ヘビサイドケーブル，トムソンケーブルと関連するソボレフ型不等式の最良定数

亀高 慎倫，武村 一雄（日大生産工），山岸 弘幸（阪大基礎工），
永井 敦（日大生産工），渡辺 宏太郎（防衛大）

伝送線の集中定数モデルであるヘビサイドケーブルとトムソンケーブルの出力電圧の絶対値の最大値の2乗は，入力電圧のパワーソノルムの2乗の正定数倍で上から評価される（ソボレフ型不等式）．最良定数を同路定数の関数として求めた．

第1部では，特性多項式がフルウィッツ多項式であるような高階常微分方程式をフーリエ変換で扱った．グリーン関数が定義するグリーン作用素の$L^2(-\infty, \infty)$から$L^\infty(-\infty, \infty)$への作用素ノルムを特性根と特性係数の有理式で表わした．

第2部では，第1部の結論をヘビサイドケーブルとトムソンケーブルに適用し，その入出力の関係を調べた．

I フルウィッツ型グリーン作用素の作用素ノルム

1 階常微分方程式の境界値問題

任意の$f(t) \in L^2(-\infty, \infty)$に対し，次のような$n$階常微分方程式に対する境界値問題を考える．

$$\begin{align*}
BVP
\{ P(d/dt)u &= f(t) \quad (-\infty < t < \infty) \\
& u^{(i)}(t) \in L^2(-\infty, \infty) \quad (0 \leq i \leq n)
\}
(1.1)
(1.2)
\end{align*}$$

特性多項式

$$P(z) = \prod_{j=0}^{n-1} (z + a_j) = \sum_{j=0}^{n} p_j z^{n-j} \quad (p_0 = 1)$$
(1.3)

は実係数の重根をもたないフルウィッツ多項式とする．すなわち次の同値な3つの仮定のどれかをみたすとする．

仮定 1.1 $a_i \neq a_j \quad (0 \leq i < j \leq n-1), \quad \text{Re} a_j > 0 \quad (0 \leq j \leq n-1)$
仮定1.2 $l, m = 0, 1, 2, \cdots$, $n = l + 2m \geq 1$ に対し
\[a_i \neq a_j \ (0 \leq i < j \leq n - 1), \quad a_j > 0 \ (0 \leq j \leq l - 1) \]
\[a_{l+m+j} = \overline{a}_{l+j}, \quad \text{Re} a_{l+j} > 0, \quad \text{Im} a_{l+j} > 0 \quad (0 \leq j \leq m - 1) \]

仮定1.3

\[\mathrm{G.C.D.}(P(z), P'(z)) = 1, \quad D_k = \left| p_{-i+2j+1} \right| > 0 \quad (k = 1, 2, \cdots, n) \]
ただし $p_k = 0$ ($k < 0$ または $k > n$)。

$f(t)$ のフーリエ変換を
\[f(t) \rightarrow \widehat{f}(\omega) = \int_{-\infty}^{\infty} e^{-\sqrt{-1}\omega t} f(t) dt \]
とする。BVP をフーリエ変換すると $z = \sqrt{-1} \omega$ として
\[\begin{cases} P(z) \hat{u}(\omega) = \hat{f}(\omega) & (-\infty < \omega < \infty) \\ (1 + |\omega|)^n \hat{u}(\omega) \in L^2(-\infty, \infty) \end{cases} \] (1.4)
(1.5)
となる。BVP の唯一つの解は
\[u(t) = \int_{-\infty}^{\infty} G(t-s) f(s) ds \quad (-\infty < t < \infty) \] (1.6)
となる。ただしグリーン関数は
\[G(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\sqrt{-1}t\omega} \hat{G}(\omega) d\omega, \quad \hat{G}(\omega) = 1 / P(z) \] (1.7)
である。

\[|P(z)|^2 = \prod_{j=0}^{l-1} (\omega^2 + a_j^2) \prod_{j=0}^{m-1} \left((\omega + \text{Im} a_{l+j})^2 + (\text{Re} a_{l+j})^2 \right) \left((\omega - \text{Im} a_{l+j})^2 + (\text{Re} a_{l+j})^2 \right) \]
となるので、不等式
\[\delta_1 (1 + |\omega|)^n \leq |P(\sqrt{-1} \omega)| \leq \delta_2 (1 + |\omega|)^n \quad (-\infty < \omega < \infty) \]
が適当な正定数 \(\delta_1, \delta_2 \) について成り立つ。したがって

\[
L^2(-\infty, \infty) \ni f \xrightarrow{G} Gf \in W^{2,n}(-\infty, \infty)
\]

