
Chaitin’s halting probability \Omega and halting problems

中央大学研究開発機構・JST CREST 只木孝太郎 (Kohtaro Tadaki)*
Research and Development Initiative, Chuo University

CREST, JST

Abstract. Chaitin [G. J. Chaitin, J. Assoc. Comput. Mach., vol. 22, pp. 329-
340, 1975] introduced $\Omega$ number as a concrete example of random real. The
real $\Omega$ is defined as the probability that an optimal computer halts, where the
optimal computer is a universal decoding algorithm used to define the notion
of program-size complexity. Chaitin showed $\Omega$ to be random by discovering the
property that the first $n$ bits of the base-two expansion of $\Omega$ solve the halting
problem of the optimal computer for all binary inputs of length at most $n$ .
In the present paper we investigate this property from various aspects. We
consider the relative computational power between the base-two expansion of
$\Omega$ and the halting problem by imposing the restriction to finite size on both
the problems. It is known that the base-two expansion of $\Omega$ and the halting
problem are Turing equivalent. We thus consider an elaboration of the Turing
equivalence in a certain manner.

1 Introduction

Algorithmic information theory (AIT, for short) is a framework for applying information-
theoretic and probabilistic ideas to recursive function theory. One of the primary concepts
of AIT is the program-size complexity (or Kolmogorov complexity) $H(s)$ of a finite binary string
$s$ , which is defined as the length of the shortest binary input for a universal decoding algo-
rithm $U$ , called an optimal computer, to output $s$ . By the definition, $H(s)$ can be thought of
as the information content of the individual finite binary string $s$ . In fact, AIT has precisely
the formal properties of classical information theory (see Chaitin [2]). In particular, the notion
of program-size complexity plays a crucial role in characterizing the randomness of an infinite
binary string, or equivalently. a real. In [2] Chaitin introduced the halting probability $\Omega_{U}$ as
an example of random real. His $\Omega_{U}$ is defined as the probability that the optimal computer $U$

halts, and plays a central role in the metamathematical development of AIT. The real $\Omega_{U}$ is
shown to be random, based on the following fact:

Fact 1 (Chaitin [2]). The first $n$ bits of the base-two expansion of $\Omega_{U}$ solve the halting problem
of $U$ for inputs of length at most $n$ . $\square$

In this paper, we first consider the following converse problem:

Problem 1. For every Positive integer $n$ , if $n$ and the list of all halting inputs for $U$ of length
at most $n$ are given, can the first $n$ bits of the baSe-tWO eXpanSion of $\Omega_{U}$ be calculated ? 口

As a result of this paper, we can answer this problem negatively. In this paper, however, we
consider more general problems in the following forms. Let V and $W$ be optimal computers.

’E-mail: tadaki@kc.chuo-u.ac.jp, Website: http://www2.odn.ne.jp/tadaki/

数理解析研究所講究録
第 1649巻 2009年 113-120 113



Problem 2. Find a succinct equivalent characterization of a total recursive hnction $f:\mathbb{N}^{+}arrow N$

which satisfies the condition: For all $n\in N^{+}$ , if $n$ and the list of all halting inputs for $V$ of
length at most $n$ are given, then the first $n-f(n)-O(1)$ bits of the base-two expansion of $\Omega_{W}$

can be calculated. $\square$

Problem 3. Find a succinct equivalent charactemzation of a total recursive function $f:N^{+}arrow N$

which satisfies the condition: For infinitely many $n\in \mathbb{N}^{+}$ , if $n$ and the list of all halting inputs
for V‘ of length at most $n$ are given, then the first $n-f(n)-O(1)$ bits of the base-two expansion
of $\Omega_{W}$ can be calculated. $\square$

Here $N^{+}$ denotes the set of positive integers and $N=\{0\}$UN$+$ . Theorem 3.1 and Theorem 4. 1
below are two of the main results of this paper. On the one hand, Theorem 3.1 gives to Problem 2
a solution that the total recursive function $f$ must satisfy $\sum_{n=1}^{\infty}2^{-f(n)}<\infty$ , which is the Kraft
inequality in essence. Note that the condition $\sum_{n=1}^{\infty}2^{-f(n)}<\infty$ holds for $f(n)=\lfloor(1+\epsilon)\log_{2}n\rfloor$

with an arbitrary computable real $\epsilon>0$ , while this condition does not hold for $f(n)=\lfloor\log_{2}n\rfloor$ .
On the other hand, Theorem 4.1 gives to Problem 3 a solution that the total recursive function
$f$ must not be bounded to the above. Theorem 4.1 also results in Corollary 4.2 below, which
refutes Problem 1 completely.

