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Long-time behavior of solutions of Hamilton-Jacobi equations
with convex and coercive Hamiltonians*
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Graduate School of Engineering,
Hiroshima University

0mE

We establish general convergence results on the long-time behavior of viscosity solutions
to Hamilton-Jacobi equations in R™ with convex and coercive Hamiltonians. We give three
types of sufficient conditions so that the solution converges to a “steady state” as the
time tends to infinity. Our approach is based on the variational representation formula for
viscosity solutions of Hamilton-Jacobi equations.

1 Introduction and Preliminaries.
This paper is concerned with the Cauchy problem for the Hamilton-Jacobi equation
ut + H(z, Du) =0 in R™ x (0, +o00),
u(+,0) =ug on R7,
where the Hamiltonian H satisfies the following conditions:

(A1) H € BUC(R™ x B(0, R)) for all R > 0, where B(0, R) := {z € R"||z| < R},
(A2) inf{H(z,p)|z €R", |p| > R} — +o00 as R — +oo,
(A8) H(z,p) is convex with respect to p for every z € R”".
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(1)

Note that the solvability of (1) in the sense of viscosity solution is well known. (See for instance
Appendix A of [14] for the proof. See also [1, 7, 19] for the general theory of viscosity solutions.)

Theorem 1.1. Assume (A1)-(A8). Then, for any T > 0 and up € UC(R™), there erists a
viscosity solutionw € UC(R" x(0,T)) of uy+H (z, Du) = 0 in R"x (0, T) satisfying u(-,0) = up

on R™. Moreover, the solution is unigue in the class UC(R™ x [0,T)) for every T > 0.

The objective of this paper is to investigate the long-time behavior of the viscosity solution

to (1). More precisely, we prove the convergence of the form

u(z,t) + at — ¢(z) — 0 in C(R") ast — oo (2)
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for some a € R and ¢ € C(R"), where C(R") is equipped with the topology of locally uniform
convergence. Note that the function ¢(x) — at, called the asymptotic solution of (1), enjoys the
following time-independent Hamilton-Jacobi equation in the viscosity sense:

H(z,D¢) =a in R™ (3)

We denote by Sg_, (resp. Sj;_, and Sy_.) the set of continuous viscosity subsolutions (resp.
supersolutions and solutions) of (3). Observe here that if there exists an a € R such that
$o < up < 9o in R™ for some ¢g € Sy_, and ¥p € S}}_a, then in view of the standard
comparison theorem, wee see that

tlu(-,t) — —a in C(R") as t — oc. . (4)

Our interest is, therefore, to investigate asymptotics of the next order.
In this paper, we deal with the case where a = 0, namely, we assume that

(A4) there exist ¢g € S;; and ¢ € Sj; such that ¢g < 9o in R",

and prove the convergence u(-,t) — ¢ in C(R") as t — oo for any given initial function ug
in the class

®p := {up € UC(R™) | o — C < up < ¥p + C in R” for some C > 0},

where ¢ may depend on the choice of up. Notice here that assuming a = 0 is not a real
restriction. Indeed, once (4) is established, (2) can be reduced to the case where a = 0 by
considering H — a and u(z,t) + at instead of H and u(z,t), respectively.

The study on asymptotic problems of this type has been developed especially in the last
decade. As one of the most typical cases, it was proved that if H satisfies (Al), (A2), and
H(z,p) is Z™-periodic with respect to = and is strictly convex with respect to p, then there
exists a unique a € R such that (2) is valid for every Z™-periodic initial function up € BUC(R"™).
We refer to the literatures [3, 5, 8, 9, 10, 20, 21, 22, 23] and references therein for more details.
Remark that (3] deals with non-convex Hamiltonians whereas the others are concerned only
with convex ones.

It has also been of interest in recent years on the long-time behavior of viscosity solutions to
(1) that are not necessarily spatially periodic. As far as non-periodic solutions are concerned,
the above (A1)-(A4) are insufficient to obtain the convergence (2) for every up € ®g even if
we admit strict convexity for H in any sense (see [4, 14]). The papers [2, 12, 14, 17] deal with
some situations in which the solution of (1) has indeed the required convergence of the form
(2) for suitable (a, ¢).

Motivated by these earlier results, we established in [16], on which this paper is based,
general convergence results for the solution of (1) which, on the one hand, cover most of
existing results, and, on the other hand, involve a few observations which seem to be new. The
first one is concerned with strict convexity for H. As pointed out in several literatures, it is
necessary in some situations to require a sort of strict convexity for H so that the solution
of (1) converges to an asymptotic solution as ¢t — oo. In the present paper, we use condition
(A5)4 or (A5)_ which guarantees, respectively, strict convexity of H(x,p) in p uniformly in the
sets {H > 0} or {H < 0} (see Section 2 for their precise definitions). We point out here that



in spite of our convexity assumption (A3), the latter condition is not covered by [3] in which

convergence of the type (2) is obtained in the periodic case under fairly weak assumptions on
H.

The second observation is discussed in connection with our dynamical approach basing on
the following classical variational formula:

0
u(e,t) = inf { [ Ln(e).(s)) ds +uo(n(~1)) | n € C(t=t,01i2)}, 5)

where L(z,€) = supyeqn(p - § - H(x,p)) and C([-t,0};7) := {n € AC([~¢,0], R*) |n(0) = o},
and we denote by AC({—t, 0], R™) the set of curves 77 : [—t,0] — R"™ being absolutely continuous
on [—s,0] for all 0 < s < ¢. It is standard to see that the function u(z, t) defined by (5) is indeed
the viscosity solution of (1). It will be revealed in Section 3 that, for each z € R", solutions,
say 1), of the variational problem in the right-hand side of (5) possess a distinctive behavior
as t — oo called “swich-back”, from which we obtain a new type of convergence result. As far
as we know, such a motion in connection with the asymptotic behavior of solutions of (1) was
not studied before.

One other novelty of this paper (and thus that of [16]) is related to Hamiltonians and initial
data with “weak” periodicity. In Section 4, we give some results which particularly extend [14]
studying Hamilton-Jacobi equations with semi-periodic Hamiltonians and semi-almost periodic
initial data. See also {13] for some information in this direction.