なるグリーン作用素 \(G \) を

\[
(Gf)(t) = \int_{-\infty}^{\infty} G(t-s)f(s)ds \quad (-\infty < t < \infty)
\]

で定義するとき \(G \) は有界作用素である。

\section*{2 結論}

結論は次のようである。

定理 2.1 (1.8) で定義されるグリーン作用素は、ヒルベルト空間 \(L^2(-\infty, \infty) \) からバナッハ空間 \(L^\infty(-\infty, \infty) \) への作用素

\[
L^2(-\infty, \infty) \ni f \quad \rightarrow \quad Gf \in L^\infty(-\infty, \infty)
\]

としての作用素ノルムは

\[
\|G\| = \|G\| = \sqrt{\int_{-\infty}^{\infty} |G(t)|^2dt}
\]

である。

この定理は次のようにいってもよい。

定理 2.2 \(u^{(i)}(t) \in L^2(-\infty, \infty) \) \((0 \leq i \leq n) \) なる任意の \(u(t) \) に対し、\(u(t) \) によらない正定数 \(C \) があって、ソボレフ型不等式

\[
\left(\sup_{-\infty < s < \infty} |u(s)| \right)^2 \leq C \int_{-\infty}^{\infty} |P(d/dt)u(t)|^2 dt
\]

が成り立つ。\(C \) のうち最小のものは

\[
C(n) = \|G\|^2 = \int_{-\infty}^{\infty} |G(t)|^2 dt
\]

である。上の不等式で \(C \) を \(C(n) \) で置きかえるとき、任意の実数 \(t_0 \) と任意の複素数 \(c \) に対し \(u(t) = cU(t-t_0) \) \((-\infty < t < \infty) \) に対して等号が成り立つ。ただし

\[
U(t) = \int_{-\infty}^{\infty} G(t-s)G(-s)ds \quad (-\infty < t < \infty)
\]

である。
最良定数 $C(n)$ は特性根 a_j および特性係数 p_j の有理式である。

定理 2.3

(1) \[C(n) = (-1)^{n+1} \frac{1}{2} \sum_{j=0}^{n-1} \frac{1}{a_j \prod_{k=0, k \neq j}^{n-1} (a_j^2 - a_k^2)} \] \[(2.5) \]

(2) \[C(n) = \frac{(-1)^{n+1}}{2a_0 \cdots a_{n-1} \left| \begin{array}{cccc} a_{j+1}^{2i+1} \\ \vdots \\ 1 \end{array} \right| / \left| \begin{array}{cccc} a_{j}^{2i} \\ \vdots \\ 1 \end{array} \right| } \] \[(2.6) \]

右辺は行列式の比で、分母分子共に $n \times n$ 行列である。分子の行列式の最後の行は $(1, \cdots, 1)$ である。

(3) \[C(n) = \frac{1}{2p_n} \left| \begin{array}{cc} p_{n-2-2i+j} \\ p_{n-1-2i+j} \end{array} \right| \left(0 \leq i, j \leq n-3 \right) / \left| \begin{array}{cc} p_{n-2-2i+j} \\ p_{n-3-2i+j} \end{array} \right| \left(0 \leq i, j \leq n-2 \right) \] \[(2.7) \]
ただし $p_j = 0$ ($j < 0$ または $n < j$) とする。

(2) から (3) を導くには、有限群の表現論に登場する Giambelli の公式 [3] を使う。この定理の詳しい証明は [1] に詳する。最良定数 $C(n)$ を実際に求めるには、(2) または (3) の都合のよい方を使えばよい。もちろん大部分の場合にはどちらも困難である。第 II 部第 2 節で示した、同一素子をカスケード接続した RC フィルタ（トムソンソルゲル）の場合は興味深いい。この場合、特性根は特性多項式の次数 n と特性根の番号 j の関数としては簡単な表示式をもっているが、それを使って (2) により $C(n)$ の値を求めることは一般には困難である。しかし特性係数は簡単な自然数となり (3) により $C(n)$ の値を求めることはやさしい。