It is also important to consider whether the bound $n$ on the length of halting inputs given
in Fact 1 is tight or not. We consider this problem in the following form:

Problem 4. Find a succinct equivalent characterization of a total recursive function $f:N^{+}arrow N$

which satisfies the condition: For all $n\in N^{+}$ , if $n$ and the first $n$ bits of the base-two expansion
of $\Omega_{V}$ are given, then the list of all halting inputs for $W$ of length at most $n+f(n)-O(1)$ can
be calculated. $\square$

Theorem 5.1, which is one of the main results of this paper, gives to Problem 4 a solution
that the total recursive function $f$ must be bounded to the above. Thus, we see that the bound
$n$ on the length of halting inputs given in Fact 1 is tight up to an additive constant.

It is well known that the $basearrow$ two expansion of $\Omega_{U}$ and the halting problem of $U$ are Turing
equivalent, i.e., $\Omega_{U}\equiv\tau$ dom $U$ holds, where dom $U$ denotes the domain of definition of $U$ . This
paper investigates an elaboration of the Turing equivalence. For example, consider the Turing
reduction $\Omega_{U}\leq\tau$ dom $U$ , which partly constitutes the Turing equivalence $\Omega_{U}\equiv\tau$ dom $U$ . The
Turing reduction can be equivalent to the condition that there exists an oracle deterministic
Turing machine $M$ such that, for all $n\in N^{+}$ ,

$M^{domU}(n)=\Omega_{U}r_{n}$ , (1)

where $\Omega_{U}r_{n}$ denotes the first $n$ bits of the base-two expansion of $\Omega_{U}$ . Let $g:N^{+}arrow N$ and
$h:N^{+}arrow N$ be total recursive functions. Then the condition (1) can be elaborated to the
condition that there exists an oracle deterministic Turing machine $M$ such that, for all $n\in N^{+}$ ,

$M^{domUr_{g(n)}}(n)=\Omega_{U}r_{h(n)}$ , (2)

where dom $U|_{g(n)}$ denotes the set of all strings in dom $U$ of length at most $g(n)$ . This elaboration
allows us to consider the asymptotic behavior of $h$ which satisfies the condition (2), for a given
$g$ . We might regard $g$ as the degree of the relaxation of the restrictions on the computational
resource (i.e., on the oracle dom $U$ ) and $h$ as the difficulty of the problem to solve. Thus, even
in the context of computability theory, we can deal with the notion of asymptotic behavior in
a manner like in computational complexity theory in some sense. Theorem 3.1, a solution to
Problem 2, is obtained as a result of the investigation in this line, and gives the upper bound
of the function $h$ in the case of $g(n)=n$.

114



The other TUring reduction dom $U\leq\tau^{\Omega_{U}}$ , which constitutes $\Omega_{U}\equiv\tau$ dom $U$ , is also elabo-
rated in the same manner as above to lead to Theorem 5.1, a solution to Problem 4.

Thus, in this paper, we study the relationship between the base-two expansion of $\Omega$ and the
halting problem of an optimal computer using a more rigorous and insightful notion than the
notion of Turing equivalence. The paper is organized as follows. We begin in Section 2 with
some preliminaries to AIT. We then present Theorems 3.1, 4.1, and 5.1 in Sections 3, 4, and 5,
respectively. Due to the page limit, we describe only the proof of Theorem 3.1 in detail.

2 Preliminaries
2.1 Basic notation
We start with some notation about numbers and strings which will be used in this paper. $\# S$

is the cardinality of $S$ for any set S. $N=\{0,1,2,3, \ldots\}$ is the set of natural numbers, and $N^{+}$

is the set of positive integers. $\mathbb{Z}$ is the set of integers, and $\mathbb{Q}$ is the set of rational numbers.
$\mathbb{R}$ is the set of real numbers. Let $f:Sarrow \mathbb{R}$ with $S\subset \mathbb{R}$ . We say that $f$ is non-decreasing If
$f(x)\leq f(y)$ for all $x,$ $y\in S$ with $x<y$ .

