r_i(\chi))$ exists in the same way as above with $r_i(\chi)$ in place of χ . Further $r_i(r_i(\chi)) = \chi$, $m_{ij}^{r_i()} = m_{ij}$ for all $j \in I \setminus \{i\}$.
- (3) Let $T_i: U(r_i(\chi)) \to U(\chi)$ be as in (31). Let $T_i^-: U(\chi) \to U(r_i(\chi))$ be the one as in (31) defined with $r_i(\chi)$ in place of χ . Then $T_i^-T_i = \mathrm{id}_{U(r_i(\cdot))}$ and $T_iT_i^- = \mathrm{id}_{U(\cdot)}$.
- (4) Define the \mathbb{Z} -module isomorphism $\sigma_i^{r_i(\)}=\sigma_i:\mathbb{Z}\Pi\to\mathbb{Z}\Pi$ by $T_i^\pm(U(r_i(\chi))\)=U(\chi)_{i(\)}$ for all $\lambda\in\mathbb{Z}\Pi.$ Then

(37)
$$\sigma_i^{r_i(\)} = \sigma_i , \quad \sigma_i \, \sigma_i^{r_i(\)} = \mathrm{id}_{\mathbb{Z}\Pi}$$

and

(38)
$$\sigma_i^{r_i()}(R_+^{r_i()}\setminus\{\alpha_i\}) = R_+\setminus\{\alpha_i\}, \quad \sigma_i^{r_i()}(\alpha_i) = \alpha_i.$$

Theorem 4. ([H07]) Assume χ to be finite-type. Let $i, j \in I$ to be such that $i \neq j$. Let $M = |R_+ \cap (\mathbb{Z}_{\geq 0}\alpha_i \quad \mathbb{Z}_{\geq 0}\alpha_j)|$. For $n \in \{1, 2, \ldots, M\}$, define two bicharacters χ_n, χ'_n , two \mathbb{Z} -module automorphism $\bar{\sigma}_n, \bar{\sigma}'_n$ of $\mathbb{Z}\Pi$ and two \mathbb{k} -algebra

isomorphisms $\bar{T}_n: U(\chi_n) \to U(\chi)$, $\bar{T}'_n: U(\chi'_n) \to U(\chi)$ in the way that $\chi_1 = \chi'_1 = \chi$, $\bar{\sigma}_1 = \bar{\sigma}'_1 = \mathrm{id}_{\mathbb{Z}\Pi}$, $\bar{T}_1 = \bar{T}'_1 = \mathrm{id}_{U(\cdot)}$, and

(39)
$$\chi_{2n} = r_i(\chi_{2n-1}), \ \chi_{2n+1} = r_j(\chi_{2n}), \ \chi'_{2n} = r_j(\chi'_{2n-1}), \ \chi'_{2n+1} = r_i(\chi'_{2n}),$$

$$(40) \quad \bar{\sigma}_{2n} = \bar{\sigma}_{2n-1}\sigma_i^{2n}, \ \bar{\sigma}_{2n+1} = \bar{\sigma}_{2n}\sigma_j^{2n+1}, \ \bar{\sigma}'_{2n} = \bar{\sigma}'_{2n-1}\sigma_j^{2n}, \ \bar{\sigma}'_{2n+1} = \bar{\sigma}'_{2n}\sigma_i^{2n+1},$$

$$(41) \quad \bar{T}_{2n} = \bar{T}_{2n-1}T_i, \ \bar{T}_{2n+1} = \bar{T}_{2n}T_j, \ \bar{T}'_{2n} = \bar{T}'_{2n-1}T_j, \ \bar{T}'_{2n+1} = \bar{T}'_{2n}T_i.$$

Then we have

$$\chi_M = \chi_M',$$

$$\bar{\sigma}_M = \bar{\sigma}_M'$$

and

$$\bar{T}_M = \bar{T}_M'.$$

4 Longest elements of Weyl groupoids

In this section we always assume χ to be finite-type, and refer to [CH08] for categorical definitions of Weyl groupoids.