$n = 1, 2, 3, 4, 5$ について、$C(n)$ の具体形を以下に記述する。

\[C(1) = \frac{1}{2a_0} = \frac{1}{2p_1} \]

\[C(2) = -\frac{1}{2a_0a_1} \left| \begin{array}{cc} a_0 & a_1 \\ 1 & 1 \end{array} \right| / \left| \begin{array}{cc} a_0^2 & a_1^2 \\ a_0 & a_1 \end{array} \right| = \frac{1}{2a_0a_1(a_0 + a_1)} = \frac{1}{2p_1p_2} \]

\[C(3) = \frac{1}{2a_0a_1a_2} \left| \begin{array}{ccc} a_0 & a_1 & a_2 \\ a_0^2 & a_1^2 & a_2^2 \\ 1 & 1 & 1 \end{array} \right| / \left| \begin{array}{ccc} a_0^2 & a_1^2 & a_2^2 \\ a_0 & a_1 & a_2 \\ a_0^4 & a_1^4 & a_2^4 \end{array} \right| = \]

\[\frac{a_0 + a_1 + a_2}{2a_0a_1a_2(a_0 + a_1)(a_0 + a_2)(a_1 + a_2)} = \frac{1}{2p_3} \frac{p_1}{p_2} \]

\[= \frac{p_1}{2p_3(p_1p_2 - p_3)} \]
\[
C(4) = -\frac{1}{2a_0 a_1 a_2 a_3} \begin{vmatrix}
 a_0 & a_1 & a_2 & a_3 \\
 a_0^5 & a_1^5 & a_2^5 & a_3^5 \\
 a_0^7 & a_1^7 & a_2^7 & a_3^7 \\
\end{vmatrix} \begin{vmatrix}
 1 & 1 & 1 & 1 \\
 a_0^2 & a_1^2 & a_2^2 & a_3^2 \\
 a_0^4 & a_1^4 & a_2^4 & a_3^4 \\
 1 & 1 & 1 & 1 \\
\end{vmatrix}
= \frac{1}{2p_4} \begin{vmatrix}
 p_2 & p_3 \\
 p_1 & p_2 & p_3 \\
 0 & p_0 & p_1 \\
\end{vmatrix}
= \frac{p_1 p_2 - p_3}{2p_4(p_1 p_2 p_3 - p_3^2 - p_1^2 p_4)}
\]

\[
C(5) = \frac{1}{2a_0 a_1 a_2 a_3 a_4} \begin{vmatrix}
 a_0 & a_1 & a_2 & a_3 & a_4 \\
 a_0^5 & a_1^5 & a_2^5 & a_3^5 & a_4^5 \\
 a_0^7 & a_1^7 & a_2^7 & a_3^7 & a_4^7 \\
\end{vmatrix} \begin{vmatrix}
 1 & 1 & 1 & 1 & 1 \\
 a_0^3 & a_1^3 & a_2^3 & a_3^3 & a_4^3 \\
 a_0^6 & a_1^6 & a_2^6 & a_3^6 & a_4^6 \\
 1 & 1 & 1 & 1 & 1 \\
\end{vmatrix}
= \frac{1}{2p_5} \begin{vmatrix}
 p_3 & p_4 & p_5 \\
 p_1 & p_2 & p_3 \\
 0 & p_0 & p_1 \\
\end{vmatrix}
= \frac{p_1 p_2 p_3 - p_3^2 - p_1^2 p_4 - p_1 p_5}{2p_5(p_1 p_2 p_3 p_4 - p_3^2 p_4 - p_1^2 p_5 + p_2 p_3 p_5 + 2p_1 p_4 p_5 - p_5^2)}
\]
3 グリーン関数

第1節で導入されたグリーン関数の具体形を求めよう。
ヘビサイド階段関数

\[Y(t) = \begin{cases} 1 & (0 \leq t < \infty) \\ 0 & (-\infty < t < 0) \end{cases} \]

を導入する。Rea > 0 に対して, 次の関係が成り立つ。

\[Y(t) e^{-at} \xrightarrow{\sim} (z + a)^{-1} \]

部分分数展開

\[\frac{1}{P(z)} = \sum_{j=0}^{n-1} \frac{1}{P'(-a_j)} \frac{1}{z - a_j} = \begin{vmatrix} (-a_j)^i \\ \cdots (z + a_j)^{-1} \cdots \end{vmatrix} \]

により次の定理が得られる。

定理 3.1 \(G_j(t) = Y(t)e^{-a_jt} \) \(-\infty < t < \infty, \ 0 \leq j \leq n-1 \) とする。グリーン関数は次の表現をもつ。