Normally, 0(1) denotes any function $f:N^{+}arrow \mathbb{R}$ such that there is $C\in \mathbb{R}$ with the property
that $|f(n)|\leq C$ for all $n\in N^{+}$ .

$\{0,1\}^{*}=\{\lambda, 0,1,00,01,10,11,000, \ldots\}$ is the set of finite binary strings where $\lambda$ denotes
the empty string, and $\{0,1\}^{*}$ is ordered as indicated. We identify any string in $\{0,1\}^{*}$ with a
natural number in this order, i.e., we consider $\varphi:\{0,1\}^{*}arrow N$ such that $\varphi(s)=1s-1$ where
the concatenation ls of strings 1 and $s$ is regarded as a dyadic integer, and then we identify $s$

with $\varphi(s)$ . For any $s\in\{0,1\}^{*},$ $|s|$ is the length of $s$ . A subset $S$ of $\{0,1\}^{*}$ is called prefix-free
if no string in $S$ is a prefix of another string in $S$ . For any subset $S$ of $\{0,1\}^{*}$ and any $n\in \mathbb{Z}$ ,
we denote by $sr_{n}$ the set $\{s\in S||s|\leq n\}$ . Note that $sr.=\emptyset$ for every subset $S$ of $\{0,1\}^{*}$

and every negative integer $n\in \mathbb{Z}$ . $\{0,1\}^{\infty}$ is the set of infinite binary strings, where an infinite
binary string is infinite to the right but finite to the left. For any partial function $f$ , the domain
of definition of $f$ is denoted by dom $f$ . We write “r.e.” instead of “recursively enumerable.”

Let $\alpha$ be an arbitrary real number. $\lfloor\alpha\rfloor$ is the greatest integer less than or equal to $\alpha$ . For
any $n\in N^{+}$ , we denote by $\alpha r_{n}\in\{0,1\}^{*}$ the first $n$ bits of the base-two expansion of $\alpha-\lfloor\alpha\rfloor$

with infinitely many zeros. For example, in the case of $\alpha=5/8,$ $\alpha r_{6}=101000$ . On the other
hand, for any non-positive integer $n\in \mathbb{Z}$ , we set $\alpha r_{n}=\lambda$ .

A real number $\alpha$ is called $r.e$ . if there exists a total recursive function $f:N^{+}arrow \mathbb{Q}$ such
that $f(n)\leq\alpha$ for all $n\in N^{+}$ and $\lim_{narrow\infty}f(n)=\alpha$. An r.e. real number is also called a
left-computable real number.

2.2 Algorithmic information theory

In the following we concisely review some definitions and results of algorithmic information
theory [2, 3]. A computer is a partial recursive function $C:\{0,1\}^{*}arrow\{0,1\}^{*}$ such that dom $C$

is a prefix-free set. For each computer $C$ and each $s\in\{0,1\}^{*},$ $H_{C}(s)$ is defined by $H_{C}(s)=$

$\min\{|p||p\in\{0,1\}^{*}$ &C(p) $=$ s $\}$ (may be $\infty$ ). A computer $U$ is said to be optimal if for each
computer $C$ there exists $d\in \mathbb{N}$ with the following property; if $p\in$ dom $C$ , then there is $q$ for
which $U(q)=C(p)$ and $|q|\leq|p|+d$ . It is easy to see that there exists an optimal computer.
We choose a particular optimal computer $U$ as the standard one for use, and define $H(s)$ as
$H_{U}(s)$ , which is referred to as the program-size complexity of $s$ or the Kolmogorov complexity
of $s$ . It follows that for every computer $C$ there exists $d\in \mathbb{N}$ such that, for every $s\in\{0,1\}^{*}$ ,

$H(s)\leq H_{C}(s)+d$ . (3)
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Based on this we can show that, for every partial recursive function $\Psi:\{0,1\}^{*}arrow\{0,1\}^{*}$ , there
exists $c\in N$ such that, for every $s\in$ dom $\Psi$ ,

$H(\Psi(s))\leq H(s)+c$ . (4)