In the rest of this introductory section, we briefly sketch the procedure for the proof of (2) (see
also {14]). Let (Ti):>0 be the nonlinear semigroup on UC(R™) defined by (Tiuo)(z) := u(z,t),
where u(xz,t) is the solution of the Cauchy problem (1). For a given ug € ®g, we set

ug (z) :=sup{@(z) | ¢ € S5, ¢ < ug in R™}, wuo(z) :=inf{¢(z)|¥ € Sy, ¥ = yy in R"}.

Then, it follows that uy € Sz and ue € Sj; by standard arguments in the viscosity solution
theory. It is also well known (e.g. [8, 11, 17]) that ug can be represented as

ugy (z) = inf{dn(z,y) + wo(y) |y € R"}, =z €R", (6)

where dg is defined by
du(z,y) == sup{¢(z) - ¢(y) | ¢ € Sy} (7)
Note that dg(-,y) € Sp for all y € R™ and dy can be written as

0
di(e,y) =it { [ Lo(s) i) ds | t>0, nec(-t o), -ty =v}.
-t
Moreover, we can show the following lemma (see Lemma 4.1 of [14] for the proof).
Lemma 1.2. Assume (A1)-(A4). Then, for every up € ®g, one has ux € Sy and
(Trug ) (x) = lr?x_ft u(z, s), Uoo(T) = hgglf u(z,t).
Hence, the problem is reduced to proving the convergence

Tiug — Uoo in C(R") as t — oo. 9

139



140

Now, for a fixed z € R", we set u*(z) := limsup,_, u(z,t) and choose any diverging
sequence {t;}; C (0,00) such that u™(z) = lim;_,o u(z,t;). The rough idea of showing (9) is
to find a family of curves u; € C({—t;,0};z), j € N, such that

0
too(2) 2 Jim ( | L) as@)ds + uo(uj(—tj))) . (10)

If (10) is true for some {u;}, then in view of (5),

0
ut(@) = lim u(z,t;) < lim ( / L(uj(s),uj(s»ds+uo(uj(—t)>) < teo(2),
~t;
from which we conclude that u(z,t) — ux(x) as t — oo for all £ € R®. We remark here
that, under our assumptions (Al)-(A4), the above pointwise convergence yields locally uniform
convergence (9) (e.g. [17] for its justification). Observe also that u; can be regarded, up to
a small error, as a minimizer of the right-hand side of (5) with ¢t = ¢t; for each j € N. In the
following sections, we divide our consideration into several situations according to the type of
{ms}.

In any case, the so-called extremal curves play an important role. Recall that for given
z € R™ and ¢ € Sy, a curve y € C((—o00,0]; z) is said an extremal curve for ¢ at z if it satisfies

0
#(z) = /_ L0, 4(s) ds +0(x(~t)  for all £>0. (11)

The existence of such curves is guaranteed by Lemma 3.3 of [14]. We denote by £,(¢) the set
of all extremal curves for ¢ at z. We often use the notation &; := £;(us) for simplicity of
notation.

This paper is organized as follows. In the next section, we establish a theorem which covers,
as particular cases, some results of Barles-Roquejoffre [2] and Ishii [17]. At the end of Section
2, we also discuss the relationship between the long-time behavior of extremal curves and
ideal boundaries studied in Ishii-Mitake [18]. In Sections 3, we treat a class of Hamiltonians
that provide switch-back motions for ;. Section 4 is devoted to establishing some results
concerning the long-time behavior of viscosity solutions of Hamilton-Jacobi equations with
weak periodicity. Several examples are given in the final sention.

2 First convergence result.
Let H satisfy (A1)-(A4) and let up € 9. We begin this section with a few simple lemmas.
Lemma 2.1. Suppose that for every x € R", there exists a v € €, such that
Jim (0 — uoo)(7(~1)) = 0. (12)

Then, the convergence (9) holds.



Proof. Let v € &, satisfy (12). By the definition of extremal curves and the variational formula
(5), we see that

0
u(e,t) < [ L), 5(9)) ds + ua(1(~) = tio(2) = uoo(y(~1)) + uol(~)
t
for all t > 0. In view of (12) and Lemma 1.2, we conclude that
limsup u(z,t) < uoo(z) + lm (ug — Ueo) (Y(—1)) = Ueo(z) = liminf u(z, t),
t—s00 t—o0 t—o0

which implies (9). O

We next prove that if H satisfies a sort of strict convexity, then (12) is not necessarily needed
for extremal curves ¥ = {y(—t) |t > 0} bounded in R". Weset Q := {(z,p) € R?*"| H(z,p) = 0}
and

S :={(z,&) € R*|(z,p) € Q, &€ Dy H(z,p) for some p € R"},
where D, H(z,p) stands for the subdifferential of H with respect to the p-variable. In what
follows, we use the following assumption:

(A5), (resp. (A5)_) There exists a modulus w satisfying w(r) > 0 for r > 0 such that for
all (x,p) € Q, € € D; H(z,p) and g € R,

H(z,p+q) 2&-g+w((§-9+)  (resp. =& g+w((§-9)-)), (13)
where 7+ := max{=+r, 0} for r € R.

Roughly spesking, (A5)+ (resp. (A5)_) means that H(z, -) is strictly convex on the set
{p € R"|H(z,p) > 0} (resp. {p € R"|H(z,p) < 0}) uniformly in = € R". Notice here
that condition (A5)_ has been discussed in [15] when n = 1. This strict convexity yields the
following property for L.

Lemma 2.2. Let H satisfy (A1)-(A4) and (A5);. (resp. (A5)-). Then, there ezists a constant
61 > 0 and a modulus w; such that for any e € [0,61] (resp. € € [—61,0]) and (z,£) € S,

L(z, (1 +¢€)€) < (1 +¢€)L(z,£) + [elwa(le])- (14)

Proof. The proof of (14) under (A5); is exactly the same as that of Lemma 3.2 in [14]. More-
over, by a careful review of its proof, we see that (14) is also true under (A5)_. 0

Remark 2.3. The estimate of this type was proved first by [8] when H(z, -) is strictly convex.

Proposition 2.4. Let H satisfy (A1)-(A4) and one of (A5)+ or (A5)—. Let up € ®p, T € R™
and v € &, and suppose that u™(x) = limj ..o u(z,t;) and sup;|y(—t;)| < oo for some
diverging sequence {t;} C (0,00). Then, u*(z) < Uoo(T).

Proof. Fix any § > 0 and set z; := v(—t;) for j € N. By taking a subsequence if necessary, we
may assume that z; — y as j — oo for some y € R™.