(1) \(G(t) = \sum_{j=0}^{n-1} \frac{1}{P'(-a_j)} G_j(t) \) \((3.1) \)

(2) \(G(t) = (-1)^{n+1} \begin{vmatrix} a_j^i \\ \cdots G_j(t) \cdots \end{vmatrix} \) \((3.2) \)

(3) \(G(t) = (G_0 \ast \cdots \ast G_{n-1})(t) \) \((3.3) \)

\[(f * g)(t) = \int_{-\infty}^{\infty} f(t-s) g(s) ds \quad (-\infty < t < \infty) \]

は \(f(t) \) と \(g(t) \) の合成積である。

(3) より \(a_j > 0 \) \((0 \leq j \leq n-1) \) の場合には

\[G(t) \begin{cases} > 0 & (0 \leq t < \infty) \\ = 0 & (-\infty < t < 0) \end{cases} \]

となる。
4. ソボレフ型不等式

定理 2.2 証明 (1.6) で t と s を入れかえ、両辺をシュワルツの不等式で評価すると

$$|u(s)|^2 \leq \int_{-\infty}^{\infty} |G(s-t)|^2 dt \int_{-\infty}^{\infty} |f(t)|^2 dt$$

となる。$f(t) = P(d/dt)u(t)$ および

$$\int_{-\infty}^{\infty} |G(s-t)|^2 dt = \int_{-\infty}^{\infty} |G(t)|^2 dt = \|G\|^2$$

に注意すると、ソボレフ型不等式

$$(\sup_{-\infty<s<\infty} |u(s)|)^2 \leq \|G\|^2 \int_{-\infty}^{\infty} |P(d/dt)u(t)|^2 dt$$

を得る。

一方、$f(t) = G(-t)$ ($-\infty < t < \infty$) として BVP の特別な解 $u(t) = U(t)$ は

$$U(t) = \int_{-\infty}^{\infty} G(t-s)G(-s) ds \quad (-\infty < t < \infty)$$

となる。特に $t = 0$ とすると

$$U(0) = \int_{-\infty}^{\infty} |G(-s)|^2 ds = \|G\|^2$$

となる。$u(t) = U(t)$ を不等式 (4.1) に適用すると

$$\|G\|^4 = (U(0))^2 \leq (\sup_{-\infty<s<\infty} |U(s)|)^2 \leq \|G\|^2 \int_{-\infty}^{\infty} |P(d/dt)U(t)|^2 dt = \|G\|^4$$

となる。従って次の関係式を得る。

$$\left(\sup_{-\infty<s<\infty} |U(s)|\right)^2 = \|G\|^2 \int_{-\infty}^{\infty} |P(d/dt)U(t)|^2 dt$$

定理 2.2 証明を終る。
II ヘビサイドケーブルとトムソンケーブル

1 ヘビサイドケーブルとトムソンケーブル

図のような4端子LRG回路を考える。これはローパスフィルタである。

L_i, R_i, C_i, G_iはそれぞれインダクタンス、抵抗、コンデンサ容量、漏洩コンダクタンスである。いずれも非負定数である。入力電圧を$u_{i-1} = u_{i-1}(t)$、出力電圧を$u_i = u_i(t)$、コイルと抵抗を流れる電流を$v_i = v_i(t)$とする。

このような4端子回路を$i = 1, \cdots, n$とカスケード接続する。

HC (ヘビサイドケーブル) : $L_i, R_i, C_i, G_i > 0$ $(1 \leq i \leq n)$

と

TC (トムソンケーブル) : $L_i = G_i = 0, R_i, C_i > 0$ $(1 \leq i \leq n)$

の場合を考える。最終出力端子は開放端とする。

ファラデーの誘導の法則とオームの法則、および電流の保存則より

\[
\begin{aligned}
(L_i D + R_i) v_i &= u_{i-1} - u_i \\
(C_i D + G_i) u_i &= v_i - v_{i+1} \quad (1 \leq i \leq n, -\infty < t < \infty)
\end{aligned}
\]
が成り立つ。ただし \(D = d/dt \), \(v_{n+1} = 0 \) である。入力 \(u_0(t) \) と出力 \(u_n(t) \) の関係を調べる。

\[
\mathbf{u} = \left(u_1, \ldots, u_n \right), \quad \mathbf{v} = \left(v_1, \ldots, v_n \right)
\]