For any $s\in\{0,1\}^{*}$ , we define $s^{*}$ as $\min\{p\in\{0,1\}^{*}|U(p)=s\}$ , i.e., the first element in the
ordered set $\{0,1\}^{*}$ of all strings $p$ such that $U(p)=s$ . Then, $|s^{*}|=H(s)$ for every $s\in\{0,1\}^{*}$ .
For any $s,$ $t\in\{0,1\}^{*}$ , we define $H(s, t)$ as $H(b(s, t))$ , where $b:\{0,1\}^{*}x\{0,1\}^{*}arrow\{0,1\}^{*}$

is a particular bijective total recursive function. Note also that, for every $n\in N,$ $H(n)$ is
$H$ (the nth element of $\{0,1\}^{*}$ ).

Deflnition 2.1 (Chaitin $\Omega$ number, Chaitin [2]). For any optimal computer $V$ , the halting
probability $\Omega_{V}$ of $V$ is defined by

$\Omega_{V}=\sum_{p\in domV}2^{-|p|}$
.

$\square$

For every optimal computer $V$ , since dom $V$ is prefix-free, $\Omega_{V}$ converges and $0<\Omega_{t’}\leq 1$ .
For any $\alpha\in \mathbb{R}$ , we say that $\alpha$ is weakly Chaitin random if there exists $c\in N$ such that
$narrow c\leq H(\alpha r_{n})$ for all $n\in N^{+}[2,3]$ .
Theorem 2.2 (Chaitin [2]). For every optimal computer $V,$ $\Omega_{V}$ is weakly Chaitin random. $\square$

Therefore $0<\Omega_{V}<1$ for every optimal computer $V$ . For any $\alpha\in \mathbb{R}$ , we say that $\alpha$ is
Chaitin random if $\lim_{narrow\infty}H(\alpha r_{n})-n=\infty[2,3]$ . We can then show the following theorem
(see Chaitin [3] for the proof and historical detail).

Theorem 2.3. For every $\alpha\in \mathbb{R},$ $\alpha$ is weakly Chaitin random if and only if $\alpha$ is Chaitin
random. $\square$

The following is an important result on random r.e. reals.
Theorem 2.4 (Calude, et al. [1], Ku\v{c}era and Slaman [6]). For every $\alpha\in(0,1),$ $\alpha$ is $r.e$ . and
weakly Chaitin random if and only if there $e$ vists an optimal computer $V$ such that $\alpha=\Omega_{V}$ . $\square$

3 Elaboration I of the Turing reduction $\Omega_{U}\leq\tau$ dom $U$

Theorem 3.1 (main result I). Let $V$ and $W$ be optimal computers, and let $f:N^{+}arrow \mathbb{N}$ be a
total recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic $\mathcal{I}t\iota$ring machine $M$ and $c\in N$ such that, for all $n\in N^{+}$ ,
$M^{domt’r_{n}}(n)=\Omega_{W}r_{n-f(n)-c}$ .

$(ii) \sum_{n=1}^{\infty}2^{-f(n)}<\infty$ . $\square$

Theorem 3.1 follows from Theorem 3.2 and Theorem 3.3 below, and Theorem 2.4.
Theorem 3.2. Let $\alpha$ be an $r.e$ . real, and let V be an optimal computer. For every total
recursive function $f:N^{+}arrow N$ , if $\sum_{n=1}^{\infty}2^{-f(n)}<\infty$ , then there exist an oracle deterministic
Turing machine $M$ and $c\in N$ such that, for all $n\in N^{+},$ $M^{domt’r_{n}}(n)=\alpha|_{n-f(n)-c}$ . $\square$

Theorem 3.3. Let $\alpha$ be a real which is weakly Chaitin random, and let $V$ be an optimal
computer. For every total recursive function $f:N^{+}arrow N$ , if there exists an oracle deterministic
$\mathfrak{R}$ning machine $M$ such that, for all $n\in N^{+},$ $M^{domVr_{n}}(n)=\alpha r_{n-f(n)}$ . then $\sum_{n=1}^{\infty}2^{-f(n)}<$

$\infty$ . $\square$

The proofs of Theorem 3.2 and Theorem 3.3 are given in the next two subsections, respec-
tively.
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3.1 The proof of Theorem 3.2
In order to prove Theorem 3.2, we need Theorem 3.4 and Corollary 3.6 below.