In view of coercivity (A2), we see that {u(-,t)|t > 0} is equi-continuous on R” and uy and
U are Lipschitz continuous on R™. In particular, there exists an &€ > 0 such that |z — 2’| < ¢
implies

fu(z, £) - ula’, )] + lug (@) ~ ug (&) + oo (&) - ueo(@')] < & (15)
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for every t > 0. In what follows, we fix such € > 0 and assume that |z; —y| < e for all 7 € N.

We first assume (A5), and show that u* (z) < ue(z). Fix a7 > 0so that ug (y)+0 > u(y, 7).
For each j € N, we set €; := (t; — 7) 717 and define v; € C((—00,0]; z) by v;(s) := v((1 +¢;)s).
Then, from (5), (14) and the fact that (y(s),¥(s)) € S for a.e. s € (—0,0), we have

0
u(z, t;) < /-t‘+ L(7v;(s),7;(8)) ds + u(z;,7) < oo (T) — Uco(T;) + tje; wi(e;) +uly, 7) + 9

< U (T) — Uoo(Y) + tiej wile)) + ug (¥) + 36 < uso(x) + tje; wi(e;) + 36.

By letting j — oc and then § — 0, we obtain u™ (z) < ue ().
We next assume (A5)_. Observe from (5) and (15) that

0
w(z, t) < / | L(y(s)i(s)) ds + et 1)
< Ueo (T) = Uoo (1) + u(T2, t; — t1) + 20 < Uoo(T) — Uoo(y) + u(x2,t; — t1) + 36.

By renumbering {t¢;} if necessary, we may assume that t, > t; + 7. For each j € N, we set

_ta—=t1—7

JmETETD ) ma(-ht(-g)), <0

Since £; — 0 as j — 0, we may assume that €; € (0,4;) for all j € N, where 4; is the constant
taken from Lemma 2.2. Then, in view of (15) and the fact that ug (y) + 6 > u(y,7), we see
that

0
went; —t1) < / L(v;(s), ;(s)) ds + u(z;,7)

—tjty+T
< Uoo(T2) — Uso () + tjgjwi(e;) +uly, 7) + 8 < tjejwi(e;) + ug (y) + 46.
Thus, we have
U(z,t5) < Ueo(Z) — Uoo(y) + u(z2,t; — 1) + 38
< Uoo(T) — Uoo(Y) + tigjwi(e;) + Uy (¥) + T8 < ue(T) + tigjwi(es) + 76.
By letting j — oo and then § — 0, we get u¥(z) < ueo(Z). 0

We are now in position to state the main theorem of this section. For a given ¢ € Sy, we
define the set A(¢) by

A(@) = {{7(~tj)}; CR" |7 € &(¢) and |y(-t;)| — oo as j — oo} (16)
In what follows, we set A := A(uq) if there is no confusion.

Theorem 2.5. Let H satisfy (A1)-(A4) and one of (A5)+ or (A5)-, and let ug € ®o9. Then,
the convergence (9) holds provided that

jl_i.rgo(ug — Ueo)(z;) =0 for all {z;} € A. (17)
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Proof. Fix any z € R™ and any diverging {t;} such that u%(z) = lim;_ e u(z,t;). We take
an arbitrary v € &; and set z; = y(~t;) for j € N. If limj |2j] = oo, then we get
u¥(z) < Uoo(x) by Lemma 2.1 and (17). On the other hand, if liminf; o |z;| < 0o, then by
taking a subsequence if necessary, we may assume that sup;ey |2 < co. Thus, we can apply
Proposition 2.4 to get the same inequality. O

As an easy consequence of Theorem 2.5, we obtain the following convergence result which
covers, as typical cases, Theorem 4.2 of [2] and (a version of) Theorem 1.3 in [17] (see also
Remark 2.10 below).

Theorem 2.6. Let H satisfy (A1)-(A4) and up € ®y. Let v» € Lip(R™) and o € C(R"™) be
such that

H(z, Dy(z)) < —o(z) a.e. z€R™ (18)

Then, one has the convergence (9) provided one of the following (a) or (b) holds:
(a) o(x) >0 for all zx € R™ and condition (17),
(b) (A5)+ or (A5)-, and

o020 in R*\ B(0,R) for some R>0 and ‘ l|im (0 — ¢Y)(z) = oco.
T|—0oco

Remark 2.7. Let Ay C R™ be the Aubry set for H, ie., Ay := {y € R*|dy(-,y) € Sy}

Then, we see that condition (a) yields Ag = 0. On the other hand, condition (b) implies that
A is non-empty and compact.

Before proving Theorem 2.6, we point out the following facts.

Lemma 2.8. Let H satisfy (A1)-(A4) and uo € ®g. Let D C R™ be an open set and suppose
that there ezist 6 > 0 and ¢ € S such that supp |1 — ¢o| < 00 and

H(z,Dy(z)) < -6 a.e. x € D. (19)

Then, for any e > 0, x € D and v € &, there exists a 7 > 0 such that y(~t) € D, for all
t > 7, where D, := {x € D| dist(z, D®) > €}.

Proof. Fix any € > 0, z € D and 7 € £;. Observe that sup,sq |(ue —¢0)(7(—t))| < co. Indeed,
for every t > s > 0, we have

0(1(=)) = do(x(=1) < [ L1(r), 30 dr = n((=8)) = uolr(~1),

which implies that the function t — (uco — ¢o)(7(—t)) is non-increasing on [0,00). Since
infgrn (ueo — Po) > —00, we conclude that sup,.q|(uso — ¢0)(¥(—t))| < co.

