
2008年度冬の LA シンポジウム [5]

A note on characterizations of context-free
languages using insertion and locality

小野寺 薫 (Kaoru Onodera)

東京電機大学理工学部サイエンス学系
Division of Sciences, School of Science and Engineering, Tokyo Denki University,

Ishizaka, Hatoyama-machi, Hiki-gun, Saitama 350-0394, JAPAN,
kaoru@j.dendai.ac.jp

Abstract. In this paper, we obtain some characterizations and representation
theorems of context-free languages in Chomsky hierarchy by using insertion
systems, strictly locally testable languages, and morphisms. For instance, each
context-free language $L$ can be represented in the form $L=h(L(\gamma)\cap R)$ , where
$\gamma$ is an insertion system of weight $($3, $0),$ $R$ is a strictly 3-testable language,
and $h$ is a projection.

1 Introduction

DNA computing theory involves the use of insertion and deletion operations.
Insertion systems in which we can use only insertion operations are somewhat
intermediate between Chomsky context-sensitive grammars and Marcus con-
textual grammars. From the definition of insertion operations, if there is no
context-checking to insertion operation, one would imagine that by using only
insertion operations, we generate only context-hee languages.

On the other hand, the class of strictly locally testable languages is known
as a proper subclass of regular language classes [1]. The equivalence relation
between a certain type of splicing languages and strictly locally testable lan-
guages is known [2].

The well-known Chomsky-Sch\"utzenberger representation theorem implies
that any context-free language is a homomorphic image of a Dyck language
and a regular language. An analogous representation was considered in [3],
which shows that any context-free language can be expressed in the form
$h(L(\gamma)\cap R)$ , where $\gamma$ is an insertion system, $h$ is a projection, and $R$ is a star
language.

In this paper, we focus on characterizing context-free languages by using
insertion systems together with strictly locally testable languages and mor-
phisms.

In insertion systems, a pair of the maximum length of inserted strings and
the one of context-checking strings, called weight is an important parameter
for generative powers. As for strictly locally testable languages, the length of
local testability-checking is considered.
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We prove that each context-free language can be represented in the form
$h(L(\gamma)\cap R)$ , where $\gamma$ can be simplified to be of weight $($ 2, $0),$ $h$ is a morphism,
and $R$ is a strictly 3-testable language.

2 Preliminaries

In this section, we introduce necessary notation and basic definitions needed
in this paper. We assume the reader to be familiar with the rudiments on basic
notions in formal language theory (see, e.g., [4, 5]).

2.1 Basic Definitions

For an alphabet $V,$ $V^{*}$ is the set of all strings of symbols from $V$ which
includes the empty string $\lambda$ . For a string $x\in V^{*},$ $|x|$ denotes the length of $x$ .
For $0\leq k\leq|x|$ , let Prek $(x)$ and $Suf_{k}(x)$ be the preflx and the suffix of $x$ of
length $k$ , respectively. For $0\leq k\leq|x|$ , let $Int_{k}(x)$ be the set of proper interior
substrings of $x$ of length $k$ , while if $|x|=k$ then $Int_{k}(x)=\emptyset$ .

2.2 Normal Forms of Grammars

A phrase structure grammar is a quadruple $G=(N, T, P, S)$ , where $N$ is a set
of nonterminal symbols, $T$ is a set of terminal symbols, $P$ is a set of production
rules, and $S$ in $N$ is the initial symbol. A rule in $P$ is of the form $r$ : $\alphaarrow\beta$ ,
where $\alpha\in(N\cup T)^{*}N(N\cup T)^{*},$ $\beta\in(N\cup T)^{*}$ , and $r$ is a label from a given
set Lab$(P)$ such that there are no production rules with the same label. For
any $x$ and $y$ in $(N\cup T)^{*}$ , if $x=u\alpha v,$ $y=u\beta v$ , and $r:\alphaarrow\beta\in P$ , then we
write $x\Rightarrow^{r}cy$ . We say that $x$ directly derives $y$ with respect to $G$ . If there is
no confusion, we write $x\Rightarrow y$ . The reflexive and transitive closure of $\Rightarrow$ is
denoted by $\Rightarrow^{*}$ .

