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Abstract— Paillier proposed an additively homomorphic encryption scheme which is known as a
variant of the RSA encryption scheme. There are few variants on discussion for decreasing compu-
tational costs of the Paillier encryption function. In this paper, we study fast inversion of the Paillier
encryption function. Especially, we do not modify the encryption function and focus on key gen-

eration. We pro]

se two schemes: Scheme 1 is based on the Euclidean Extended Algorithm, and

can make small inversion keys. Scheme 2 is based on the factorization, and can make small sparse
inversion keys. We also analyze the security of the variants against known attacks.

Keywords: Paillier’s encryption scheme, fast inversion, key generation, factoring, security.

1 Introduction

The RSA encryption scheme [20], proposed by
Rivest, Shamir, and Adleman in 1978, is the most
widely used public-key encryption scheme. Pail-
lier {18] proposed an additively homomorphic encryp-
tion scheme which is known as a variant of the RSA
encryption scheme. Additive homomorphism is a good
property which can be applied to many cryptographic
applications such as electronic voting, electronic cash,
and so on. However, for almost all of the proposed
public-key encryption schemes, including the RSA and
Paillier schemes, the computational costs of encryp-
tion and decryption are relatively large compared to the
symmetric-key encryption. Therefore, it is important
to decrease these costs of the public-key schemes.

As a well-known way in the RSA encryption
scheme, the Chinese Remainder Theorem (CRT) is
useful for decreasing the decryption costs. By applying
CRT to the RSA encryption scheme, the computational
cost over the public modulus N can be reduced to that
over the private prime factors p and g, and the private
exponent d can also be replaced by d,, =d mod (p - 1)
and d;, = d mod (g — 1). We call such RSA schemes
“RSA-CRT". As a result, the decryption costs of RSA-
CRT are about 4 times as much as those of Standard-
RSA.

As another practical way, one arbitrarily chooses the
public exponent e in the key generation phase, in order
to decrease the encryption costs (for example, e = 3
or 216 + 1). Then, the private exponent d is deter-
mined uniquely from the private (randomly chosen)
prime factors p and g and the public exponent e, and
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has about the same size as ¢(N) or A(N), where ¢ is the
Euler phi-function and A is the Carmichael function.

As an alternative approach, one arbitrarily chooses
the private exponent d or the private CRT exponents
(dp, d,) in the key generation phase, and computes the
public exponent e from (p, g, d) or (p, q,d;,d,), in or-
der to decrease the decryption costs. Then, the public
exponent e has about the same size as ¢(N) or A(N). As
a well-known fact, the system with d or (d,, d;) which
are much smaller than N becomes insecure as foliows.

In 1990, Wiener [27] showed that by using con-
tinued fractions, one could easily compute the secret
key d in polynomial-time from the public key e and
N such that d < N%2, 1In 1999, Boneh and Dur-
fee [2] improved Wiener’s bound to d < NOD2 with
Coppersmith’s lattice-based techniques [S] on finding
small modular and integer roots of (bivariate) poly-
nomials via Lenstra-Lenstra-Lovész's lattice reduction
algorithm [17]. Although their attack requires a few
heuristic assumptions, the attack works very well in
practice. In 2007, Jochemsz and May [14] proposed
an attack to the private CRT exponents such that ei-
ther d,, and d,, are smaller than N99734, The attack is
based on Boneh-Durfee’s lattice-based attack and also
requires a few appropriate assumptions.

As mentioned above, in the RSA encryption scheme,
decreasing the encryption costs is easy but the decryp-
tion costs heavily, and vice versa. To reduce compu-
tational costs of encryption and decryption simultane-
ously is not easy. Therefore, it is an interesting prob-
lem to solve this situation.

On the other hand, there are few variants [4, 3] on
discussion for decreasing computational costs of the
Paillier encryption scheme, although the Paillier en-
cryption scheme is known as a variant of the RSA
encryption scheme and has more computational costs
in encryption and decryption than those of the RSA
encryption scheme. However, these variants employ
modified encryption functions which lose a few math-



ematical structures and advantages.