Next, we claim that for any s > 0, there exists a t > s such that v(—t) € D. Indeed, suppose
that yv(—t) € D for all t > s. Then, in view of (19), for every t > s,

¥ (=) = wr=0) + [ "o < [ LO0),40) dr = uea(r(9)) — seol(-).
Since supp |1 — ¢o| < oo by assumption, we have

6(t — s) < 2sup|(uco — ¢o)(v(-7))| +2sup|(¢o — ¥)(y)|  forall t>s.
r>0 yeD
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By letting t — oo, we get the contradiction. Thus, we can choose a diverging {t;’} C (0,00)
such that 7(—t;") & D for all j € N,

We now show that there exists a 7 > 0 such that y(—t) € D, for all t > 7. We argue by
contradiction. Suppose that there exists a diverging {t;'} C (0,00) such that v(~t;) € D, for
all j € N. By renumbering {t;"} and {¢;} if necessary, we may assume that t; <t} <t7,; for
all j e N

We take any A > 0. Then, there exists a C4 > 0 such that

L(z,€) —q-£> A€} —Ca  for all (z,€) € R?" and q € B(0, A). (20)
Indeed, by setting Ca := sup{|H(z,p)||z € R*, p € B(0,2A)}, we have
L(z,6) = :§£{£ p—H(z,p)} 2 € (g+ AlE|7'€) — H(z,q+ Al]7'€) 2 ¢ - £+ Al§| - Ca
for every z € R", £ # 0 and q € B(0, A). On the other hand, we observe that
vt - wr=0) = [ ar)-3C)dr forall t> 520 (21)

for some g € L*°(—o00,0; R") satisfying q(r) € 8.y (~(r)) for a.e. r € (—o00,0], where 3.9 (z)
stands for the Clarke differential of 1 at z € R™, namely,

OcY(z) == ﬂ co{ Dy(y) |y € B(z,r), ¢ is differentiable at y }.
r>0

In view of (20) and (21), we obtain

/ :3<A|~y(r>| —cnar< [ L), ) dr - @(r(=9)) = p(r(=1)))

= (uco = Y)(7(=5)) = (ueo — ¥)(7(-1)).

Now, for each j € N, we set 7;7 := inf{t > t] | y(~t) & D}, T;- = sup{t < tj,, |v(~t) ¢ D},
and choose any a, b > 0 such that (a,b) C (-7;7, —t7) or (a,b) C (-t 4, —TJT") for some j € N.
Since ¥((a,b)) C D, we see that

b
[ 141 ds < A71Ca(b = a) + 247 sup [uce — ¥1.
a D
Fix an A > 0 so large that 24~ supp |uco — %] < €/2. Then, we see that for all j € N,

—rF
" (o)l ds < 5+ AT Calt5h — 7).

-t ) e _ _ _
ES/_ _J |7(3)ldSS§+A YCalry —t7), ES/ j+1 ~ 7T;

7; —tj__H

From these estimates, for any N € N, we have

2Sllx)p!uoo — P 2 (oo — ¥I(V(—ET)) + (veo — V) (V(~tN41))

N -t _"'J'Jr
> / +/ dds > 5AC'e N.
j=1 =T —tin

By letting N — oo, we get the contradiction. Hence, we conclude that y(—t) € D, forallt > 7
for some 7 > 0. ‘ a



Lemma 2.9. Assume (A1)-(A4) and let ug € ®9. Assume also (b) in Theorem 2.6. Then, the
set {y(—t) |t > 0} ¢s bounded in R™ for every v € &;.

Proof. Observe first that us, > ¢o — C in R™ for some C > 0. Then, in view of (18), we see
that for every t > 0,

v(@) — -0 + [

-t

0
o(rnds < [ L(v($),4(s)) ds < too(2) — do(¥(~)) + C.

Thus,
0
(G0 = 0)r(=1) + [ a(x(8)ds < (e ~¥)@) +C  forall t>0.
—t
From this and property (b), we conclude that the set {y(—t) |t > 0} is bounded. a

Proof of Theorem 2.6. We assume (a). Notice from Lemma 2.8 that |y(—¢)| — o0 as t — oo
for every v € £;. Thus, in view of (17) and Lemma 2.1, we get the convergence (9).

Assume next that (b) holds. Then, by Lemma 2.9, sup;sq|v(—t)| < oo for any v € &;.
Thus, we can apply Proposition 2.4 to obtain the convergence (9). d

Remark 2.10. Theorem 2.6 with (a) generalizes Theorem 4.2 of Barles-Roquejoffre [2]. In
our context, their assumption is equivalent to say that the function o in (18) satisfies ¢ > § in
R™ for some § > 0 and

lim (up — uso)(z) = 0. (22)

|&|—00
Remark that (22) is strictly stronger than (17). We discuss this point in Example 5.1.
Another remark is that Theorem 2.6 with (b) is a version of Theorem 1.3 of [17] in which
the following condition is imposed in addition to the whole strict convexity of H:
There exist ¢; € C°*1(R") and o; € C(R™) with i = 0,1 such that for s = 0,1,

H(z, D¢i(z)) < —oi(z) ae. z, I 1lim oi(z) = oo, | ltim (¢o — ¢1)(z) = oo. (23)

Notice here that the second condition in (23) can be replaced with o; > 0 in R” once we have
shown t™!u(z,t) — 0 as t — oo.

Remark 2.11. In Theorem 2.6, the family of minimizing curves {u;} in the right-hand side
of (5) with t = ¢t; for each j € N can be constructed as follows. We first consider (a). In this
case, it suffices to set u;(s) = v(s), s € [~¢;,0], for each j € N. In particular, we find that
s (=t5)] = Iy(—=£;)] — 00 as j — oo.

We next consider (b). For simplicity, we only deal with the case where (A5), holds. For
J € N, we choose 7; € C([-7,0]; z;) such that

0
u(z;, 7) +6 > L(n;(s),n;(s)) ds + uo(n;(—7)),

where 7 > 0 is the number taken in Theorem 2.4. Then, the curve u; € C([-t;,0];z) can be
constructed as
Y((1 +€5)s) if sel[-t;+7,0],
pj(s) = (L+e; _ = (24)
nj(s+t; —7) if se[-t;,—t;+7],
where €; := (t; — 7)"!7. From this and the boundedness of {y(—t) |t > 0}, we easily see that
there exists an R > 0 such that {u;(s)|s € [~t;,0]} C B(0,R) for all j € N.
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Before closing this section, we discuss the relationship between the set A and the ideal

boundary in the sense of Ishii-Mitake {18]. For this purpose, we recall the notation used in
Sections 4 and 5 of [18].

We denote by Ay the Aubry set for H and set Qp :=R*\ Ay. Let 7: ¢ — {¢p + c|c € R}
be the projection from C(R™) to the quotient space C(R™)/R, and let d™ : Qp — C(R™)/R be
the mapping defined by d™(y) := w(du(-,y)). We set Dy := d"(€p). Note that d” is bijective
in view of Lemma 4.2 of [18] and the definition of Dy.