We define a language $L(G)$ generated by a grammar $G$ as follows:

$L(G)=\{w\in T^{*}|S\Rightarrow_{G}^{*}w\}$ .

It is well known that the class of languages generated by the phrase struc-
ture grammars is equal to the class of recursively enumerable languages $RE$

[5].
A grammar $G=(N,T, P, S)$ is context-free if $P$ is a finite set of context-

free rules of the form $Aarrow\alpha$ , where $A\in N$ and $\alpha\in(N\cup T)^{*}$ . A language
$L$ is a context-free language if there is a context-free grammar $G$ such that
$L=L(G)$ . Let $CF$ be the class of context-free languages.

A context-free grammar $G=(N, T, P, S)$ is in Chomsky normal form if
each production rule in $P$ is of one of the following forms:

1. $Xarrow YZ$ , where $X$ , $Y,$ $Z\in N$ .
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2. $Xarrow a$ , where $X\in N,$ $a\in T$ .
3. $Sarrow\lambda$ (only if $S$ does not appear in right-hand sides of production rules).

It is well known that, for each context-free language $L$ , there is a context-free
grammar in Chomsky normal form generating $L[5]$ .

A grammar $G=(N,T, P, S)$ is regular if $P$ is a finite set of rules of the
form $Xarrow\alpha$ , where $X\in N$ and $\alpha\in TN\cup T\cup\{\lambda\}$ . A language $L$ is a regular
language if there is a regular grammar $G$ such that $L=L(G)$ . Let $REG$ be
the class of regular languages.

We are going to define a strictly locally testable language, which is one of
the main objectives of the present work.

Let $k$ be a positive integer. A language $L$ over $T$ is strictly k-testable if
there is a triplet $S_{k}=(A, B, C)$ with $A,$ $B,$ $C\subseteq T^{k}$ such that, for any $w$ with
$|w|\geq k,$ $w$ is in $L$ iff $Pre_{k}(w)\in A,$ $Suf_{k}(w)\in B,$ $Int_{k}(w)\subseteq C$ .

Note that if $L$ is strictly k-testable, then $L$ is strictly k’-testable for all
$k’>k$ . Further, the definition of strictly k-testable says nothing about the
strings of “length $k-1$ or less”.

A language $L$ is strictly locally testable iff there exists an integer $k\geq 1$

such that $L$ is strictly k-testable. Let $LOC(k)$ be the class of strictly k-testable
languages. Then one can prove the following theorem.

Theorem 1. [6] $LOC(1)\subset LOC(2)\subset\cdots\subset LOC(k)\subset\cdots\subset REG$ .

We are now going to define an insertion system. An insertion system is a
triple $\gamma=(T, P, A_{X})$ , where $T$ is an alphabet, $P$ is a finite set of insertion
rules of the form $(u, x, v)$ with $u,$ $x,$ $v\in T^{*}$ , and $A_{X}$ is a finite set of strings
over $T$ called axioms.

We write $\alpha\Rightarrow^{r}\gamma\beta$ if $\alpha=\alpha_{1}uv\alpha_{2}$ and $\beta=\alpha_{1}uxv\alpha_{2}$ for some insertion rule
$r$ : $(u, x, v)\in P$ with $\alpha_{1},$ $\alpha_{2}\in T^{*}$ . If there is no confusion, we write $\alpha\Rightarrow\beta$ .
The reflexive and transitive closure of $\Rightarrow$ is defined by $\Rightarrow^{*}$ .

A language generated by $\gamma$ is defined by

$L(\gamma)=\{w\in T^{*}|s\Rightarrow_{\gamma}^{*}w$ , for some $s\in A_{X}\}$ .

An insertion system $\gamma=(T, P, A_{X})$ is said to be of weight $(m, n)$ if

$m= \max\{|x||(u, x, v)\in P\}$ ,
$n= \max\{|u||(u, x, v)\in P or (v, x, u)\in P\}$ .