Theorem 3.4 (Kraft-Chaitin Theorem, Chaitin [2]). Let $f:N^{+}arrow N$ be a total recursive
function such that $\sum_{n=1}^{\infty}2^{-f(n)}\leq 1$ . Then there exists a total recursive function $g:N^{+}arrow$

$\{0,1\}^{*}$ such that (i) the function $g$ is an injection, (ii) the set $\{g(n)|n\in N^{+}\}$ is prefix-free,
and (iii) $|g(n)|=f(n)$ for all $n\in \mathbb{N}^{+}$ . $\square$

Let $M$ be a deterministic Turing machine with the input and output alphabet $\{0,1\}$ , and let
$C$ be a computer. We say that $M$ computes $C$ if the following holds: for every $p\in\{0,1\}^{*}$ , when
$M$ starts with the input $p,$ $(i)M$ halts and outputs $C(p)$ if $p\in$ dom $C$ ; (ii) $\Lambda I$ does not halt
forever otherwise. We use this convention on the computation of a computer by a deterministic
Turing machine throughout the rest of this paper. Thus, we exclude the possibility that there
is $p\in\{0,1\}^{*}$ such that, when $M$ starts with the input $p,$ $M$ halts but $p\not\in$ dom $C$ .

Theorem 3.5. Let $V$ be an optimal computer. Then, for every computer $C$ there exists $d\in N$

such that, for every $p\in\{0,1\}^{*}$ , if $p$ and the list of all halting inputs for $V$ of length at most
$|p|+d$ are given, then the halting problem of the input $p$ for $C$ can be solved.

Proof. Let $M$ be a deterministic Turing machine which computes a computer $C$ . For each
$p\in\{0,1\}^{*}$ , let $h_{M}(p)$ be the computation history of $M$ from the initial configuration with
input $p$ , and let bin$M(p)\in\{0,1\}^{*}\cup\{0,1\}^{\infty}$ be the binary representation of $h_{M}(p)$ in a certain
format. Note that $bin_{M}(p)\in\{0,1\}^{*}$ if and only if $p\in$ dom $C$ for every $p\in\{0,1\}^{*}$ , by our
convention on the computation of a computer by a deterministic Turing machine. We consider
the computer $D$ such that (i) dom $D=$ dom $C$ and (ii) $D(p)=$ bin$M(p)$ for every $p\in$ dom $C$ .
It is easy to see that such a computer $D$ exists. Then, since $V$ is an optimal computer, from
the definition of optimality there exists $d\in \mathbb{N}$ with the following property; if $p\in$ dom $D$ , then
there is $q$ for which $V(q)=D(p)$ and $|q|\leq|p|+d$ .

Given $p\in\{0_{1}1\}^{*}$ and the list $\{q_{1}, \ldots, q_{L}\}$ of all halting inputs for $V$ of length at most
$|p|+d$ , one first calculates the finite set $S_{p}=\{V(q_{i})|i=1, \ldots, L\}$ . One then checks whether
bin$M(p)\in S_{p}$ or not. This can be possible since $S_{p}$ is a finite subset of $\{0,1\}^{*}$ . In the case of
binnI $(p)\in S_{p}$ , bin$M(p)\in\{0,1\}^{*}$ and therefore $p\in$ dom $C$ . On the other hand, if $p\in$ dom $C$ ,
then there is $q$ such that $V(q)=$ bin$M(p)$ and $|q|\leq|p|+d$ , and therefore $q\in\{q_{1}, \ldots, q_{L}\}$ and
bin$M(p)\in S_{p}$ . Thus, $p\not\in$ dom $C$ in the case of bin$\Lambda f(p)\not\in S_{p}$ . $\square$

As a corollary of Theorem 3.5 above we obtain the following.

Corollary 3.6. Let $V$ be an optimal computer. Then, for every computer $C$ there exist an
oracle deterministic Tunng machine $\Lambda I$ and $d\in \mathbb{N}$ such that, for all $n\in N^{+},$ $M$dom $vr_{n+d}(n)=$

dom $cr_{n}$ , where the finite subset dom $cr_{n}$ of $\{0,1\}^{*}$ is represented as a finite binary string in a
certain format. $\square$

Based on Theorem 3.4 and Corollary 3.6, Theorem 3.2 is proved as follows.