とし、\(n \times n \) 対角行列

\[
\mathbf{L} = \left(L_i \delta_{ij} \right), \quad \mathbf{R} = \left(R_i \delta_{ij} \right), \quad \mathbf{C} = \left(C_i \delta_{ij} \right), \quad \mathbf{G} = \left(G_i \delta_{ij} \right)
\]

\(n \times n \) ベキ零行列

\[
\mathbf{N} = \begin{pmatrix} 0 & 1 & \cdots & \cdots & 1 \\ 0 & \ddots & \ddots & \ddots & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}
\]

を導入する。\(u_0(t) \in L^2(-\infty, \infty) \) に対して、次のような境界値問題を考える。

BVP

\[
\begin{cases}
(LD + R)\mathbf{v} + (I - t\mathbf{N})\mathbf{u} = u_0(t)^t(1, 0, \cdots, 0) \\
(CD + G)\mathbf{u} - (I - \mathbf{N})\mathbf{v} = 0 \quad (-\infty < t < \infty)
\end{cases}
\]

\(v, Dv, u, Du \in L^2(-\infty, \infty) \) \quad (1.5)

(1.5) のうち TC の場合には \(Dv \in L^2(-\infty, \infty) \) は要求しない。\(v \) を消去すると

\[
(LD + R)(I - \mathbf{N})^{-1}(CD + G)\mathbf{u} + (I - t\mathbf{N})\mathbf{u} = u_0(t)^t(1, 0, \cdots, 0)
\]

\((-\infty < t < \infty) \) \quad (1.6)

となる。

\[
u_0(t) = \left\{ \begin{array}{l}
\left(\prod_{i=1}^{n}(L_iC_i) \right)f(t) \quad \text{(HC)} \\
\left(\prod_{i=1}^{n}(R_iC_i) \right)f(t) \quad \text{(TC)}
\end{array} \right.
\]

とする。フーリエ変換すると \(z = \sqrt{-1}\omega \) として

BVP~

\[
\begin{cases}
(Lz + R)\hat{\mathbf{v}} + (I - t\mathbf{N})\hat{\mathbf{u}} = \tilde{u}_0(\omega)^t(1, 0, \cdots, 0) \\
(Cz + G)\hat{\mathbf{u}} - (I - \mathbf{N})\hat{\mathbf{v}} = 0 \quad (-\infty < \omega < \infty)
\end{cases}
\]

(1.7) (1.8)
となる。具体的に表わすと

BVP

\[
\begin{pmatrix}
L_1 z + R_1 \\ \vdots \\ L_n z + R_n
\end{pmatrix}
\begin{pmatrix}
1 & 1 & \cdots & 1 \\
-1 & -1 & \cdots & -1 \\
& & & \ddots & \vdots \\
& & & & \ddots & 1 \\
& & & & & -1
\end{pmatrix}
\begin{pmatrix}
\hat{v}_1 \\
\vdots \\
\hat{v}_n
\end{pmatrix}
= \hat{u}_0(\omega)
\begin{pmatrix}
1 \\
0 \\
\vdots \\
0
\end{pmatrix}
\]

となる。次の補題が成り立つ。

補題 1.1

\[
\begin{pmatrix}
L_1 z + R_1 \\ \vdots \\ L_n z + R_n
\end{pmatrix}
\begin{pmatrix}
1 & 1 & \cdots & 1 \\
-1 & -1 & \cdots & -1 \\
& & & \ddots & \vdots \\
& & & & \ddots & 1 \\
& & & & & -1
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
\vdots \\
0
\end{pmatrix}
= 1
\]

補題 1.1 証明 左辺の行列式の値は、2n 行と n 列および n 行と 2n - 1 列をぬいてできる 2(n - 1) × 2(n - 1) 行列の行列式の値に等しい。この操作を続けると、結局左辺は行列式

\[
\begin{vmatrix}
L_1 z + R_1 & 1 \\
-1 & 0
\end{vmatrix}
= 1
\]

に等しくなる。補題 1.1 証明を終る。
特性多項式 $P(z)$ を導入する。HC の場合には

\[
P(z) = \prod_{i=1}^{n}(L_i C_i)
\]

(TC)

である。補題 1.1 を使って、BVP を \(\hat{u} = \hat{u}_n \) についてクラメールの公式で解くと

\[
\hat{u}(\omega) = \frac{1}{P(z)} \hat{f}(\omega)
\]

となる。したがって

\[
P(z) \hat{u}(\omega) = \hat{f}(\omega)
\]

となる。これは

\[
P(D) u = f(t)
\]

