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ABSTRACT. The present paper contains the announcement and
heuristics of results to appear elsewhere. We introduce a new non-
linear frequency formula for a semilinear free boundary problem
and use this tool to analyze the singular set in the limit of a sin-
gular perturbation problem.

1. INTRODUCTION

Consider the parabolic free boundary problem

(1) $\triangle u-\partial_{t}u=0$ in $\{u>0\},$ $|\nabla u|=1$ on $\partial\{u>0\}$

The problem above has been derived by J.D. Buckmaster (formally) as
singular limit from the following model for the propagation of equidif-
fusional premixed flames as $\epsilonarrow 0$ , i.e. the activation energy goes to
infinity:

(2) $\triangle u_{\epsilon}-\partial_{t}u_{\epsilon}=\beta_{\epsilon}(u_{\epsilon})$

Here $\beta_{\epsilon}(z)=\frac{1}{\epsilon}\beta(\frac{z}{\epsilon}),$ $\beta\in C_{0}^{1}([0,1]),$ $\beta>0$ in $(0,1)$ and $\int\beta=\frac{1}{2}$ .
In the model $u_{\epsilon}=\lambda(T_{c}-T),$ $T_{c}$ is the flame temperature, which is
assumed to be constant, $T$ is the temperature outside the flame and $\lambda$

is a normalization factor.
Let us shortly summarize the most relevant known results for both the
free boundary problem as well as the singular limit: in [1], H.W. Alt and
L.A. Caffarelli proved via minimization of the energy $\int(|\nabla u|^{2}+\chi\{u>0\})$

-here $\chi_{\{u>0\}}$ denotes the characteristic function of the set $\{u>0\}-$
existence of a stationary solution of (1) in the sense of distributions.
They also derived regularity of the free boundary $\partial\{u>0\}$ up to a
set of vanishing $n-1$-dimensional Hausdorff measure. [10] shows that
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existence of singular minimizers implies the existence of singular mini-
mizing cones. Those have been excluded in [3], implying full regularity
of minimizers in three dimensions. Non-minimizing singular cones $do$

in fact appear for $n=3$ (see [1, example 2.7]). By [5], singular mini-
mizing cones exist in dimension 7, 9, . . . .
Moreover it is known, that solutions of the Dirichlet problem in two
space dimensions are not unique (see [1, example 2.6]).
For the time-dependent (1), both “trivial non-uniqueness” (the pos-
itive solution of the heat equation is always another solution of (1) $)$

and “non-trivial uniqueness” (see [8]) occur. Even for flawless initial
data, classical solutions of (1) develop singularities after a finite time
span; consider e.g. the example of two planar traveling waves approach-
ing each other and colliding after a finite time span. Concerning the
reaction-diffusion equation, L.A. Caffarelli and J.L. Vazquez proved in
[4] uniform estimates for (2) and a convergence result: for initial data
$u^{0}$ that are strictly mean concave in the interior of their support, a
sequence of $\epsilon$-solutions converges to a solution of (1) in the sense of
distributions.
For a convergence result of non-negative solutions to a viscosity solu-
tion see [7].
Then, there is the convergence to a solution in the sense of domain vari-
ations [9] which seems to contain more information than the viscosity
solution. Domain variation solutions are pairs $(u,$ $\chi)$ where the order
parameter $\chi$ shares many properties with the characteristic function
$\chi_{\{u>0\}}$ but does not necessarily coincide with it. The most important
property of domain variation solutions is the equation

$\int_{-\infty}^{\infty}\int_{R^{n}}[-2\partial_{t}u\nabla u\cdot\xi+(|\nabla u|^{2}+\chi)div\xi-2\nabla uD\xi\nabla u]=0$

for every $\xi\in C_{0}^{0,1}(\Omega_{\tau};R^{n})$ . By $[$9$]$ , all limits of the singular perturbation
problem (2) are domain variation solutions. Last, it is known that
flatness implies regularity [2]. As a consequence, the regular part of
the free boundary is relatively open to the whole free boundary.
A natural question is, whether limits of (2) are solutions in the sense
of distributions, i.e.

$\triangle u(t)-\partial_{t}u(t)=\mathcal{H}^{n-1}\lfloor\partial\{u(t)>0\}$ .

Unfortunately the answer is “No” The reason is that “multiplicity
2” solutions like for example $\theta|x_{1}|$ appear as $\epsilon$-limits for each constant
$\theta\in(0,1]$ .
That suggests modifying the above question to the question whether
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limits of (2) are solutions in the sense of

$\triangle u(t)-\partial_{t}u(t)=\mathcal{H}^{n-1}\lfloor\partial\{u(t)>0\}+2\theta(t,$ $x)\mathcal{H}^{n-1}\lfloor\Sigma(t)$ .