Proof of Theorem 3.2. Let $\alpha$ be an r.e. real, and let $V$ be an optimal computer. For an arbitrary
total recursive function $f:N^{+}arrow N$ , assume that $\sum_{n=1}^{\infty}2^{-f(n)}<\infty$ . In the case of $\alpha\in \mathbb{Q}$, the
result is obvious. Thus, in what follows, we assume that $\alpha\not\in \mathbb{Q}$ and therefore the base-two
expansion of $\alpha-\lfloor\alpha\rfloor$ is unique and contains infinitely many ones.

Since $\sum_{n=1}^{\infty}2^{-f(n)}<\infty$ , there exists $d_{0}\in \mathbb{N}$ such that $\sum_{n=1}^{\infty}2^{-[(n)-d_{0}}\leq 1$ . Hence, by
the Kraft-Chaitin Theorem, i.e., Theorem 3.4, there exists a total recursive function $g:N^{+}arrow$

$\{0,1\}^{*}$ such that (i) the function $g$ is an injection, (ii) the set $\{g(n)|n\in N^{+}\}$ is prefix-free,
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and (iii) $|g(n)|=f(n)+d_{0}$ for all $n\in N^{+}$ . On the other hand, since $\alpha$ is r.e., there exists a
total recursive function $h:N^{+}arrow \mathbb{Q}$ such that $h(k)\leq\alpha$ for all $k\in \mathbb{N}^{+}$ and $\lim_{karrow\infty}h(k)=\alpha$ .

Now, let us consider the following computer $C$ . For each $n\in N^{+},$ $p,$ $s\in\{0,1\}^{*}$ and $l\in \mathbb{N}$

such that $U(p)=l,$ $g(n)ps\in$ dom $C$ if and only if (i) $|g(n)ps|=n-l$ and (ii) 0. $s<h(k)-\lfloor\alpha\rfloor$

for some $k\in \mathbb{N}^{+}$ . It is easy to see that such a computer $C$ exists. Then, by Corollary 3.6,
there exist an oracle deterministic Turing machine $\Lambda I$ and $d\in N$ such that, for all $n\in N^{+}$ ,
$\Lambda f^{dom1’r_{n+d}}(n)=$ dom $cr_{n}$ , where the finite subset dom $cr_{n}$ of $\{0,1\}^{*}$ is represented as a finite
binary string in a certain format. We then see that, for every $n\in N^{+}$ and $s\in\{0,1\}^{*}$ such that
$|s|=n-|g(n)|-d-|d^{*}|$ ,

$g(n)d^{*}s\in$ dom $C$ if and only if $s\leq\alpha|_{n-|g(n)|-darrow|d^{r}|}$ , (5)

where $s$ and $\alpha|_{n-|g(n)|-d-|d|}$ are regarded as a dyadic integer. Then, by the following procedure,
we see that there exist an oracle deterministic Turing machine $\Lambda f_{1}$ and $c\in N$ such that, for all
$n\in N^{+}$ , A$I_{1}^{domVr_{n}}(n)=\alpha r_{n-f(n)-c}$. Note here that $|g(n)|=f(n)+d_{0}$ for all $n\in N^{+}$ and also
$H(d)=|d^{*}|$ .

Given $n$ and dom $Vr_{n}$ with $n>d$, one first checks whether $n-|g(n)|-d-H(d)\leq 0$ holds. If
this holds then one outputs $\lambda$ . If this does not hold, one then calculates the finite set dom $cr_{n-d}$

by simulating the computation of $M$ with the input $n-d$ and the oracle dom $Vr_{n}$ . Then, based
on (5), one determines $\alpha r_{n-|g(n)|-d-H(d)}$ by checking whether $g(n)d^{*}s\in$ dom $C$ holds or not for
each $s\in\{0,1\}^{*}$ with $|s|=n-|g(n)|-d-H(d)$ . This is possible since $|g(n)d^{*}s|=n-d$ for
every $s\in\{0,1\}^{*}$ with $|s|=n-|g(n)|-d-H(d)$ . Finally, one outputs $\alpha r_{n-|g(n)|arrow d-H(d)}$ . $\square$

3.2 The proof of Theorem 3.3
In order to prove Theorem 3.3, we need Theorem 3.7 and the Ample Excess Lemma (i.e.,
Theorem 3.8) below.