1.1 Related Works

Up to now, many fast variants with decreasing both
the encryption and decryption costs of the RSA en-
cryption scheme have been proposed {25, 24, 23, 22,
8, 11]. These variants are on methods for the key gen-
eration, and the encryption and decryption functions
are not improved. On the other hand, lattice-based at-
tacks by Boneh-Durfee’s idea to the variants have also
been studied [7, 1, 13].

In 1999, Sun, Yang, and Laih [25] proposed three
variants with small public and private exponents (e, d)
and unbalanced private prime factors (p, q) such that
P < g, which are resisted to Wiener’s or Boneh-
Durfee’s attacks. Basic idea of their variants is as fol-
lows: First, choose (small) integers e and 4 as the pub-
lic and private exponents. Second, compute some in-
tegers p and g from (e, d), by using the Extended Eu-
clidean Algorithm. If p and g are prime, then set the
public key (N, ) and the private key (p, g,d). More-
over, the above method via the Extended Euclidean
Algorithm generates only unbalanced primes p and
q. Unfortunately, Durfee and Nguyen [7] proposed
an efficient attack based on Boneh-Durfee’s lattice-
based attack to their recommended parameters by us-
ing trivariate modular polynomials and these spanned
lattices. They stated that unbalanced private factors
should not be used in the RSA encryption scheme. In
fact, Bleichenbacher and May [1] showed that given
an RSA modulus N, whose private prime factor p is
smaller than NO468, it can be factorized in polynomial-
time.

By factoring much smaller numbers than N, Sun and
Yang [24] improved Sun et al.’s variant [25] to generat-
ing balanced primes p and q. Hence, the attacks [7, 1]
on unbalanced primes cannot be applied to the variant.
Furthermore, Sun, Hinek, and Wu [22] extended this
improved variant in such a way that the private CRT ex-
ponents (d,, d,) are also small (this variant is a revised
version of [23]). On the other hand, Bleichenbacher
and May proposed, in addition to unbalanced private
prime factors, an attack to the variants [24, 23, 22].
However, this attack is critical to their recommended
parameters, but not to the basis of their systems.

Independently, Galbraith, Heneghan, and McKee [8]
proposed another fast variant which uses no technical
method such as factoring small numbers. They just
reconsidered some relations among the public and pri-
vate keys. This variant finds not only small public and
private CRT exponents (e,dp,d,), but also with low
Hamming weight. Repeated squaring method, which
is widely used as a computational method for exponen-
tiation, strongly depends on the binary representation
of the exponent. If the binary representation is sparse
(that is, low Hamming weight), computational costs of
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the method are reduced in practice. In a similar to the
Sun et al.’s variants [24, 23, 22], the attack by Ble-
ichenbacher and May [1] can be applied to the variant,
and is not critical to the base of their variant.

Hinek [11] reconsidered the common prime RSA,
proposed by Wiener [27], whose prime factors p and
g of the RSA modulus N have a relation that g =
ged(p — 1,9 ~ 1) is not small. If g is large, A(N) =
lem(p — 1,q — 1) is small, and then, in the common
prime RSA, the public and private exponents e and d
which are elements of (Z/A(N))* are also small. He
pointed out that the common prime RSA with private
exponents smaller than N%25 has resistant to Wiener
and the other known lattice-based attacks, when g is
large. On the other hand, Jochemsz and May [13] stud-
ied an attack to his proposed key space in the common
prime RSA.

1.2 Our Contribution

In this paper, we study fast inversion of the Pail-
lier encryption function. We do not modify the en-
cryption function and focus on key generation, since
the original encryption function has rich mathematical
structures and advantages. We propose two schemes:
Scheme 1 is based on the Euclidean Extended Algo-
rithm, and can make small inversion keys. Scheme 2
is based on the factorization of much smaller numbers
than the public RSA modulus N, and can make small
sparse inversion keys. We note that Scheme 2 is much
slower than Scheme 1 since Scheme 2 is constructed
by using factoring algorithms. Furthermore, we ana-
lyze the security of the schemes against known attacks
and propose security parameters choices.