For $m,$ $n\geq 0,$ $INS_{m}^{n}$ denotes the class of all languages generated by inser-
tion systems of weight $(m’, n’)$ with $m‘\leq m$ and $n‘\leq n$ . When the parameter
is not bounded, we replace $m$ or $n$ with $*$ .

For insertion systems, there exist the following results.

25



Theorem 2. [4]

1. For any $0\geq m\geq m’$ and $0\geq n\geq n_{f}’INS_{m}^{n}\subseteq INS_{m’}^{n’}$ .
2. $FI$ハ$T\subset INS^{}\subset INS_{*}^{1}\cdots\subset INS_{*}^{*}\subset CS$ .
3. $REG\subset INS_{*}^{*}$ .
4. $INS_{*}^{1}\subset CF$ .
5. $CF$ is incompara$blew$髭ん all $INS_{*}^{n}(n\geq 2)$ , and $INS_{*}^{*}$ .
6. $INS_{2}^{2}$ contains non-semilinear languages.

A mapping $h$ : $V^{*}arrow T^{*}$ is called morphism if $h(\lambda)=\lambda$ and $h(xy)=$
$h(x)h(y)$ for any $x,$ $y\in V^{*}$ . For languages $L_{1},$ $L_{2}$ , and morphism $h$ , we use the
following notation: $h(L_{1}\cap L_{2})=\{h(w)|w\in L_{1}\cap L_{2}\}$ . For language classes
$\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ , we introduce the following class of languages:

$H(\mathcal{L}_{1}\cap \mathcal{L}_{2})=$ { $h(L_{1}\cap L_{2})|h$ is a morphism, $L_{i}\in \mathcal{L}_{i}(i=1,2)$ }.

3 Characterizations of Context-Free Languages

We will show how context-free languages can be characterized by insertion
systems and strictly locally testable languages.

3.1 Characterizations developed from Ptiun’s result

In some respect the proof technique for $CF=H(INS_{3}^{0}\cap R_{S})$ , where $R_{S}$ is
the class of star languages [3], might be helpful to follow the proof of this
subsection.

Lemma 1. $CF\subseteq H(INS_{3}^{0}\cap LOC(4))$ .

Proof. Consider a context-free grammar $G=(N, T, P, S)$ in Chomsky normal
form. We construct an insertion system $\gamma=(\Sigma, P_{\gamma}, \{S\})$ , where

$\Sigma=V\cup\overline{V}\cup T$,
$V=N\cup Lab(P)$ ,
$P_{\gamma}=\{(\lambda, YZr, \lambda), (\lambda,\overline{X}\overline{r}, \lambda)|r:Xarrow YZ\in P\}\cup$

$\{(\lambda, ar\cdot, \lambda), (\lambda,\overline{X}\overline{r}_{1}\lambda)|r:Xarrow a\in P\}$ 俺

$\{(\lambda, r, \lambda), (\lambda,\overline{S}\overline{r}, \lambda)|r:Sarrow\lambda\in P\}$ .

For the rule $r:Xarrow\alpha$ in $P$ , we say that the two insertion rules $(\lambda, \alpha r, \lambda)$ and
$(\lambda,\overline{X}\overline{r}_{\dagger}\lambda)$ in $P_{\gamma}$ are r-pair.

We define the projection $h;\Sigma^{*}arrow T^{*}$ by

$h(a)=a$ 負$)$r all $a\in T$ ,
$h(a)=\lambda$ otherwise.