We fix a standard complete metric p on C(R™) which defines the topology of locally uniform
convergence. We denote by p" the induced metric on C(R")/R, that is,

P (€1,&2) == inf{p(¢1, P2) | b1 € &1, o2 € &2}, €1,€2 € C(R™)/R.

Then, we can define the metric pg on Qg by po(z,y) := p"(d"(x),d" (y)). Observe from Propo-
sition 4.3 of [18] that the identity map z — z is a homeomorphism from (€, po) to (Q0, pE),
where pg stands for the Euclidean distance.

Let (€0, po) be the completion of (€0, p0). Since d™ : (£, 00) — (Do/R, p™) is isometric
by the definition of pg, d™ can be extended to the isomorphism (Qo, po) — (Do/R, p™), where
Do /R denotes the closure of Dp/R in C(R")/R with respect to p”. Following the paper [18],
we call the set Ag := (g \ € the ideal boundary of Qp. We also denote by Af the totality of
points y € Ap such that for some sequence {y;} C Qo,

é(y;) +du(-,y;) — ¢ in C(R™) as j — oo for all ¢ € d"(y). (25)

Now, let {x;} € A(y) for a given ¢ € Sy, where A(v) is defined by (16). Then, by mimicking
the arguments in Section 5 of [18], we easily see that there exist a subsequence {y;} C {z;}
and a y € Ag such that po(y;,y) — 0 as j — oo and (25) holds. In particular, y € Aj. We
set

Ao(¥) := {y € A3 | lim po(z;,y) =0 for some {z;} € AW)}. (26)
Then by definition, Ao(¥) C Af\ Ag for all ¥ € Sy. In what follows, we use the notation
A() = Ao(’u,oo).

Similarly as in (18], for given u € UC(R") and y € Af, we define the function g(u,y) :
R™ — (—o00, 0] by

9(u,y)(z) := ¢(z) + lim sup{(u - ¢)(£) | £ € Qo, po(€,y) < T},

where ¢ is any element of d™(y) and remark that g(u,y)(z) does not depend on the choice of
¢ € d"(y). If g(u,y) = g(v, y) for some y € Aj and u, v € UC(R™), then lim; oo (u—v)(z;) =0
for every {z;} C R™ such that lim; .. po(z;,y) = 0.

Taking into account these observations, we reformulate Theorem 2.5 as follows.

Theorem 2.12. Let H satisfy (A1)-(A4) and one of (A5)+ or (A5)-. Let ug € ®g. Then,
the convergence (9) holds provided that

9(Uoo,y) = g(uo,y) in R™ forall y € Ap.

We next try to obtain a representation formula for us, in terms of the ideal boundary. For
u € UC(R™) and y € Ay, we set g(u,y) :=dy(-,y) +u(y). Recall first the following theorem.



Theorem 2.13 (Theorem 5.4 of {18]). Let u € Sy. Then,

u(z) = inf{g(u,y)(z) |y € AU Ax}. (27)

By using this theorem, we have the following representation formula for ue which is a natural
generalization of the usual ones (e.g. Theorem 5.7 of (8] and Theorem 8.1 of [17]).

Proposition 2.14. Let H satisfy (A1)-(A4) and let ug € ®o. Then,

too(2) = inf{g(ug ,y)(@) |y € Ao U An}.
To show this proposition, we use the following lemma.

Lemma 2.15. Let H satisfy (A1)-(A4) and let ug € 8. Then, for every r € R™ and v € &,
Jm (oo = u5)(7(—1)) = O (28)

Proof. Let (Ti)i>0 be the semigroup defined in Section 1. Then, from the variational formula
(5) with ug in place of up, we observe that for every t > 0,

0
(Toug) (@) < / | LO(5),7(8)) s+ 1 (7(=1)) = too(@) = too(y(=1)) + 5 (1(~1).

Since (Tiug )(Z) — uoo(x) as t — oo by Lemma 1.2, we have limsup,_, o, (Yoo — g ){(7(~1)) <
0. Noting that us > ug in R™ by definition, we obtain (28). 0

Proof of Proposition 2.14. Remark first that, by a careful review of the original proof of The-
orem 5.4 in [18], the representation formula (27) can be rewritten as

u(z) = inf{g(u,y)(2) |y € Ao(u) U An}. (29)

We also observe from Lemma 2.15 and the definition of g(u,y) that g(uw,¥y) = g(ug ,y) for all
y € Ag U Ag. Hence, the proof is complete by setting u = uy in (29). ]

3 Second convergence result.

In this section, we deal with Hamiltonians that provide another type of motions for {u;}
which we call in this paper “switch-back”. In order to explain the meaning of this word, we
begin with a simple example.

Let n =1 and consider the Cauchy problem

us + |Du| —e71ol = 0 in R x (0, +00),
u( -,0) = min{|z| — 2,0} on R.

Clearly, the Hamiltonian H(z,p) := |p| — e~ 1%l satisfies (A1)-(A3). Since e Il € Sy, H enjoys
(A4) with ¢g = Yo = e~ ¥, and the initial function ug(z) := min{|z] — 2,0} belongs to
®o = BUC(R). We see moreover that u; (z) = —e~ 1l — 1 and uxo(z) = e~#l — 1.
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Let L(z,&) be the Lagrangian associated with H, that is, L(z,£) = x[-1,1j(§) + e~ 12, where
X(-1,1}(&) = 0 for |£] < 1 and x(_;,1)(§) = +oo for [{| > 1. For a given z € R, we define
v € C((—o0,0};z) by ¥(s) := = — sgn(z) s for s € (—00,0], where we have set sgn(z) := 1 for
z > 0 and sgn(z) = —1 for x < 0. Then, it is easy to see that v € £, and |y(—t)| — oo as
t — 00. We choose a diverging {t;} C (0,00) such that u*(x) = lim; . u(z,t;) and |z| < t;
for all j € N.

We next define u; € C([—t;,0};z), j € N, by

~(s) or -2 <o
tj — |z

2

pj(s) =
sgn(z) (s + t;) for —t;<s< -

Note that uo(uj(—t;)) = uo(0) = —2 for all j € N. Then, we see that
0 tj+l=|
wety) € [ Llns)is@) ds + uoluy(=4) = 7 = 1= 27557 — e (a).
~t; nd

Thus, (9) is valid. We remark here that if ¢; is sufficiently large, then p;(~t) goes toward co

or —oo along the curve v up to the time t = (t; — |z|)/2 and then it turns back to the origin.
This motion explains well the word “switch-back”.