1.3 Organization

The organization of this paper is as follows. In Sec-
tion 2, we give some notations and attacks to two vari-
ants of the RSA encryption scheme. In Section 3, we
review the Paillier encryption scheme and its variant
“Paillier-CRT”. In Section 4, we focus on some rela-
tions between the public and private keys in the Paillier
encryption function, and propose fast inversion vari-
ants on key generation. In Section 5, we discuss on
fast encryption, the security of the variants, and secu-
rity parameters choice.

2 Preliminaries
2.1 Notations

Let N be a positive integer. We denote {0, 1,...,N -
1} by Z/N, and its reduced residue class group by
(Z/Ny*, namely, (Z/N)* = {x € Z/N|gcd(x,N) = 1}.
For g € (Z/N)*, ordy g is defined as the smallest posi-
tive integer e such that g = 1 (mod N).



Let k be a positive integer. We denote the set of k-bit
integers by AN, and the set of k-bit prime numbers by
Pr.

2.2 Attacks for Variants of the RSA Encryption
Scheme

We briefly describe attacks to two variants “RSA-
CRT” and “RSA-CRT with Known Difference d, — d,”
of the RSA encryption scheme. We refer to the pa-
per [12] for more details of the attacks.

Lattice-Based Attack on RSA-CRT: Jochemsz and
May [14] proposed a polynomial-time attack to RSA-
CRT if d, and d, are smaller than N%973. So far, the
best attack on RSA-CRT is a square-root attack that
enables an adversary to factor N in time and space
O(min{ \/d,, \/d,)}, which is exponential in the bit
length of d,, or d;. Jochemsz-May’s attack is as fol-
lows:

theorem 1 For every € > 0 and sufficiently large n,
the following holds: Let N be an n-bit modulus, and
P.q be primes of the bit length 5. Let e < p(N), dp <
p-1 and d, < q— 1 be the public and private CRT
exponents satisfying ed, = 1 (mod p ~ 1) and ed, =
(mod g — 1). Let the bit length of d, and d, be smaller
than 8n. Then N can be factored in polynomial-time
provided that § < 0.0734 — €.

Lattice-Based Attack on RSA-CRT with Known
Difference: From a storage point of view, Qiao and
Lam [19] proposed a variant of the RSA encryption
scheme, whose CRT-exponents d, and d, has given
small difference ¢ € Z. Jochemsz and May [13] pro-
posed a polynomial-time attack to the variant if d), or
d, are smaller than N%%°_ The attack is as follows:

theorem 2 For every ¢ > 0 and sufficiently large n,
the following holds: Let N be an n-bit modulus, and
P q be primes of the bit length §. Let e < ¢(N), d, <
p-1,and d; < q — 1 be the public and private CRT
exponents satisfying ed, = 1 (mod p — 1) and ed, =
(mod q — 1). Assume that d,, and d, are chosen such
that d, = d, + c for given c, and that the bit length of
dp and d; be smaller than én. Then N can be factored
in polynomial-time provided that 6 < %(4 -Vi3)-e
Notice that 1(4 — V13) ~ 0.099.

3 The Paillier Encryption Scheme

In 1999, Paillier [18] proposed the public-key en-
cryption scheme with the additively homomorphic
property which can be applied to many cryptographic
applications. Several variants and applications of the
Paillier encryption scheme have been well-studied.
The based encryption function is as follows.
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Definition 3 The Paillier encryption function & is as
Sfollows:

(ZIN X ZIN — (Z/N?y*
(r,m) — Vg™ mod N2,

where g is an element of (Z/N*)* and ordy2 g = aN
(1 <a < A(N)anda| A(N)).

For the sake of simplicity, we usually use g = 1 + N.
Then, the Paillier encryption scheme is as follows.

Cryptosystem 4 (The Original Faillier Encryption
Scheme)

Key Generation: Given a security parameter n,
choose n/2-bit primes p and q at random, and
set N = pq. Compute the Carmichael function A
of N (that is, A(N) = lem(p — 1,q — 1)). Then,
the public key is pk = N and the secret key is
sk = A(N).

Encryption: To encrypt a message m € Z/N, choose
r € (Z/N)* at random, and compute the cipher-
text ¢ € (Z/N?)* such that

c=&r,m)=r"(1 + N)" mod N2

Decryption: To obtain the message m € Z/N, com-
pute y = c*™ mod N? and
m = Ly(y)A™'(N) mod N,

where Ly(x) = 5 for x € Z.