Here $\Sigma(t)$ is the part of the singular set, where the rotated solution is
close to $\theta|x_{1}|$ . The modified question is still unanswered. [9] gives a
partial answer, i.e.

(3) $\triangle u(t)-\partial_{t}u(t)=\mathcal{H}^{narrow 1}\lfloor\partial\{u(t)>0\}+2\theta(t,$ $x)\mathcal{H}^{n-1}\lfloor\Sigma(t)+\lambda(t))$

where the density of $\lambda(t)$ with respect to $\mathcal{H}^{n-1}$ vanishes at every point.
However existence or non-existence of non-zero defect measure $\lambda(t)$ still
eludes us.
For the stationary problem –where the difficulties are very similar –
there is a relation to harmonic measures: it turns out that the harmonic
measure of the free boundary and $\Delta u$ are mutually absolutely continu-
ous. This makes it possible to use in two dimensions a beautiful result
by Tom Wolff [11], stating that every harmonic measure in the plane
lives on a set of $\sigma- finite$ length. Unfortunately the analogous property
in three dimensions does not hold, i.e. there is a finite domain in $R^{3}$

such that the harmonic measure puts all mass on a set of dimension
$2+\alpha$ with $\alpha>0$ (see [12]).
Here we announce new tools that lead to a structural analysis of sin-
gularities in the limit problem as well as an estimate of the Hausdorff
dimension of the topological free boundary corresponding to the result
[6] by Peter Jones and Tom Wolff. Everything that follows is described
for the stationary problem, but analogous formulas hold for all limits
of the parabolic singular perturbation problem (2).

2. DEGENERATE POINTS

The limit problem possesses the invariant scaling

$u_{r}(x)=u(x_{0}+rx)/r$ ,

for which there are tools like monotonicity formula etc. The difficulty
is that at degenerate singular points, i.e. $x_{0}$ such that

$r^{-n-1} \int_{\partial B_{r}(xo)}u^{2}d\mathcal{H}^{n-1}arrow 0_{)}rarrow 0$ ,

those tools do not yield information, and the $\mathcal{L}^{n}$-density of the phase
$\{\chi=0\}$ being zero results in a loss of control.
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3. MONOTONICITY FORMULA AND POINTS OF HIGHEST DENSITY

Let us recall a monotonicity formula from [10] related to the mono-
tonicity formula by R. Schoen-K Uhlenbeck for harmonic maps:

Theorem 3.1. The function
$\Phi_{x_{0}}^{u}(r):=r^{-n}\int_{B_{r}(x0})(\triangle u^{2}/2+\chi)-$ $r^{-1-n} \int_{\partial B_{r}(x_{0})}u^{2}d\mathcal{H}^{n-1}$ ,

satisfies at every $x_{0}$ and for $r\in$ $(O$ , dist $(x,$ $\partial\Omega))$ the monotonicity iden-
tity

$\Phi_{x_{0}}^{u}(\sigma)-\Phi_{x0}^{u}(\rho)$

$\geq\int_{\rho}^{\sigma}r^{-n}\int_{\partial B_{r}(x_{0})}2(\nabla u\cdot\nu-\alpha\frac{u}{r})^{2}d\mathcal{H}^{n-1}dr\geq 0$ .

The density $x\mapsto\Phi_{x}^{u}(0+)$ is an upper semicontinuous function.
Definition 3.2. We define $\Sigma:=\{x\in\Omega : \Phi_{x}(0+)=\omega_{n}\}$ , where $\omega_{n}$

is the volume of the unit ball.

Remark 3.3. It can be shown that $\Sigma$ contains all degenerate singular
points.

4. FREQUENCY FORMULA

Theorem 4.1. The function

$F_{x_{0}}(r):=r \frac{\int_{B_{r}(x)}0(|\nabla u|^{2}+\chi-1)}{\int_{\partial B_{r}(x0})^{u^{2}d\mathcal{H}^{n-1}}}$

satisfies at every point $x_{0}$ of the closed set $\Sigma$ and for each $r\in(0$ , dist $(x_{0}$ ,
$\partial\Omega))$ the identity $\partial_{r}F_{x_{0}}(r)$

$= \frac{2}{r}(\int_{\partial B_{r}(x)}0u^{2}d\mathcal{H}^{n-1})^{-2}[\int_{\partial B_{r}(x)}0(\nabla u\cdot(y-x_{0}))^{2}d\mathcal{H}^{n-1}\int_{\partial B_{r}(x)}0u^{2}d\mathcal{H}^{n-1}-$

$( \int_{\partial B_{f}(x)}0u\nabla u\cdot(y-xo)d\mathcal{H}^{n-1})^{2}]+2\frac{\int_{B_{r}(x_{0})}(1-\chi)}{\int_{\partial B_{r}(x0})^{u^{2}d\mathcal{H}^{n-1}}}(r\frac{\int_{B_{f}(xo)}|\nabla u|^{2}}{\int_{\partial B_{r}(x)}0u^{2}d\mathcal{H}^{n-1}}-1)$

$\geq 0$ .