Convention. For a category C, we denote the product of the morphisms by . That is, for two morphism $f_1 \in \text{Mor}(a_1, b_1)$ and $f_2 \in \text{Mor}(a_2, b_2)$ with a_1, b_1, a_2 and $b_2 \in \text{Ob}(C)$, we denote their product by

$$(45) f_1 f_2 if b_2 = a_1.$$

Set

(46)
$$C(\chi) = \{\chi\} \cup \bigcup_{n=1}^{\infty} \{r_{i_1} \quad r_{i_n}(\chi) | i_1, \dots, i_n \in I\}.$$

Let $W=W(\chi)$ be the category with $\mathrm{Ob}(W)=\mathcal{C}(\chi)$ and generated by the maps $\sigma_i^{'}\in\mathrm{Mor}_W(\chi',r_i(\chi'))$ with $\chi'\in\mathrm{Ob}(W)$ and $i\in I$. Let $\mathcal{W}=\mathcal{W}(\chi)$ be the (abstract) category with $\mathrm{Ob}(\mathcal{W})=\mathcal{C}(\chi)$ defined by generators $s_i^{'}\in\mathrm{Mor}_{\mathcal{W}}(\chi',r_i(\chi'))$ with $\chi'\in\mathrm{Ob}(W)$ and $i\in I$ and relations

$$(47) s_i' s_i^{r_i(')} = 1_{r_i(')},$$

(48)
$$s_{i}^{'} s_{j}^{r_{i}(')} s_{i}^{r_{j}r_{i}(')} = s_{j}^{'} s_{i}^{r_{j}(')} s_{j}^{r_{i}r_{j}(')}$$
(both sides are composed of $|R_{+} \cap (\mathbb{Z}\alpha_{i} \mathbb{Z}\alpha_{j})|$ -factors).

We call \mathcal{W} the Weyl groupoid. Define the morphism $\phi: \mathcal{W} \to W$ by $\phi(s_i) = \sigma_i$. Then ϕ is bijective, see [HY08a, Theorem 1]. Let $\ell(1) = 0$ for $\chi' \in \mathcal{C}(\chi)$. Let $\ell(s_i) = 1$. For $w \in \operatorname{Mor}_{\mathcal{W}}(\chi_1, \chi_2)$, let $\ell(w)$ be the least number $\ell(w') + \ell(w'')$ with w = w' - w'' for some $\chi_3 \in \mathcal{C}(\chi)$, and some $w' \in \operatorname{Mor}_{\mathcal{W}}(\chi_3, \chi_2)$, some $w' \in \operatorname{Mor}_{\mathcal{W}}(\chi_1, \chi_3)$. By [HY08a, Lemma 8(iii)], we have

(49)
$$\ell(w) = |\{\alpha \in R_{+}^{1} | \phi(w)(\alpha) \in R_{+}^{2} \}|.$$

Moreover for each $\chi_1 \in \mathcal{C}(\chi)$, there exists unique $\chi_2 \in \mathcal{C}(\chi)$ and ${}^1w_0 \in \operatorname{Mor}_{\mathcal{W}}(\chi_2, \chi_1)$ such that $\phi({}^1w_0)(R_+^2) = R_+^1$. We call 1w_0 the longest element since $\ell({}^1w_0)$ $\ell(w')$ for any $w' \in \operatorname{Mor}_{\mathcal{W}}(\chi_3, \chi_4)$ for any $\chi_3, \chi_4 \in \mathcal{C}(\chi)$.

Let $\widetilde{\mathcal{W}} = \widetilde{\mathcal{W}}(\chi)$ be the (abstract) category with $\mathrm{Ob}(\widetilde{\mathcal{W}}) = \mathcal{C}(\chi)$ defined by generators $\widetilde{s}_i \in \mathrm{Mor}_{\widetilde{\mathcal{W}}}(\chi', r_i(\chi'))$ with $\chi' \in \mathrm{Ob}(W)$ and $i \in I$ and relations

(50)
$$\widetilde{s}_{i}^{'} \widetilde{s}_{j}^{r_{i}(')} \widetilde{s}_{i}^{r_{j}r_{i}(')} = \widetilde{s}_{j}^{'} \widetilde{s}_{i}^{r_{j}(')} \widetilde{s}_{j}^{r_{i}r_{j}(')} \\
\text{(both sides are composed of } |R_{+} \cap (\mathbb{Z}\alpha_{i} \mathbb{Z}\alpha_{j})| \text{-factors)}.$$

Let $\widetilde{1}' \in \operatorname{Mor}_{\widetilde{\mathcal{W}}}(\chi', \chi')$ denote the identity morphism. Define the morphism $\widetilde{\phi}: \widetilde{\mathcal{W}} \to \mathcal{W}$ by $\widetilde{\phi}(\widetilde{s_i}') = {s_i}'$.