26



Consider $R=A\Sigma^{*}\cap\Sigma^{*}B-\Sigma^{+}C’\Sigma^{+}$ with $C’=\Sigma^{4}-C$ , where

$A=\{arX\overline{X}|r:Xarrow a\in P\}\cup\{rS\overline{S}\overline{r}|r:Sarrow\lambda\in P\}$ ,
$B=\{rS\overline{S}\overline{r}|r:Sarrow\alpha\in P, \alpha\in(NUT)^{*}\}$ ,
$C=\{rX\overline{X}\overline{r},$ $X\overline{X}\overline{r}a,$ $X\overline{X}\overline{r}r_{1},\overline{X}\overline{r}ar_{1},\overline{X}\vec{r}r_{1}Y,$ $r_{1}^{-}arX,$ $r_{1}^{-}rX\overline{X},$ $arX\overline{X}|$

$r$ : $Xarrow\alpha\in P,$ $r_{1}$ : $Yarrow\alpha_{1}\in P,$ $a\in T,$ $\alpha,$ $\alpha_{1}\in(N\cup T)^{*}\}$ .

Then $R$ is a strictly 4-testable language prescribed by $S_{4}=(A, B, C)$ . The
language $R$ can be characterized by using

$\Omega=\{rX\overline{X}\vec{r}|r:Xarrow\alpha\in P, \alpha\in(N\cup T)^{*}\}$

such that $R\subset(\Omega\cup T\Omega)^{*}(B\cup TB)$ . A nonterminal symbol $X$ in $rX\overline{X}\overline{r}\in\Omega$ is
said to be $\Omegaarrow blocked$ . A symbol in $N\cup T$ which is not $\Omega$-blocked is said to be
unblocked. Intuitively, an $\Omega$-blocked nonterminal symbol $X$ in $rX\overline{X}\overline{r}$ means
that $X$ has been used for the rule $r$ .

Further, based on $\gamma$ and $R$ , we define the followings: for each $X\in N$ , let

$\gamma_{X}=(\Sigma, P_{\gamma}, \{X\})$

be an insertion grammar, and let

$R_{X}=A\Sigma^{*}\cap\Sigma^{*}B_{X}-\Sigma^{+}C’\Sigma^{*}$

be a strictly 4-testable language, where $B_{X}=\{rX\overline{X}\overline{r}|r$ : $Xarrow\alpha\in P,$ $\alpha\in$

$(N\cup T)^{*}\}$ . There is a slight note on the form of $\Sigma^{+}C’\Sigma^{*}$ in $R_{X}$ . Then $R_{X}$

can be characterized by $R_{X}\subset(\Omega\cup T\Omega)^{*}$ . For the case $X=S,$ $\gamma_{S}=\gamma$ and
$B_{S}=B$ hold.

We can prove that, for any $X$ in $N$ , if there is a derivation $X^{r_{\underline{\underline{1}}}\cdots r_{n_{G}}}a_{1}\cdots a_{l}$

with $a_{i}\in T(1\leq i\leq l)$ then there is a string

$-w=a_{1}u_{1}\cdots a_{l}u_{l}$ in $L(\gamma_{X})\cap R_{X}$ ,
where $l\geq 2,$ $u_{i}\in\Omega^{+}(1\leq i\leq l-1)$ , and $u\downarrow\in\Omega^{*}\{r_{1}X\overline{X}\overline{r}_{1}\}$ , or

$-w=a_{1}u_{1}$ in $L(\gamma_{X})\cap R_{X}$ ,
where $u_{1}\in\Omega^{*}\{r_{1}X\overline{X}\overline{r}_{1}\}$

by induction on the length $n$ of derivations in $G$ . We omit the proof here.
Conversely, we will show that, for a string $w$ in $L(\gamma)\cap R,$ $h(w)$ is in $L(G)$ ,

which can be derived from showing that if a string $w$ is in $L(\gamma x)\cap R_{X}$ , then
there is a derivation $X\Rightarrow_{G}^{*}h(w)$ . We omit the proof here. $\square$

It is known that the class of context-free languages includes the class of
insertion languages of weight $($ 3, $0)[7]$ . Together with the fact that the class of
context-free languages is closed under intersection with regular languages and
morphisms, we have $H(INS_{3}^{0}\cap LOC(4))\subseteq CF$, which indicates the following
theorem.
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Theorem 3. $CF=H(INS_{3}^{0}\cap LOC(4))$ .