を意味する。第 I 部で扱ったものの重要な実例である。

補題 1.2 $P(z)$ はフルウィッツ多項式である。
補題 1.2 証明 特性多項式の因数分解形は

\[P(z) = \begin{cases} \prod_{j=0}^{2n-1} (z + a_j) & (HC) \\ \prod_{j=0}^{n-1} (z + a_j) & (TC) \end{cases} \]

である。\(z = -a_j \ (0 \leq j \leq 2n-1) \)に対して、\(P(z) = 0 \)となる。したがって、2n 次元ベクトル \(\langle v, u \rangle \neq \langle 0, 0 \rangle \) があって

\[\begin{cases} (Lz + R)v + (I - {}^tN)u = 0 \\ (Cz + G)u - (I - N)v = 0 \end{cases} \]

が成り立つ。

\[\begin{cases} (v^*Lv + v^*Rv)z + v^*Rv = -v^*(I - {}^tN)u = -u^*(I - N)v \\ (u^*Cu)z + u^*Gu = u^*(I - N)v \end{cases} \]

が従う。関係式

\[\left(v^*Lv + u^*Gu \right) (\text{Re} z) = - \left(v^*Rv + u^*Gu \right) \]

と不等式

\[v^*Lv + u^*Gu > 0, \quad v^*Rv + u^*Gu > 0 \]

より \(\text{Re} z < 0 \) が分かる。補題 1.2 証明を終る。

補題 1.3 (予想) ヘビサイドケーブルの場合

\[L_i, C_i > 0, \quad R_i, G_i \geq 0 \quad (1 \leq i \leq n), \quad \sum_{i=1}^{n} (R_i + G_i) > 0 \]

すなわち \(R_i, G_i \) のうち少なくとも 1 つ正のものがあれば \(P(z) \) はフルウィッツ多項式である。

補題 1.3 は \(n = 1 \) の場合は自明である。実際、\(R_1 > 0 \) または \(G_1 > 0 \) なので

\[L_1 C_1 P(z) = (L_1 z + R_1)(C_1 z + G_1) + 1 \]

より \(P(z) \) はフルウィッツ多項式である。
$n=2$の場合、マスマティカを使って計算することにより正しいことが示される。
R_1, R_2, G_1, G_2のうち少なくとも1つが正としている。特性多項式は

\[
L_1L_2C_1C_2P(z) = \begin{vmatrix}
 zL_1 + R_1 & 1 & 1 \\
 zL_2 + R_2 & -1 & 1 \\
 -1 & 1 & zC_1 + G_1 \\
 1 & -1 & zC_2 + G_2
\end{vmatrix}
\]

\[p_0z^4 + p_1z^3 + p_2z^2 + p_3z + p_4\]

ただし

\[p_4 = R_1R_2G_1G_2 + R_1G_1 + (R_1 + R_2)G_2 + 1 \geq 1\]

である。

\[L_1L_2C_1C_2P(0) = p_4 \geq 1\]

より$z=0$は特性根でない。0でない純虚数の特性根$z = \sqrt{-1}y (y \neq 0)$をもったすると

\[y^4 - p_2y^2 + p_4 - \sqrt{-1}y(p_1y^2 - p_3) = 0\]

となる。したがって$Y = y^2$とおいて

\[
\begin{cases}
p_0Y^2 - p_2Y + p_4 = 0 \\
p_1Y - p_3 = 0
\end{cases}
\]

が成り立つ。終結式をマスマティカで計算する。

\[
\begin{vmatrix}
p_0 & -p_2 & p_4 & 0 \\
p_1 & -p_3 & 0 & p_3 \\
0 & p_1 & -p_3 & 0
\end{vmatrix} = p_0p_3^3 + p_1p_4^3 - p_1p_2p_3 \geq \left(R_1^2L_2^2 + R_2^2L_1^2\right)C_1C_2^3 + \left(G_1^2C_2^2 + G_2^2C_1^2\right)L_1^3L_2 > 0
\]

となり矛盾である。

2 トムソンケーブルの具体例

次のような簡単な場合を考えよう。$0 < s < \infty$をパラメータとして

\[R_1 = s^{-1}, \quad R_i = 1 \quad (2 \leq i \leq n), \quad C_i = 1 \quad (1 \leq i \leq n)\]
とする。

$s = 1$ なら L型フィルタ

\[\begin{array}{c}
\text{\ } \\
R = 1 \\
C = 1 \\
\end{array} \]