It is also worth mentioning that the condition (17) in Theorem 2.5 does not hold in this case.
Indeed, since lim;_,o |Y(—t)| = 00, we have lim;_ o (1 — Uso)(7(—t)) =1 > 0.

We now consider a more general situation. In the rest of this section, we assume the following:
(A6) H(z,0) <0 for all £ € R™ and there exists a A > 1 such that
H(z,~Mp) > H(z,p) forall (z,p) € R?". (30)
Note that (A6) implies

L(z,-A"%€) < L(z,€) for all (z,£) € R*™. (31)

Theorem 3.1. Let H satisfy (A1)-(A8), (A4) with ¢o = 0 and (A6). Then, the convergence
(9) holds for every ug € ®p.

Remark 3.2. Assumption (A6) can be relaxed as

(A6)’ There exists a A > 1 such that for every (z,p) € Q, £ € D; H(z,p), ¢ € R® and
q, € O:¢0(x),

H(z,qd ~ ) =2 €-(¢d' +q9—p), (32)
where ¢o € Sy is taken from (A4) and O.¢o(z) denotes the Clarke derivative of ¢p at z € R™.
Assumption (A6) is a particular case where ¢o = 0 in (A6)’. See [16] for details.

Proof of Theorem 8.1. Fix any ug € ®p, € R™ and v € €;. Since ¢3 = 0 by assumption,
we see that ue, > —C in R™ for some C > 0. We also observe that L > 0 in R?" in view of
the assumption H(-,0) < 0 in R™. In particular, the function t +» f_?tL('y(s),"y(s))ds is
non-decreasing and

0< /0 L(~v(5),%¥(5)) ds = too(T) = Uoo(V(—1)) L uso(z) + C for all t=>0.
-t



Fix an arbitrary € > 0. Then, there exists a tg > 0 such that

/ T Liy(s)A(s))ds <& forall 8> 0. (33)

~to—6
We next choose a 7 > 0 such that

uy (v(=to)) + € > u(v(~to), 7). (34)

Now, we fix any diverging {t;} C (0,00) so that u*(z) = limjoc u(z,t;) and then take
{6;} C (0, 00) such that t; = to + (1 + A)8; + 7 for all j € N, where A > 1 is the constant taken
from (A6). Note that §; — oo as j — oo.

For each j € N, we set t1; := to + 6; and to; := t1; + A0;, and we define v; € C([—to;,0}; x)
by

(s if s€{—~t;,0],
(=7 1 £ oel-40 (35)
Y(=A"ts = (14 A7tyy) if s € [~tg;, —t1;].
Note that v;(—to) = v;(—t2;) = v(—to). Then, in view of (31) and (33), we see that
-—t]_j —to —to
[ 7z sends =a [ Livtsh 2 onds <x [ Liv(s), w(o)ds < e
—t2; =ty —to"aj

On the other hand, in view of (34) and the inequality ue > ugy in R”,

0 0
ueo(@) = [ _L((5), ¥(5)) ds + en(v(—t0)) 2 / L5}, 7(5)) ds + ulr(~to), 7) .

In combination with these estimates, we obtain

0 ~to —t1;
thoo(2) + (2 + Ve > / L(v,4) ds + / ® L(y ) ds + / L(v %) ds + u((~to), 7)

—~to —t15 —~ta;
0
= /;t ‘ L(‘YJ('S)!’Y](S)) ds + U(’YJ(—tQJ),T) 2 u(m’tj)

By letting j — oo, we have u*(z) = limj_o u(z,t;) < uso(z) + (2 + A)e. Since € > 0 is
arbitrary, we obtain u™ (z) < uw (). O

We give in Example 5.2 a more concrete example which satisfies (A6).

Remark 3.3. Suppose in addition to (A6) that H(z,0) < O for all x € R™. Then, in view
of Lemma 2.8, we have |y(—t)] — o0 as t — oo for any 7 € £,. We now fix a diverging
{tj}; € (0,00) such that u*(z) = lim;—c u(z,t;) and choose n € C([—7,0]; v(—to)) such that

0
u(y(=to),7) +&> [ L(n(s),7(s)) ds + uo(n(-7)).

~T

If we define p; € C([~t;,0];z), 7 € N, by

v;(8) if se[—tg;,0],
pi(s) = ,
T](S + tgj) if s € [—-tj, —tgj],
then we observe the switch-back of u; as in the previous example. In particular, we have

neither (a) p; = for all j € N, nor (b) p; is bounded uniformly in j € N. In this sense, the
switch-back motion presents a striking contrast to the curves in Section 2.
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4 Third convergence result.

This section is concerned with the Cauchy problem (1) with Hamiltonian and initial function
having “weak” periodicity. In this case, one other type of motions for {u;} takes place. In the
rest of this section, we always assume that H satisfies (A1)-(A3), (A4) with ¢g = 1Yy = ¢ for
some fixed ¢ € Sy. The class of initial data ® is, therefore, written as

@y = {up € UCR™")|¢ —C <up<¢p+C inR" for some C > 0}.
Fix an arbitrary ug € ®p. Then, there exists a C > 0 such that
ug—20< ¢ ~C<uy SUe <P+ C <ug+2C in R™.

Let {y;} C R™ be any sequence. By taking a subsequence if necessary, we may assume in view
of (A1) and the Ascoli-Arzela theorem that

H(-+y;,-) — G in C(R?") as j — oo, (36)
uo( - +y;) — uo(y;) — o in C(R") as j — oo, (37)
for some G € C(R?™) and vy € UC(R™). Note that G satisfies (A1)-(A3) with G in place of

H. We denote by S; (resp. SZ, Sg) the set of all continuous viscosity subsolutions (resp.
supersolutions, solutions) of

G(z,D¢) =0 in R™. (38)
Since the family {uw(: + y;) — uo(y;)}; is uniformly bounded and equi-continuous on any
compact subset of R™, there exist a function T, € C(R") and a subsequence of {y;}, which we
denote by the same {y;}, such that
Uoo(+ +y;) —uo(y;) — Uo  in C(R") as j— oo. (39)
Remark that T, € S¢ by virtue of the stability property of viscosity solutions. We see moreover
that vg — 2C < T < vg + 2C in R”. Thus, the functions
vy (z) :=sup{®(z)|p € S5, ¢ <w inR"}eS;,
Voo(Z) :=inf{Y(z) |y € Sg, ¥ >v; inR"} € Sg
are well-defined and satisfy

vg ~ 4C < vy € Vo S vp +4C in R™. (40)