Remark 4.2. Theorem 4.1 reminds of course of the frequency formula
by F. Almgren for Q-valued harrnonic functions. Let us however point
out that the result presented here is not a perturbation of the linear
frequency found by F. Almgren, but $a$ nonlinear frequency, that can be
extended to more general semilinear equations.
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5. DIFFERENTIAL INEQUALITY

Corollary 5.1. The functions

$D(r):=r \frac{\int_{B_{r}(x_{0})}|\nabla u|^{2}}{\int_{\partial B_{r}(x_{0})}u^{2}d\mathcal{H}^{n-1}}-1$

and

$V(r):=r \frac{\int_{B_{r}(xo)}(1-\chi)}{\int_{\partial B_{r}(xo)}u^{2}d\mathcal{H}^{n-1}}$

satisfy at every point $x_{0}$ of the closed set $\Sigma$ and for each $r\in(O$ , dist $(x_{0}$ ,
$\partial\Omega))$ the inequalities

$D-V\geq 0$

and
$(D-V)’(r) \geq\frac{2}{r}V^{2}(r)$ .

For $rarrow 0,$ $V(r)arrow 0$ , and $F_{x0}(r)=D(r)-V(r)+1$ converges to
$F_{xo}(0+)\in[1, +\infty)$ . $D$ is on $(0$ , dist $(x_{0},$ $\partial\Omega))$ bounded.

$x\mapsto F_{x}(0+)$

is on $\sum$ an upper semicontinuouS funCtion.
Corollary 5.2 (No infinite order vanishing). For $r\leq r_{x}$ ,

$\int_{\partial B_{r}(x)^{u^{2}d\mathcal{H}^{n-1}}}\geq r^{m(x)}$ ,

where $m(x)$ can be arbitrary large, but is always finite.

6. $BLow-UP$ LIMITS

Proposition 6.1. Let $x_{0}\in\Sigma$ . Then

$v_{r}(y);= \frac{u(x_{0}+ry)}{\sqrt{r^{1-n}\int_{\partial B_{r}(x_{0})}u^{2}d\mathcal{H}^{n-1}}}$

is bounded in $W^{1_{r}2}(B_{1}(0))$ and each weak limit is a homogeneous func-
tion $v_{0}$ of degree $N(x_{0})\geq 1$ .

$N(x_{0})= \frac{\int_{B_{1}}\triangle v_{0}^{2}/2}{\int_{\partial B_{1}}v_{0}^{2}d\mathcal{H}^{n-1}}=F_{x0}(0+)$ .

The limit $v_{0}$ is harrnonic in the sense of domain variations.
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7. HIGH FREQUENCY POINTS

Theorem 7.1. The Hausdorff dimension of the set
$\Sigma\cap\{N>1\}$

$is\leq n-2$ .

Remark 7.2. $N$ need not be an integer: consider the example

$u(r,$ $\theta)=r^{\frac{3}{2}}|\cos\frac{3}{2}\theta|$

suggested by J. Andersson.

8. HAUSDORFF DIMENSION

Theorem 8.1. The topological free boundary has Hausdorff dimension
$\leq n-1$ .

Remark 8.2. Frequency fomula and Hausdorff dimension estimates
extend to the time-dependent case.

9. OPEN PROBLEMS

Intuitively the frequency 1 set
$\Sigma\cap\{N=1\}$

should be a set of non-degenerate singular points, which we know to be
of $\sigma- finiten-1$ -dimensional Hausdorff measure (see [9]). To prove this
non-degeneracy, however, seems to be a hard issue, and at this stage
we cannot exclude frequency 1 points with a growth of, say

$r$

$\overline{|\log r|}$

.

If we knew that $\Sigma\cap\{N=1\}$ is of a-finite $n-1$-dimensional Hausdorff
measure (and the parabolic counterpart of this statement), we could
conclude that the defect measure $\lambda(t)$ in (3) is zero.
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