の n 段カスケード接続である。

また、$s = 2$ のときは T 型フィルタ

\[\begin{array}{cc}
\text{\ } & \text{\ } \\
R = 1/2 & R = 1/2 \\
C = 1 & \text{\ } \\
\end{array} \]

の n 段カスケード接続に等価である。最終段出力端子は開放するので、最終段右側の抵抗は取り去っても同じである。

このとき特性多項式は

\[P(z) = Q_n(s; z) = \det \left(zI + C^{-1}(I - N)R^{-1}(I - {^t}N) \right) \]

である。

\[C^{-1} = I, \quad R^{-1} = I + (s - 1) \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} \]

\[(I - N) \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} (I - {^t}N) = \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} \]

\[(I - N)(I - {^t}N) = \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \ddots \\ -1 & & 2 & -1 \end{pmatrix} \]

となるので、$z + 2 = 2x$ として

\[Q_n(s; z) = \begin{vmatrix} 2x + s - 1 & -1 & & \\ -1 & 2x & -1 & \\ & \ddots & \ddots & \ddots \\ & & 2x & -1 \\ & & -1 & 2x - 1 \end{vmatrix} \]
となる。特に \(s = 1,2 \) のとき, \(T_n(x) \), \(U_n(x) \) はそれぞれ第 1 種および第 2 種チェビシェフ多項式として,

\[
Q_n(1; z) = \begin{vmatrix} 2x & -1 \\ -1 & \ddots \\ \vdots & \ddots & 2x \\ -1 & 2x & -1 \end{vmatrix} = U_{n+1}(x) - U_n(x)
\]

\[
Q_n(2; z) = \begin{vmatrix} 2x + 1 & -1 \\ -1 & \ddots \\ \vdots & \ddots & 2x \\ -1 & 2x & -1 \end{vmatrix} = (U_{n+1}(x) - U_n(x)) + (U_n(x) - U_{n-1}(x)) = U_{n+1}(x) - U_{n-1}(x) = 2T_n(x)
\]

となる。\(Q_n(s; z) \) は \(s \) について 1 次式でことに注意すると、次式を得る。

\[
Q_n(s; z) = (s - 1) Q_n(2; z) - (s - 2) Q_n(1; z) = 2(s - 1) T_n(x) - (s - 2) (U_{n+1}(x) - U_n(x))
\]

テーラー展開を

\[
Q_n(s; z) = \sum_{j=0}^{n} q_{nj}(s) z^{n-j}
\]

とする。

\[
q_{nj}(s) = (s - 1) q_{nj}(2) - (s - 2) q_{nj}(1) \quad (0 \leq j \leq n)
\]

となるので \(q_{nj}(2), q_{nj}(1) \) を求めればよい。\(Q_n = Q_n(s; z) \) は次の漸化式

\[
\begin{cases}
Q_{n+1} - (z + 2) Q_n + Q_{n-1} = 0 \quad (n = 1, 2, 3, \cdots) \\
Q_0 = s, \quad Q_1 = z + s
\end{cases}
\]

で表わされる。
\[s = 1 \] とすると

<table>
<thead>
<tr>
<th>(n)</th>
<th>(Q_n(1; z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>(z + 1)</td>
</tr>
<tr>
<td>2</td>
<td>(z^2 + 3z + 1)</td>
</tr>
<tr>
<td>3</td>
<td>(z^3 + 5z^2 + 6z + 1)</td>
</tr>
<tr>
<td>4</td>
<td>(z^4 + 7z^3 + 15z^2 + 10z + 1)</td>
</tr>
<tr>
<td>5</td>
<td>(z^5 + 9z^4 + 28z^3 + 35z^2 + 15z + 1)</td>
</tr>
<tr>
<td>6</td>
<td>(z^6 + 11z^5 + 45z^4 + 84z^3 + 70z^2 + 21z + 1)</td>
</tr>
<tr>
<td>7</td>
<td>(z^7 + 13z^6 + 66z^5 + 165z^4 + 210z^3 + 126z^2 + 28z + 1)</td>
</tr>
<tr>
<td>8</td>
<td>(z^8 + 15z^7 + 91z^6 + 286z^5 + 495z^4 + 462z^3 + 210z^2 + 36z + 1)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[s = 2 \] とすると