Furthermore, from Theorem 1, we have the following corollary.

Corollary 1. $CF=H(INS_{3}^{0}\cap LOC(k))(k\geq 4)$ .

3.2 Characterization developed from Chomsky-Sch\"utzenberger
representation

For an alphabet $\Sigma$ , let $\overline{\Sigma}=\{\overline{x}|x\in X\}$ be a barred copy of $\Sigma$ . $\Sigma$ and $\overline{\Sigma}$ are
considered to be disjoint. Then Dyck language $D$ over $\Sigma$ and $\overline{\Sigma}$ is defined to be
the context-free language generated by the grammar $G_{D}=(\{S\}, \Sigma\cup\overline{\Sigma}, P, S)$ ,
where $P=\{Sarrow SS, Sarrow aS\vec{a}, Sarrow\epsilon|a\in\Sigma,\overline{a}\in\overline{\Sigma}\}$. Let Dyck be a class
of Dyck languages.

To show the equality $CF=H(INS_{2}^{0}\cap LOC(3))$ , we first consider the
following theorem.

Theorem 4. $H(Dyck\cap REG)\subseteq H(Dyck\cap LOC(3))$ .

Proof. Let $h_{1}$ : $T^{*}arrow\Gamma^{*}$ be a morphism, $D$ be Dyck language over $\Sigma\cup\overline{\Sigma}$ ,
and $G=(N,T, P, S)$ with $T=\Sigma\cup\overline{\Sigma}$ be a regular grammar. We construct
Dyck language $D’$ , strictly 3-testable languages, and morphism $h_{2}$ as follows.

-Strictly 3-testable languages.
For any $N_{1},$ $N_{2}\in N$ , we construct

$L(N_{1}:N_{2})=A(N_{1})\Sigma^{*}\cap\Sigma^{*}B(N_{2})-\Sigma^{+}C’\Sigma^{+}$

with $C’=\Sigma^{3}-C$ , where

$A(N_{1})=\{N_{1}\overline{N}_{1}a|N_{1}arrow aX\in P, X\in N, a\in T\}$ ,
$B(N_{2})=\{aN_{2}\overline{N}_{2}|Xarrow aN_{2}\in P, X\in N, a\in T\}$ ,

$C=\{\overline{X}aY, aY\overline{Y}, X\overline{X}a|Xarrow aY\in P, X, Y\in N, a\in T\}$ .

By using the new symbols $F$ and $\overline{F}$ , for any $N_{1}\in N$ , we construct

$L(N_{1}:F)=A(N_{1}:F)\Sigma^{*}\cap\Sigma^{*}B(N_{1}:F)-\Sigma^{+}C’(F)\Sigma^{+}$

with $C’=\Sigma^{3}-C$ , where

$A(N_{1} :F)=\{N_{1}\overline{N}_{1}a|N_{1}arrow aX\in P or N_{1}arrow a\in P, a\in T, X\in N\}\cup$

$\{S\overline{S}F|N_{1}=S, Sarrow\lambda\in P\}$ ,
$B(N_{1} : F)=\{aF\overline{F}|Xarrow a\in P, a\in T\}\cup$

$\{SF\overline{F}|N_{1}=S, Sarrow\lambda\in P\}$ ,
$C(F)=\{\overline{X}aY, aY\overline{Y}, X\overline{X}a|Xarrow aY\in P, X, Y\in N, a\in T\}\cup$

$\{X\overline{X}a,\overline{X}aF|Xarrow a\in P, X\in N, a\in T\}$ .

From the above definitions, for any $N_{1},$ $N_{2}\in N$ , the followings hold:

$A(N_{1}),$ $B(N_{2})\subset C$ , $A(N_{1})\subseteq A(N_{1}:F)$ , $C\subset C(F)$ .
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-Dyck language $D$ ‘.
By using the new symbols $F$ and $\overline{F},$ $D’$ is a Dyck language over $\Sigma\cup N\cup\{F\}$

and $\overline{\Sigma}\cup\overline{N}\cup\{\overline{F}\}$ .
-Homomorphism $h_{2}$ .