We next consider the Cauchy problem

{vt + G(z,Dv) =0 in R"™ x (0, +00), (a1)

'U(',O)=UO on Rﬂ’

and let v(z,t) be the solution of (41). Remark here that liminf; o v(z,t) = veo(z) in view of
Lemma 1.2. Moreover, by (36), (37) and the stability property for viscosity solutions of (41),
we observe that u(- + yj, -) — uo(y;) — v in C(R?™) as j — oo. Taking into account these
observations, we claim the following,.
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Theorem 4.1. Let H satisfy (A1)-(A8), (A4) with ¢o = Yo = ¢ for some ¢ € Sy, and (A5),.
Let ug € ®g. Then, the convergence (9) holds provided that for any sequence {y;} C R"
satisfying (37) for some vy € UC(R™), there exists a subsequence, which we denote by the same
{y;}, such that

lim sup (uoo (y5) ~ wo(y5)) 2 veo (0). @

j—oo
Moreover, condition (A5)+ can be replaced by (A5)- if the following holds true in addition to
(42): .
u(y;, - ) — uo(y;) — v(0, ) uniformly in [0,00) as j — oo. (43)

Proof. Fix any z € R™ and any diverging sequence {t;} C (0, 00) such that u™(z) = lim; e u(z, t;).
We also fix a v € S; and set y; := y(—t;) for j € N. Then, there exists a subsequence of {y;}
such that (36) and (37) hold for some G € C(R?*) and vo € UC(R™), respectively. In what
follows, we fix an arbitrary § > 0 and choose a 7 > 0 so that v(0,7) — veo(0) < 8, where v is
the unique viscosity solution of (41).

We first assume (A5); and (42). For each j € N, we set ¢; := (t; — 7)7!7 and define
v; € C([~t; + 7,0);z) by v;(s) = v((1 + ¢;)s). Note that v;(—t; + 7) = y(—t;) = y; for all
J € N. By renumbering j € N, we may assume that ¢; € (0,6;) for all j € N, where §; is the
constant taken from Lemma 2.2. Then, in view of (14), we see that

0
u(z,t;) < [ L(v;,4;) ds + u(v;(—t; +7),7)

ti-+

0
< , L('y, ’}') ds + tjEj wi (63‘) -+ u(yj,'r) = uoo(m) - uw(yj) -+ t,-s]- wl(sj) -+ u(yj,T).
&

Since v(0, T) —v00 (0) < & and u(y;, 7)—uo(y;) — v(0, ) as j — oo, we conclude in combination
with (42) that

ut(2) = Uoo(7) < — lim sup (uoo (y;) = uo(y;)) + lim (uly;,7) = uo(y,))

< ~vso(0) +v(0,7) < 4.

Hence, letting 8 — 0 yields ut () < ueo(T).
We next assume (AS5)_, (42) and (43). In view of (39) and (43), and by renumbering {¢;} if
necessary, we may assume that for every j € Nand t > 0,

u(ys>t) = uo(ys) — v(0, )| + luoo(ys) — uo(y;) — Teo(0)] < & (44)
Hereafter, we always use the same {¢;} to denote its subsequence. Then, we observe that
0
u(x,t;) < /t L(v(s),¥(s)) ds + u(y1,t; — t1) = Uoo () — Uoo(y1) + w(y1, tj — 1)
-t :
< Uoo(T) — Too(0) + u(y2, t; — t1) — uo(y2) + 36.

We may assume without loss of generality that t3 > t; + 7. For each j > 2, we set

g =————, () =v(-t2+ (1 -¢5)s), s<O0.
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Note that €; — 0 as j — oo and v;((1 — €;5)(—t; + t1 + 7)) = v(—t;) = y; for all j > 2. Then,
in view of (14) and (44),

0
w(ya b — t1) < / L(v;(s), %(s)) ds + u(y;, 7)

~tjt+ti+T
< Uoo(Y2) ~ Uoo(Y5) + tiejwi(e;) + v(0,7) + uo(y;) + 6.
Thus, we have
U, t5) — Uoo(T) < Uoo(y2) — ©0(¥2) — Too(0) + tieswi(es) + v(0,7) = uoo(y;) + uo(y;) + 46
< Voo (0) — ueo () + uo(y;) + tijejwi(e;) + 66.

Taking into account (42) and letting j — oo and then § — 0, we get u*(z) < Ugo (). O

Corollary 4.2. Let H satisfy (A1)-(AS3), (A4) with ¢o = Yo = ¢ for some ¢ € Sy, and
(A5)+. Letup € ®o. Then, the convergence (9) holds provided that for any sequence {y;} CcR"
satisfying (87) for some vg € UC(R™), there ezists a subsequence such that

up (- +y) ~w(y) — v5  in C(R") as j—oo. (45)
Proof. It suffices to check (42). Observe first that
ool +35) —uo(y) 2 45 (- +3) —uo(y;) inR* forall j € N.
In view of (39) and (45), for a suitable subsequence of {y;}, we see that

oo () = jlirrolo(uoo(z +y;) —uo(y;)) 2 vy (z) for all z € R™.

Since Teo € Si, We have U (T) > Voo () > vy (x) for all z € R™. Thus, (42) is valid by setting
z = 0. (]

We point out here that Theorem 4.1 covers, as a particular case, Theorem 2.2 of {14] dealing
with upper semi-periodic Hamiltonians and obliquely lower semi-almost periodic initial data.
Here, we recall that H is upper (resp. lower) semi-periodic if for any sequence {y;} C R", there
exist a subsequence {y;} C {y;}, a function G € C(R?**) and a sequence {{;} C R" converging
to zero as j — oo such that H(- + y;, - ) converges to G in C(R?") as j — oo and

H(-+y;+&, - )<G (resp. 2 G) in R?® for all jeN. (46)

We say that ugp € UC(R™) is obliquely lower (resp. upper) semi-almost periodic if for any
€ > 0 and any sequence {y;} C R", there exist a subsequence {y;} C {¢;} and a function
vo € UC(R™) such that uo(- + y;) — uo(y;) converges to vy in C(R™) as j — oo and

ug(- +y;) —uo(y;) —vo(-) > —€ (resp. <e¢) in R* forall jeN. (47)

If ug is both obliquely lower and upper semi-almost periodic, we say that ug is obliquely almost
periodic.