<table>
<thead>
<tr>
<th>(n)</th>
<th>(Q_n(2; z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>(z + 2)</td>
</tr>
<tr>
<td>2</td>
<td>(z^2 + 4z + 2)</td>
</tr>
<tr>
<td>3</td>
<td>(z^3 + 6z^2 + 9z + 2)</td>
</tr>
<tr>
<td>4</td>
<td>(z^4 + 8z^3 + 20z^2 + 16z + 2)</td>
</tr>
<tr>
<td>5</td>
<td>(z^5 + 10z^4 + 35z^3 + 50z^2 + 25z + 2)</td>
</tr>
<tr>
<td>6</td>
<td>(z^6 + 12z^5 + 54z^4 + 112z^3 + 105z^2 + 36z + 2)</td>
</tr>
<tr>
<td>7</td>
<td>(z^7 + 14z^6 + 77z^5 + 210z^4 + 294z^3 + 196z^2 + 49z + 2)</td>
</tr>
<tr>
<td>8</td>
<td>(z^8 + 16z^7 + 104z^6 + 352z^5 + 660z^4 + 672z^3 + 336z^2 + 64z + 2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

となる。\(q_{nj} \)を上から\(n \)段目、左から\(j \)番目にかくと、それぞれ次のような三角形が得られる。
$s = 1$ のとき

\[
\begin{array}{cccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 3 & 1 & & & \\
1 & 5 & 6 & 1 & & \\
1 & 7 & 15 & 10 & 1 & \\
1 & 9 & 28 & 35 & 15 & 1 \\
1 & 11 & 45 & 84 & 70 & 21 & 1 \\
1 & 13 & 66 & 165 & 210 & 126 & 28 & 1 \\
1 & 15 & 91 & 286 & 495 & 462 & 210 & 36 & 1 \\
\end{array}
\]

$s = 2$ のとき

\[
\begin{array}{cccccc}
2 & & & & & \\
1 & 2 & & & & \\
1 & 4 & 2 & & & \\
1 & 6 & 9 & 2 & & \\
1 & 8 & 20 & 16 & 2 & \\
1 & 10 & 35 & 50 & 25 & 2 \\
1 & 12 & 54 & 112 & 105 & 36 & 2 \\
1 & 14 & 77 & 210 & 294 & 196 & 49 & 2 \\
1 & 16 & 104 & 352 & 660 & 672 & 336 & 64 & 2 \\
\end{array}
\]
これらの三角形を観察することにより
\[
\begin{align*}
q_{nn}(s) &= s \quad (n = 0, 1, 2, \ldots) \\
q_{n0}(s) &= 1 \quad (n = 1, 2, 3, \ldots) \\
q_{n1}(s) &= 2n - 2 + s \quad (n = 1, 2, 3, \ldots) \\
q_{n+1,j+1}(s) - 2q_{nj}(s) + q_{n-1,j-1}(s) &= q_{nj+1}(s) \quad (n = 1, 2, 3, \ldots, 1 \leq j \leq n-1)
\end{align*}
\]
がわかる。\(Q_n(s; z)\)がみたす漸化式より証明することも簡単である。\(q_{nj}(s) > 0\) (0 \leq j \leq n)もすぐわかる。

\[
Q_n(s; z) = \prod_{j=0}^{n-1}(z + a_j(s))
\]
と因数分解する。

- \(s = 1\) のとき
 \[
a_j(1) = 2(1 - \cos(\theta_j(1))) = 4 \sin^2(\theta_j(1)/2), \quad \theta_j(1) = \frac{2j + 1}{2n + 1} \pi \quad (0 \leq j \leq n - 1)
\]
 となる。0 < \(\theta_0(1)/2 < \cdots < \theta_{n-1}(1)/2 < \pi/2\) より 0 < \(a_0(1) < a_1(1) < \cdots < a_{n-1}(1) < 4\) である。

- \(s = 2\) のとき
 \[
a_j(2) = 2(1 - \cos(\theta_j(2))) = 4 \sin^2(\theta_j(2)/2), \quad \theta_j(2) = \frac{2j + 1}{2n} \pi \quad (0 \leq j \leq n - 1)
\]
 となる。同じく 0 < \(\theta_0(2)/2 < \cdots < \theta_{n-1}(2)/2 < \pi/2\) より 0 < \(a_0(2) < a_1(2) < \cdots < a_{n-1}(2) < 4\) である。

参考文献

[3] 本間 泰史, 「有限群の表現，対称群の表現の基礎」
 www.math.waseda.ac.jp/homma/download/representation.pdf