This scheme is secure in the sense of IND-CPA
under the decisional composite residuosity assump-
tion that there is no polynomial-time algorithm which
solves the following “the decisional composite residu-
osity problem” with non-negligible advantage.

Definition 5 (The Decisional Composite Residuosity
Problem)
Let N be a randomly chosen n-bit pq modulus. For a
probabilistic polynomial-time algorithm A, we define
the following probabilities:
Prandom = Prix < (ZIN* : Ax) = 1]

and

Presidue = Prlx — (Z/NY* : A(x" mod N?) = 1].
Then, we denote an advantage of A by

AV R (1) = |Prandom = PrResiduel-



In application settings of the Paillier encryption

scheme (such as Trapdoor Commitment Scheme [31 .

and Paillier-OAEP [10], and so on), we often need to
extract random numbers used in the scheme. Comput-
ing random numbers in the Paillier encryption scheme
is equivalent to solving the RSA(N, N) problem which
is given an RSA modulus N and ¢ € (Z/N)*, to com-
pute an N-th root of ¢ modulo N, that is, c¥ (mod N).
Moreover, computing inversion of the Paillier encryp-
tion function is equivalent to solving the RSA(N, N)
problem.

As a well-known fact, (1+N)" = 1+mN (mod N?)
for any m € Z/N. In other words, the computational
cost for computing (1 + N)™ over (Z/N2)*, which is
O(lg’ N) in general, can be reduced to O(lg2 N).

In addition to decreasing the encryption costs, CRT
can be applied to the Paillier encryption scheme in or-
der to decrease the decryption costs. We call such
Paillier’s schemes “Paillier-CRT”. Now, we describe
Paillier-CRT with extracting random numbers as fol-
lows.

Cryptosystem 6 (Paillier-CRT with Extracting Ran-
dom Numbers)

Key Generation: Given a security parameter n,
choose n/2-bit primes p and q at random, and
set N = pg. Compute A(N) = lem(p — 1,¢ - 1),
(u,v) € Z? such that up +vq = 1, and d €
Z/A(N) such that d = N-' (mod A(N)). Let
d, = dmod(p—-1) and d; = dmod (g - 1).
Then, the public key is pk = N and the secret
key is sk = (p,q,u,v, dp,dg, AN)).

Encryption: To encrypt a message m € Z/N, choose
r € (Z/N)* at random, and compute the cipher-
text ¢ € (Z/N?Y* such that

c=&r,m)=r"(1 + mN) mod N2.
Decryption: To obtain the message m € Z/N, com-

pute (¥p,yg) = (c”~! mod p?, 4! mod ¢?) and
(M, Mq) = (Lp(.)’p), Lq()’q))- Then,

= —(vM,, + uM,) mod N.

To extract the random number r € (Z/N)*, com-
pute (rp,ry) = (c% mod p,c% mod g). Then,

r =vqrp + upr, mod N.

We call the private CRT exponents (d,, d,) “the in-
version keys” in the Paillier encryption function.

4 The Proposed Variants on Key Genera-
tion

In this section, we focus on fast inversion of the Pail-
lier encryption function. Especially, we point out fast
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extracting random numbers used in the scheme. As a
similar fashion to the variants [22, 8] of the RSA en-
cryption scheme, CRT can be also applied to the Pail-
lier encryption scheme, in order to decrease the de-
cryption costs.

In the Paillier encryption scheme, the secret key
d € (Z/A(N))*, which is used for computing random
numbers, is defined as dN = 1 (mod A(N)), where
A(N) = lem(p - 1,4 — 1). From a CRT point of view,
we obtain the following equations:

Nd, = 1
Nd, = 1

(mod (p - 1)),
(mod (g - 1)).
Notice that the converse is not true by gcd(p—1,g-1) >

2. Over the rational integer ring Z, the equations can
be represented as

1]

Nd,
Nd,

L+ky(p-1), ¢
1+ k(g - 1), ey

for some integers k, and k.
As a simple (and faulty) way, since the equation (1)
is equivalent to
L+k,(p-1)
g = ————
pd,

over the rational number field Q, we substitute it for
the equation (2). We have the following equation:

L+k,(p-1) 1+k,(p—-1)
d_.._".__=1+k(-—-————1).
Pdq pd, ? pd,

Then, the equation is quadratic on p:
dakyop? + (dpky ~ dgkp —kpky—d, +dy)p+kpk,—kg = 0.

