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Stationary isothermic surfaces and some

characterizations of the hyperplane *

Shigeru Sakaguchi'

1 Introduction

.This is based on the author’s recent work with R. Magnanini [MS2, MS3)]. Let  be
a domain in RY with N > 3, and let u = u(z, t) be the unique bounded solution of
the following problem for the heat equation:

Su=Au in 2 x (0,+00), (1.1)
u=1 on 9N x (0,+00), (1.2)
u=0  on Qx {0} (1.3)

The problem we consider is to characterize the boundary 992 such that the solution
u has a stationary isothermic surface, say I'. A hypersurface I" in €2 is said to be a
stationary tsothermic surface of u if at each time ¢ the solution u remains constant
on I' ( a constant depending on t ). Examples we easily notice are isoparametric hy-
persurfaces. Namely, I' and 92 are either parallel hyperplanes, concentric spheres,
or concentric spherical cylinders. This complete classification of isoparametric hy-
persurfaces was given by Levi-Civita [LC] and Segre [Seg).

Almost complete characterizations of the sphere have already been obtained by
[MS1, .MS2] with the help of Aleksandrov’s sphere theorem [Alek]. In this note,
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we consider some characterizations of the hyperplane. Assume that Q2 satisfies the

uniform exterior sphere condition and 2 is given by

Q={z=(2,zn) €RY : zy > p(z') }, (1.4)

where ¢ = ¢(z') (z' € R¥71) is a continuous function on RV-1, We recall that Q
satisfies the uniform exterior sphere condition if there exists a number ¢y > 0 such
that for every £ € 9Q there exists a ball B, (y) satisfying B,,(y) N Q = {¢}, where

B.,(y) denotes an open ball centered at y € RY and with radius o > 0. Then we
have

Theorem 1.1 ([MS3]) Assume that there exists a stationary isothermic surface ' C
Q2. Then, under one of the following conditions (i), (ii), and (iii), 8Q must be a
hyperplane.

i) N=3
(i) N >4 and ¢ is globally Lipschitz continuous on RN71,

(iii) N > 4 and there exists a non-empty open subset A of OS2 such that on A either
Hopo 2 00rk; <0 forallj=1,---,N —1, where Hpq and k1, -+ ,KN_1
are the mean curvature of 02 and the principal curvatures of OS2, respectively,

with respect to the upward normal vector to 0.

Remark. When N = 2, this problem is easy. Since the curvature of the curve 02
is constant from (2.3) in Lemma 2.1 in Section 2 of this note, we see that 92 must
be a straight line.

2 Outline of the proof of Theorem 1.1

In this section we give an outline of the proof. For the details, see [MS2, MS3]. Let
d = d(z) be the distance function defined by

d(z) = dist (z,09), =z €. (2.1)

We start with a lemma.
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Lemma 2.1 The following assertions hold:

(1) T ={ (@ v¢x)) € RN : 2’ € RN} for some real analytic function ¢ =
P(z') (' € RY7Y);

(2) There ezists a number R > 0 such that d(x) = R for every z € T';

(3) ¢ is real analytic and the mapping: ON > € —» z(§) = €+ Rv(€) e T is a
diffeomorphism, where v(€) denotes the upward unit normal vector to 90 at
& € 0N, that is, 92 and T are parallel hypersurfaces with distance R;

(4) the following inequality holds:

1
—ESRj(§)<%(j=1,---,N—1) for cvery £ €89, (2.2)

where 1o > 0 is the radius of the uniform exterior sphere condition for Q;

(5) there exists a number ¢ > 0 satisfying

N-1
1 R
H (—R— — nJ(§)) =c for every £ € ONQ. (2.3)
J=1
Proof. The strong maximum principle implies that EZLN < 0, and (1) holds. Since
T is stationary isothermic, (2) follows from a result of Varadhan [Va]:

-%log W(z,s) — d(z) as s — oo,
where W (z, s) = s [ u(z,t)e~**dt for s > 0. The inequality —;+ < &;(£) in (2.2)
follows from the uniform exterior sphere condition for 2. See Lemma 2.2 of [MS2]
together with Lemma 3.1 of [MS1] for the remainder. O

Let us proceed to the proof of Theorem 1.1. Set

r*={xe9:d(x)=§}. (2.4)

Denote by «} and K; (j = 1,---,N — 1) the principal curvatures of I'* and T,
respectively, with respect to the upward unit normal vectors. Then, the mean

curvatures Hr« and Hr of I'™ and I' are given by

1 N-1 1 N-1
Hee= o1 205 ond Hro= g 2
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respectively. These principal curvatures have the following relationship:

*

ki R
1+ &~ 1+ RE;

Iij"—'

G=1,---,N-1). (2.5)

Let u = cRN~!. Then, it follows from (2.3) and (2.5) that

N- 1

N-1 N-1 1 EK,*
[t - Rej) =w, JJ(1+ R&;) ==, and +§_ I=p (2.6)
=1 j=1 # j=1 2%

We distinguish three cases:
(Dp>1, () p<1, and (III) p = 1.

Let us consider case (I) first. By the arithmetic-geometric mean inequality and the

first equation of (2.6) we have

- .

N-1 N—1
(1——an)2{1—[(1—an)} = uFT > 1.