Let $\widetilde{\ell}(\widetilde{1}') = 0$ for $\chi' \in \mathcal{C}(\chi)$. Let $\widetilde{\ell}(\widetilde{s_i}') = 1$. For $\widetilde{w} \in \operatorname{Mor}_{\widetilde{\mathcal{W}}}(\chi_1, \chi_2)$, let $\widetilde{\ell}(\widetilde{w})$ be the least number $\widetilde{\ell}(\widetilde{w}') + \widetilde{\ell}(\widetilde{w}'')$ with $\widetilde{w} = \widetilde{w}' \ \widetilde{w}''$ for some $\chi_3 \in \mathcal{C}(\chi)$, and some $\widetilde{w}' \in \operatorname{Mor}_{\widetilde{\mathcal{W}}}(\chi_3, \chi_2)$, some $\widetilde{w}'' \in \operatorname{Mor}_{\widetilde{\mathcal{W}}}(\chi_1, \chi_3)$.

Theorem 5. ([HY08a, Theorem 5, Corollary 6]) Let $\chi_1, \chi_2 \in \mathcal{C}(\chi)$. For $w \in \operatorname{Mor}_{\mathcal{W}}(\chi_1, \chi_2)$ and $\widetilde{w}_1, \widetilde{w}_2 \in \widetilde{w} \in \operatorname{Mor}_{\widetilde{\mathcal{W}}}(\chi_1, \chi_2)$ with $\widetilde{\phi}(\widetilde{w}_1) = \widetilde{\phi}(\widetilde{w}_2) = w$ and $\ell(w) = \widetilde{\ell}(\widetilde{w}_1) = \widetilde{\ell}(\widetilde{w}_2)$, we have $\widetilde{w}_1 = \widetilde{w}_2$. Further, if $\widetilde{w} \in \operatorname{Mor}_{\widetilde{\mathcal{W}}}(\chi_1, \chi_2)$ is such that $\widetilde{\ell}(\widetilde{w}) > \ell(\widetilde{\phi}(\widetilde{w}))$, then $\widetilde{w} = \widetilde{w}' \ \widetilde{s}_i^{r_i(3)} \ \widetilde{s}_i^3 \ \widetilde{w}''$ for some $i \in I$, $\widetilde{w}' \in \operatorname{Mor}_{\widetilde{\mathcal{W}}}(\chi_1, \chi_3)$ and $\widetilde{w}'' \in \operatorname{Mor}_{\widetilde{\mathcal{W}}}(\chi_3, \chi_2)$ with $\widetilde{\ell}(\widetilde{w}') + \widetilde{\ell}(\widetilde{w}'') = \widetilde{\ell}(\widetilde{w})$ 2.

Assume w_0 to be $s_{j_1}^{-1}$ $s_{j_2}^{-2}$ $s_{j_M}^{-M}$, where $M=|R_+|$, $r_1(\chi_1)=\chi$, and $r_j(\chi_j)=\chi_{j-1}$. Let $\bar{T}_1=\mathrm{id}_{U(\)}$. For 2 n M, define the k-algebra isomorphism $\bar{T}_n:U(\chi_{n-1})\to U(\chi)$ by $\bar{T}_n=\bar{T}_{n-1}T_{j_{n-1}}$. Then as for E, of Theorem 2, we may put

$$(51) E_{i} = \bar{T}_{i}(E_{j_{i}})$$

for $1 \quad j \quad M$.

5 Shapovalov determinants

Let χ be a bi-character. We define the *Shapovalov matrix* Sh in the natural way for each $\alpha \in \mathbb{Z}_{\geq 0}\Pi$. More precisely, Sh is a dim $U^+(\chi) \times \dim U^+(\chi)$ -matrix whose components are elements of $U^0(\chi)$. Let $\rho: \mathbb{Z}\Pi \to \mathbb{k}^{\times}$ be the (abelian) group homomorphism defined by ρ $(\alpha_i) = \chi(\alpha_i, \alpha_i)$. We use the *Kostant partition function* P $(\alpha, \beta, t) := \dim E^t U^+(\chi)_{-t}$, where we define P $(\alpha, \beta, t) = 0$ in case α $t\beta \notin \mathbb{Z}_{\geq 0}\Pi$.