With well-known formula for quadratic equations over
R, all solutions of the equation (4) can be formed by

_-Ax VB
- 2qup

over the real ficld R, where A = d,k, — dyk, — kyk, —
dp + d, and B = (dpk, — dpk, — kpk, — dpy + dg)? —
4dgky(kpky — kg). Since p is prime over Z, it must be
satisfied the following three conditions:

1. B is square of some integers, that is, VB € Z.
2. ~A- VBor-A + VBisa positive integer.
3. 2d,k, divides either —A — VB or -A + VB.

However, to construct algorithms satisfying such con-
ditions could be harder. Moreover, there might be no
guarantee of polynomial-time, as far as designing them



via the integers (d,, dg, kp, k;). We note that if one fol-
lows the original key generation of the Paillier encryp-
tion scheme, then p and ¢q are always satisfy the three
conditions.

To avoid the argument above, we use the follow-
ing technique. Since N = pg = (p-1+1)qg = g
(mod (p-1))and N = p (mod (g — 1)), we can reduce
the equation (1) and (2) to as follows:

L+k,(p-1), 3
1+ ky(g—1). @)

qd, =
pdy, =
The equation (3) over Z is equivalent to
_1+k(p-1)
g= 4,

over Q, and we substitute it for the equation (4). We
have the following equation:

1+ky(p-1)

pdy, =1 +ky( 4,

-1).

Then, the equation is linear on p, described as follows:

_ kpkg + dpkg — kg —d,
- kpky — d,d,

&)
Therefore, the three conditions, as mentioned before,
are reduced to the following condition:

kpky +dpky —ky—d, =0 (mod (kpky; — dpdy)). (6)
In a similar fashion, the condition on g is as follows:

ok + dok, — k, — d,

kpkq — dpd, M

However, to construct algorithms satisfying the condi-
tion (6) could be harder yet since it might be large both
integers kyk, +dpk, — k, —d, and kykg —dpd,. In order
to design efficient algorithms for the condition (6), we
restrict kyk, — d,d, to as follows:

kokg — dpdy = 1. ®

Then, kyk, +dpk, — kg — d,, is always divided by k,k, —
dpd, = 1. Security of this restriction will be discussed
in Section 5.2 and 5.3.

Let €4, €4,, £, and £, be the bit lengths of d, d,,
kp, and kg, respectively. Since kyk, - d,d; = 1, we
obtain that

fd,, + qu ~ ek,, + ek,- )

The bit lengths of primes p and g, denoted by ¢, and
€, respectively, satisfy the following relations.

€~ b, + max{ty,,€a,}, (10)
£y ~ fkp + max{t,, qu}. (11)
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Then, with the relations (9), (10), and (11), the bit
length of the RSA modulus N = pgq, which is the secu-
rity parameter n, is described as

n = t+6,;

= gd,, + qu + max{fd,, + qu, qu + fk’,’gd,, + qu}

We note that £, and £, must have almost the same size,
since there is the polynomial-time attack [1] on factor-
ing N whereas p < N4 and p < q.

4.1 Schemel

Scheme 1 is based on the Extended Euclidean Algo-
rithm. The following is fundamental theorem in num-
ber theory, which is the key idea of Scheme 1.

Lemma 7 Letaand b be integers such that gcd(a, b) =
1. For any integer h, there exists a unique and efficient
computable integers (up, vy) such that au, + bvy = 1,
where (h — 1)b < uy, < hband (h - 1)a < v, < ha.

We are interesting in 2 = 2. Scheme 1 is as follows:

Cryptosystem 8 The following key generation algo-
rithm takes integers (£4,, t1,) and outputs (p, q, dp, d,).

1. Choose an integer d), of €4, bits.
2. Choose an integer k, of €, bits.

3. By using Lemma 7 with h = 2, compute inte-
gers dy and k, (which are €, and €,, bits, re-
spectively) such that k kg + dpd,y = 1.