1 N-1
1 - RHpa = %

This shows that

Hpa < —% (yz‘v*—‘x _ 1) <0. (2.7)

Since

(N - 1)H3Q = div (——VL—) in RN—I,

V1+|Vp|?
by using the divergence theorem we get a contradiction as in the proof of Theorem
3.3 in [MS2]. In case (II), by the arithmetic-geometric mean inequality and the

second equation of (2.6) we have

N-1
1+ RHp = —}:(1+an) > {H(l—i—Rn,)} =p T > 1
This shows that )
Hr> = (,u*zv—l - 1) >0, (2.8)

which yields a contradiction similarly.

Thus, it remains to consider case (III). By the above arguments we have

Hsa < 0 < Hy. (2.9)
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Let us consider case (i) of Theorem 1.1 first. Since N = 3 and u = 1, it follows from
the third equation of (2.6) that

2Hpr» = k] + k3 = 0.

We observe that I'™* is a graph of a function on R2. Therefore, by the Bernstein’s
theorem for the minimal surface equation, I'* must be a hyperplane. This gives the
conclusion desired. (See [GT, Giu] for the Bernstein’s theorem.)

Secondly, we consider case (iii) of Theorem 1.1. We have

1 N-1

N-1 N-1 .
1—RH3Q“—“N":—1' (I—RKJ)Z{H(l—RKJ)} = 1.

j=1 j=1
Hence, condition (iii) implies that
kj=0onA(G=1,.--,N-1).
Then by the analyticity of 9Q we get
ki =0 ondQ(j=1,--- ,N-1),

which shows that 02 must be a hyperplane.

Thus it remains to consider case (ii) of Theorem 1.1. In this case, there exists a
constant L > 0 satisfying
sup |Vg| =L < oo.

RN-1

Then, it follows from (1) and (3) of Lemma 2.1 that

sup |V¢| = sup |Vy| =L < c0. (2.10)
RN-1 ,

RN-1

Hence, in view of this and (3) of Lemma 2.1, we can define a number K* > 0 by
K*=inf{K >0:¢9 < ¢+ K in RV} (2.11)

Then we have ,
<Y <p+K* in RV (2.12)

We define a real analytic function h on RV~ by

h(z') = p(z') + K* for ' e RV L.
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Moreover, by writing

Vh : Vi
v M) = ___YY
o hP) and M(y) = div ( Tovon ¢|2) ;

from (2.9) and (2.12) we have

M(R) = div(

M(h) <0< M(y) and ¥ < h in RV (2.13)

Hence, the method of sub- and super-solutions with the help of (2.10) yields that
there exists v € C®(RV 1) satisfying
M(@w)=0 and ¥y <v<h in RV, and sup |Vv| < .
RN-1

(See [MS3] for the details.) Therefore, Moser’s theorem [Mo], Corollary, p. 591,
implies that v is affine. We set n = Vo € RV-1.

On the other hand, by the definition of K* in (2.11), there exists a sequence {z,}
in RV-! satisfying

i (h(zn) — $(zn) =0, (214)

Define a sequence of functions {¢,} by

on(z) = Rz’ + 2n) — h(zn) (= 0(z'+ 20) — ¢(2n)) -

From (2.2) and (2.10) we see that all the second derivatives of ¢ are bounded in
RY-1. Hence we can conclude that there exists a subsequence {(n} of {¢,} and
a function @., € CY(RN"1) such that ¢nr — @ in CY(RM!) as n’ — oo. Since
M(pn) < 0in RM~! we have that M () < 0 in RV~! in the weak sense. Also,
since 0 < A(z' + zp) — V(' + zn/) in RV~1, with the help of (2.14), letting n’ — oo
yields that

0 < Poo(z’) — -z’ in RV

Consequently, we have
M(po) <0=M(n-z') and g > 7.z’ in R¥™!, and goo(0) =0=1n-0. (2.15)

Hence, the strong comparison principle implies that ¢ (z') = -z’ in R¥~!. Here
we have used Theorem 10.7 together with Theorem 8.19 in [GT). Therefore we
conclude that

o(z' + z,) — (v(z’' + zn) — K*) — 0 in C}Y(RMN). (2.16)
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Similarly, we can obtain
v(x' + 2,) — (& + 2z,) — 0 in CHRNY). (2.17)

Therefore, it follows from (3) of Lemma 2.1, (2.16), and (2.17) that the distance
between two hyperplanes determined by two affine functions v and v — K* must be
R. Hence, since v — K* < ¢ < ¢ < v in R¥7!, we conclude that

Yp=v and p=v— K* in RV,

which shows that 92 is a hyperplane. [

3 Concluding remarks

Let us explain the relationship between Theorem 1.1 and Theorems 3.2, 3.3, and 3.4
in [MS2]. When p = 1, we have

1 N-1 N—1 N-—-1
1+RHI‘=]'T[——_—'1—Z(1+RI€J~)Z{H(l-{-RK,j)} = 1.
Jj=1 j=1

Therefore, the assumption of Theorem 3.2 that Ar < 0 implies that &; = 0. (5 =
1,--. , N—1). This shows that I' is a hyperplane, and hence 952 must be a hyperplane.
Thus, Theorem 3.2 is contained in Theorem 1.1 with its proof. In the case where
Q is given by (1.4), Theorem 3.3 is contained in Theorem 1.1 with condition (iii).
Since Theorem 3.4 does not assume the uniform exterior sphere condition for €2,
Theorem 3.4 is independent of Theorem 1.1.
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