Theorem 6. ([HY08b, Theorem 7.3]) Let χ be finite-type. Assume that $\chi(\beta, \beta) \neq 1$ for all $\beta \in R_+$. Then for $\alpha \in \mathbb{Z}_{\geq 0}\Pi$, we have

$$\det \operatorname{Sh} = c \prod_{\boldsymbol{\epsilon} \in R_{\perp}^{\chi}} \prod_{t=1}^{h_{\beta}^{\chi}} (\rho (\beta) K \chi(\beta, \beta)^{t} L)^{P^{\chi}(\cdot, \cdot, t)}$$

for some $c \in \mathbb{k}^{\times}$.

As stated below, for $U(\chi)$ which is the (ordinary or small) quantum group of a finite dimensional Lie algebra \mathfrak{g} , we have the generalization of (1) the one [dDK90] for $q \in \mathbb{C}^{\times}$ which is not a root of unity, and (2) the one [KL97] for $q \in \mathbb{C}^{\times}$ which is a primitive p-th root of unity for some prime number p.

Corollary 7. Let $\mathfrak g$ be a finite dimensional simple Lie algebra of type A-G or a finite dimensional simple Lie superalgebra of type A-G. Then the Shapovalov determinant of the quantum group $U_q(\mathfrak g)$ when q is not root of unity or the small quantum group $u_q(\mathfrak g)$ when q is a primitive r-th root of unity for some positive integer r 2 is given by

$$c \prod_{\epsilon R_{+}} \prod_{t=1}^{h_{\beta}^{\chi}} (q^{2(\cdot,\cdot)}K - q^{(\cdot,\cdot)t}K^{-1})^{P^{\chi}(\cdot,\cdot,t)}$$

for some $c \in \mathbb{C}^{\times}$.

We even recover the original ones due to Shapovalov [Sha72], and Kac [Kac77] (super cases):

Corollary 8. Let $\mathfrak g$ be as above. Then the Shapovalov determinant of the enveloping algebra $U(\mathfrak g)$ is given by

$$c \prod_{\epsilon R_{+}} \prod_{t=1}^{\infty} (H + (\rho, \beta) - \frac{(\beta, \beta)t}{2})^{P^{\chi}(\cdot, \cdot, t)}$$

for some $c \in \mathbb{C}^{\times}$.

Acknowledgment: The author thanks István Heckenberger for improving the manuscript and giving valuable comments.

References

- [AS98] N. Andruskiewitsch and H.-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order p3, J. Algebra 209 (1998), 658-691.
- [AS02] _____, Pointed Hopf algebras, New Directions in Hopf Algebras, MSRI Publications, vol. 43, Cambridge University Press, 2002.
- [CH08] M. Cuntz, I. Heckenberger, Weyl groupoids and at most three objects J. Pure Appl. Algebra 213 (2009) 1112-1128
- [Hec06] I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164 (2006), 175-188.
- [H09] _____, Classification of arithmetic root systems, Adv. Math. 220 (2009) 59–124.
- [H07] _____, Lusztig isomorphisms for Drinfel'd doubles of Nichols algebras of diagonal type, Preprint arXiv:0710.4521v1 (2007)
- [HY08a] I. Heckenberger, H. Yamane, A generalization of Coxeter groups, root systems, and Matsumoto's theorem, Math. Z. 259 (2008) 255–276.
- [HY08b] _____, Drinfel'd doubles and Shapovalov determinants, preprint arXiv:0810.1621 (2008)
- [Kac77] V.G. Kac, Representation of classical Lie superalgebras, Lecture Notes in Physics, vol. 676, pp. 597-626, Springer-Verlag, 1977.
- [Kha99] V. Kharchenko, A quantum analogue of the Poincaré-Birkohoff-Witt theorem, Algebra and Logic 38 (1999), 259-276
- [dDK90] C. de Concini, V.G. Kac, Representations of quantum groups at roots of 1, Progress in Math. vol. 92, Birkhäuser, 1990, pp. 471-506
- [KL97] S. Kummer, G. Letzter, Shapovalov determinant for restricted and quantized restricted enveloping algebras, Pacific. J. Math. 179 (1997) no. 1, 123-161
- [L] G. Lusztig, Introduction to quantum groups, Birkhäuser, Boston, MA 1993

[Sha72] N.N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funct. Anal. Appl 6 (1972), 307-312.

HIROYUKI YAMANE, DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRAD-UATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA 560-0043, JAPAN

E-mail address: yamane@ist.osaka-u.ac.jp