Compute p = kpky + dpky — kg — d).
If p is composite, go to 1.
Compute q = kpk, + dok, — k, — d,.

If q is composite, go to 1.

o N & “u A

Return (p,q,d,,d,).

4.2 Scheme?2

Scheme 2 is based on factoring of much smaller than
N. We refer to the book [6] for more details of factor-
ing algorithms. Furthermore, in Scheme 2 we can de-
cide the difference d, — d, for saving storage. Scheme
2 is as follows:

Cryptosystem 9 The following key generation algo-
rithm takes integers (c, t’dp) and outputs (p,q,d)).

1. Choose an integer d,, of £4, bits (with sparse).
2. Compute an integer d, = d,, + c.

3. By using factoring algorithms such as the gen-
eral number field sieve, factorize dyd, + 1 and
assign its factors to integers k, and k,.



4. Compute p = kyky + dpky -k, — d),.
5. If p is composite, go to 1.

6. Compute q = kyk, + dok, — ky — d,.
7. If q is composite, go to 1.

8. Return (p, q, dp, dy).

Although Scheme 2 uses factoring algorithms which
are sub-exponential time, it is feasible in practice. If N
is of 1024 bits, then the target factoring number dpd,+1
is of about 512 bits, which can be factorized in practi-
cal time. The assign to k, and k, in Step 3 is fixed in
Section 5.3.

§ Discussion

In this section, we discuss on fast encryption, the se-
curity of the variants, and security parameters choice.

5.1 Fast Encryption

We have seen fast inversion variants of the Paillier
encryption function. On the other hand, from a stor-
age point of view, compression and short expression of
RSA modulus N have been studied [26, 16, 21, 15, 9].
Main idea of these papers is, given an integer s, to find
an RSA modulus N such that N = pgand N = s E3
for some integer ¢ and primes p and q. Moreover, it
is interesting in the setting s = 0. This means that
the RSA modulus N would be sparse. In fact, this ap-
proach can be applied to fast encryption of the Pail-
lier encryption scheme, since we usually use Repeated
squaring method for computing modular exponentia-
tion. However, it might be hard to combine our pro-
posed schemes with taking sparse RSA moduli ap-
proach.

5.2 The Security of Qur Variants

In order to avoid the attack to RSA-CRT, which is
as mentioned in Section 2.2, d,, and d, in Scheme 1
must be larger than N*734, Similarly, in Y order to avoid
the attack to RSA-CRT with known difference which
is as mentioned in Section 2.2, d,, or d, in our Scheme
2 must be larger than N00%9

5.3 Security Parameters Choice

At first, we give a property on factoring integers,
which can factorize two arbitrary numbers for given
an integer, with high probability.

Lemma 10 For non-negative integers k, s,t such that
s+t =k, let Ni(s,1) be a set of k-bit integers whose
elements have s-bit and k-bit integer factors, that is, for
an element x € Ni(s,t), there exist y and z such that
x = yz, where y and z are s-bit and t-bit (composite
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or prime) numbers, respectively. Then the number of
Ni(s, 1), denoted by #N (s, 1), is asymptotically

k4

2
#N(s, 1) > .
.0 2 s

In particular, the ratio of Ny(s,t) to Ny is at least
1
8stin~ 2"

We skip the details of the proof due to the space lim-
itation. We refer to the full version of this paper. The
proof is based on the Prime Number Theory.

Remark 11 In fact, we can easily obtain an improved
bound

#NH#N,

(2* - 2s-—§)(2t _ 21—-",)

> 25—22t—2 = 21:-4

#Ni (s, ) =

which is exact but not asymptotic, hence, also obtain
an improved ratio > g, where Ni = {x € Z | 2% <
x < 2!} for i € Z. However, these bound and ratio
include the possibility that there are some composite
numbers with special forms such as smooth numbers.

Then, by applying Lemma 10, we propose security

parameters choice as follows. For the security param-
eter n, we recommend to set

fdp = qu = fkp = fk,, =

Rl

Then, when N is of 1024 bits, d,, and d,, are of 256 bits.
Therefore we can avoid the attacks in Section 2.2.
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