Let $M$ be an arbitrary deterministic Turing machine with the input alphabet $\{0,1\}$ . We
define $L_{M}= \min${ $|p||p\in\{0,1\}^{*}$ &M halts on input $p$ } (may be $\infty$ ). For any $n\geq L_{M}$ , we
define $T_{n}^{M}$ as the maximum running time of $M$ on all halting inputs of length at most $n$ . We
can then prove the following theorem.

Theorem 3.7. Let $V$ be an optimal computer, and let $M$ be a deterministic Ttsring machine
which computes V. Then $n=H(T_{n}^{M}, n)+O(1)=H(T_{n}^{M})+O(1)$ for all $n\geq L_{Ai}$ . $\square$

Note that Solovay [11] showed a similar result to Theorem 3.7 for $h_{n}=\#\{p\in$ dom $V|$

$|p|\leq n\}$ in place of $T_{n}^{hI}$ . On the other hand, Chaitin showed a similar result to Theorem 3.7
for $p\in$ dom $\nu$

. such that $|p|\leq n$ and the running time of $M$ on the input $p$ equals to $T_{n}^{M}$ , in
place of $T_{n}^{M}$ (see Chaitin [3]).

Miller and Yu [8] recently strengthened Theorem 2.3 to the following form.

Theorem 3.8 (Ample Excess Lemma, Miller and Yu [8]). For every $\alpha\in \mathbb{R},$ $\alpha$ is weakly Chaitin
random if and only if $\sum_{n=1}^{\infty}2^{narrow H(\alpha r_{n})}<\infty$. $\square$

Then the proof of Theorem 3.3 is as follows.

Proof of Theorem 3.3. Let $\alpha$ be a real which is weakly Chaitin random. Let $V$ be an optimal
computer, and let $M$ be a deterministic Turing machine which computes $V$ . For an arbitrary
total recursive function $f:N^{+}arrow N$ , assume that there exists an oracle deterministic Turing
machine $\Lambda I_{0}$ such that, for all $n\in N^{+},$ $\ovalbox{\tt\small REJECT} I_{0}^{dom}$ vr$n(n)=\alpha r_{n-j(n)}$ . Note that, given $(T_{n}^{\Lambda I}, n)$

with $n\geq L_{\Lambda I}$ , one can calculate the finite set dom $\mathfrak{s}/r_{n}$ by simulating the computation of $M$

with the input $p$ until at most $T_{n}^{AI}$ steps, for each $p\in\{0,1\}^{*}$ with $|p|\leq n$ . Thus, we see
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that there exists a partial recursive function $\Psi:N\cross N^{+}arrow\{0,1\}^{*}$ such that, for all $n\geq L_{M}$ ,
$\Psi(T_{n}^{M}, n)=\alpha r_{n-f(n)}$ . It follows from (4) that $H(\alpha r_{n-[(n)})\leq H(T_{n}^{M}, n)+O(1)$ for all $n\geq L_{M}$ .
Thus, by Theorem 3.7 we have

$H(\alpha r_{n-f(n)})\leq n+O(1)$ (6)

for all $n\in N^{+}$ .
In the case where the function $n-f(n)$ of $n$ is bounded to the above, there exists $c\in N$

such that, for every $n\in N^{+},$ $-f(n)\leq c-n$ , and therefore $\sum_{n=1}^{\infty}2^{-f(n)}\leq 2^{c}$. Thus, in what
follows, we assume that the function $n-f(n)$ of $n$ is not bounded to the above.