For $V=T\cup N\cup\overline{N}\cup\{F,\overline{F}\}$ , we define $h_{2}$ : $V”arrow\Gamma^{*}$ by

$h_{2}(a)=h_{1}(a)$ $a\in T$ ,
$h_{2}(a)=\epsilon$ otherwise.

We will prove that $h_{1}(D\cap L(G))=h_{2}(D’\cap L(S:F))$ .
$[h_{1}(D\cap L(G))\subseteq h_{2}(D’\cap L(S : F))]$

To show the inclusion, we first prove that for any $x$ which satisfies that
$x\in D,$ $|x|=2n$ , and $X\Rightarrow_{G}^{*}xY$ with $X,$ $Y\in N$ , there is a string $y\in$

$D’\cap L(X : Y)$ such that $h_{2}(y)=h_{1}(x)$ by induction on $n$ . We omit the proof
here. The inclusion $h_{1}(D\cap L(G))\subseteq h_{2}(D’\cap L(S : F))$ can be proved by
considering the case $X=S$ and $Y=F$ in the previous claim.
$[h_{1}(D\cap L(G))\supseteq h_{2}(D’\cap L(S : F))]$

We will prove the converse inclusion, starting by showing that for a string
$y\in D’\cap L(X : Y)$ with $X,$ $Y\in N$ , there is a string $x$ such that $x\in D$ ,
$X\Rightarrow_{G}^{*}xY$ , and $h_{1}(x)=h_{2}(y)$ . We omit the proof here.

The inclusion $h_{1}(D\cap L(G))\supseteq h_{2}(D’\cap L(S : F))$ can be proved by consid-
ering the case where $X=S$ and $Y=F$ in the above claim. $\square$

Since the class of context-free languages is closed under intersection with
regular languages and morphisms, $H(Dyck\cap LOC(3))\subseteq CF$ holds from the
definition of Dyck language. Further, from Chomsky-Sch\"utzenberger charac-
terization $CF=H(Dyck\cap REG)$ , we have the following theorem.

Theorem 5. $CF=H(Dyck\cap LOC(3))$ .

From the definition of Dyck language, we can easily show that for any Dyck
language $D$ , there is an insertion system $\gamma$ of weight $($ 2, $0)$ which satisfies that
$D=L(\gamma)$ . Therefore, the next result follows from the fact that, for any $i$ with
$i\geq 2,$ $Dyck\subset INS_{i}^{0}\subset CF$ and Theorem 5.

Corollary 2. $CF=H(INS_{i}^{0}\cap LOC(3))(i\geq 2)$ .

Furthermore, bom Theorem 1, we have the following corollary.

Corollary 3. $CF=H(INS_{i}^{0}\cap LOC(k))(i\geq 2, k\geq 3)$ .

4 Conclusion

In this paper, we have contributed to the study of insertion systems with new
characterizations of context$- h\cdot ee$ languages. Specifically, we have shown that
$CF=H(INS_{i}^{0}\cap LOC(k))(i\geq 2, k\geq 3)$ .
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The following characterizations of regular languages in terms of insertion
languages and strictly locally testable languages have shown in [8].

$-H(INS_{1}^{0}\cap LOC(1))\subset REG$ .
$-REG=H(INS_{1}^{0}\cap LOC(k))(k\geq 2)$ .
$-REG$ and $H(INS_{i}^{0}\cap LOC(1))$ are incomparable $(i\geq 2)$ .
$-REG\subset H(INS_{i}^{0}\cap LOC(k))(i\geq 2, k\geq 2)$ .

The followings are open problems:
Can $CF$ be represented as $CF=H(INS_{i}^{0}\cap LOC(2))$ for $i\geq 2$ ?
Can $CF$ be represented as $CF=H(INS_{i}^{J}\cap LOC(k))$ for $i,j\geq 1$ and $k\geq 1$ ?
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