We define a function $g:N^{+}arrow \mathbb{Z}$ by $g(n)= \max\{k-f(k)|1\leq k\leq n\}$ . It follows that
the function $g$ is non-decreasing and $\lim_{narrow\infty}g(n)=\infty$ . Thus we can choose an enumeration
$n_{1},$ $n_{2},$ $n_{3},$ $\ldots$ of the countably infinite set $\{n\in N^{+}|n\geq 2 \ 0 \leq g(n-1)<g(n)\}$ with
$n_{j}<n_{j+1}$ . It is then easy to see that $g(n_{j})=n_{j}-f(n_{j})$ and $1\leq n_{j}-f(n_{j})<n_{j+1}-f(n_{j+1})$

hold for all $j$ . On the other hand, since $\alpha$ is weakly Chaitin random, using the Ample Excess
Lemma, i.e., Theorem 3.8, we have $\sum_{n=1}^{\infty}2^{n-H(\alpha r_{n})}<\infty$ . Thus, using (6) we see that

$\sum_{j=1}^{\infty}2^{-f(n_{j})}\leq\sum_{j=1}^{\infty}2^{n_{j}-f(n_{j})-H(\alpha\int_{n-f(n)})+O(1)}jj\leq\sum_{n=1}^{\infty}2^{n-H(\alpha r_{n})+O(1)}<\infty$. (7)

On the other hand, it is easy to see that (i) $g(n)\geq n-f(n)$ for every $n\in \mathbb{N}^{+}$ , and (ii)
$g(n)=g(n_{j})$ for every $j$ and $n$ with $n_{j}\leq n<n_{j+1}$ . Thus, for each $k\geq 2$ , it is shown that

$\sum_{narrow-n_{1}}^{n_{k}-1}2^{-f(n)}\leq\sum_{n=n_{1}}^{n_{k}-1}2^{g(n)-n}=\sum_{j=1}^{k-1}\sum_{n=n_{j}}^{n_{j+1}-1}2^{g(n)-n}=\sum_{j=1}^{k-1}2^{g(n_{j})}\sum_{n\vec{-}n_{j}}^{n-1}2^{arrow n}j+1$

$= \sum_{j=1}^{k-1}2^{n_{j}-f(n_{j})}2^{-n_{j}+1}(1-2^{arrow n_{j}+1+n}i)<2\sum_{j=1}^{k-1}2^{-f(n_{j})}$ .

Thus, using (7) we see that $\lim_{karrow\infty}\sum_{n=n}^{n-}k:2^{-f(n)}<\infty$ . Since $2^{-f(n)}>0$ for all $n\in N^{+}$ and
$\lim_{Jarrow\infty^{n}j}=\infty$ , we have $\sum_{n=1}^{\infty}2^{-f(n)}<\infty$ . $\square$

4 Elaboration II of the Turing reduction $\Omega_{U}\leq\tau$ dom $U$

In a similar manner to the proof of Theorem 3.1, we can prove the following theorem.

Theorem 4.1 (main result II). Let $V$ and $W$ be optimal computers, and let $f:N^{+}arrow N$ be a
total recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic hring machine $\Lambda f$ and $c\in N$ such that, for infinitely
many $n\in N^{+},$ $M$dom $vr_{n}(n)=\Omega_{W}r_{n-f(n)-c}$ .

(ii) The function $f$ is not bounded to the above. $\square$

By setting $f(n)=0$ and $W=V$ in Theorem 4.1, we obtain the following.

Corollary 4.2. Let $V$ be an optimal computer. Then, for every $c\in N$ , there does not exist an
$\Omega_{V}\lceil_{n}oracle$

deterministic Turing machine $M$ such that, for infinitely many $n\in N^{+},$ $M$dom
$vr_{n+\epsilon}(n)=\square$
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5 Elaboration of the Turing reduction dom $U\leq\tau^{\Omega_{U}}$

We can prove the following theorem, based on Fact 1, Corollary 3.6, and the theory of relative
randomness.

Theorem 5.1 (main result III). Let $V$ and $W$ be optimal computers, and let $f:N^{+}arrow \mathbb{N}$ be a
total recursive function. Then the following two conditions are equivalent:

(i) There exist an oracle deterministic Zbiing machine $M$ and $c\in \mathbb{N}$ such that, for all
$n\in N^{+},$ $M^{\{\Omega_{V}r_{n}\}}(n)=$ dom $Wr_{n+f(n)-c}$ , where the finite subset dom $Wr_{n+f(n)-c}$ of
$\{0,1\}^{*}$ is represented as a finite binary string in a certain format.

(ii) The function $f$ is bounded to the above. $\square$
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