Theorem 4.3 (cf. Theorem 2.2 of [14]). Let H satisfy (A1)-(A3), (A4) with ¢g = o = ¢
for some ¢ € Sy, and (A5),. Let ugp € ®g and assume that H and ug are, respectively, upper
semi-periodic and obliquely lower semi-almost periodic. Then, the convergence (9) holds.

Proof. We check (45) in Corollary 4.2. Since the family {ug (- + y;) — uo(y;)|Jj € N} is pre-
compact in C(R"), we can extract a subsequence of {y;}, which we denote by {y;} again, such
that ug (- + ;) — uo(y;) — w in C(R™) as j — oo for some w € UC(R™). It suffices to show
that w = vy in R™. Note that w € S; in view of the stability of viscosity property.

Observe first that upper semi-periodicity (46) together with the Lipschitz continuity of
dg(-, -) in both variables ensure that for any € > 0 and z € R™, there exists a jo € N
such that

du(z+yj - +y;) 2de(z, ) —¢ in R® forall 72 jo. (48)

From this and obliquely lower semi-almost periodicity (47), we obtain

ug (2 +y5) — uo(y;) = inf (du (e + 5, 2 + y5) + uo(z + y5)) — vo(ys)

> 16111Rf (dg(z, 2) +vo(2)) — 26 = vg (x) — 2.
z n
On the other hand, since uy < up in R™, we have

up (- +y;) —uo(y;) S uo(- +y;) —uo(y;) in R™

By taking the limit j — oo in the last two inequalities and then letting € — 0, we get vy <
w < vp in R™. Hence, we conclude that w = vy in R™. (I

Remark 4.4. If H(z,p) is Z™-periodic with respect to z for all p € R, then (48) is obvious
from the identity dgy(- + k, - + k) = dy in R?" for all k € Z". Notice here that Theorem
4.1 does not require, a priori, any periodicity for H and ug. We give in Section 5 an example
having neither upper semi-periodicity for H nor obliquely lower semi-almost periodicity for ug,
but enjoying the conditions required in Theorem 4.1.

Concerning the latter part of Theorem 4.1, we have the following result.

Theorem 4.5. Let H satisfy (A1)-(A8), (A4) with ¢o = o = ¢ for some ¢ € Sy, and (A5)-.
Let ug € ®o and assume that H(z,p) is Z™-periodic with respect to x for all p € R™ and u0 is
obliquely almost periodic. Then, the convergence (9) holds.

Proof. 1t suffices to check (43). Let {y;} C R™ be any sequence. We first observe from the
obliquely almost periodicity for ug that along a subsequence of {y;}

uo( - +y;) — uo(y;) — wo uniformly in R™ as j — oo. (49)

Observe also from the Z™-periodicity for H that there exists a bounded {{;} € R™ converging
to some £ € R™ as j — oo such that H(z+y;,p) = H(z +¢;,p) for all (z,p) € R?™ and j €N,
and H(z + §;,p) — H(z +£,p) uniformly in R® x B(0,R) as j — oo for all R > 0.
We now set G(z,p) := H(z + &, p) and let v;(x,t) € C(R™ x [0,00)), j € N, be the solution
of
vy + Gz, Dv) =0 in R" x (0, 00) (50)
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satisfying v;(-,0) = uo(- + y;) — uo(y;) in R™. Note that by uniqueness,
u(x +y;,t) —uo(y;) =vi(xz + & —&,t) for all (z,t) € R" x [0,00) and j € N.

Then, by using the nonexpansive property for solutions of (50) and the equi-continuity on R™
for {v;(-,t)|t >0, j € N}, we have

fu(z + yj5,t) — uo(y;) — v(z, t)| < vj(z + & — &, t) — vi(z, )| + |vi(z,t) — v(z,t)|
S w(l& — &) + uo(z + y5) — uo(y;) — vo(x)l,

where w is a modulus. Thus, in view of (49) and letting j — oo, we obtain (43). - DB

Remark 4.6. We now discuss the construction of {u;} corresponding to Theorem 4.1. For
simplicity, we only consider the case where (A5)+ holds. Let 7 > 0 be the number taken in the
proof of Theorem 4.1. For each j € N, we choose an 7; € C([—7,0]; y;) such that

0
u(yj, ™) +6 > / L(ny(s), 35(s)) ds + wo(my(=T)).

-7

We then define pu; € C([—t;,0];z), j € N, by

‘7_7'(8) if se [-—tj + T, 0],
Hi(s) = .
nj(s+t; — 1) if se-t;,—t;+71]

Suppose that sup,.q|v(—t)| < co. Then, {u;} is nothing but the one discussed in Remark
2.11. On the contrary, if {v(—t)|t > 0} is unbounded, then we have one other type of motions
for {x;} which ensures the convergence (9). Notice here that condition (17) does not hold in
general.

5 Examples.
We begin with an example concerning condition (a) of Theorem 2.6.

Example 5.1. Fix any pp € R” such that |pg| < 1 and define H by H = H(p) :=|p—po| — 1
for p € R™. Note that the corresponding Lagrangian is L(§) = po - £ + 1 + Xxp(0,1)(§), where
xB(0,1)(§) := 0on B(0,1) and xp(g,1)(§) := co on R™\ B(0,1). It is easy to check that H enjoys
(A1)-(A3) as well as the first part of condition (a) in Theorem 2.6. We also see by Lemma 2.8
that any extremal curve v is diverging, namely, |¥{—t)] — oo as t — oc.

We first identify the ideal boundary Aq for H. Let dy be the function defined by (7). Observe
in view of (7) or (8) that dy(z,y) = |z — y| + po - (z — y), z, y € R™. We take any diverging
sequence {y;} C R™. Since

|2 — 2y; -«
|z — y;| + ly;l

for all j € N, we see that {dy(-,y;) — du(0,y;)}, converges in C(R") to some function if and

only if I——l— — g as j — oc for some § € 8B(0,1) in which case we have
Yj

du(z,y;) —du(0,y;) = |z — y;| = |yj| +po -z = +po-x

dy(z,y;) —du(0,y;) — ~J-z+po-z=(po—9) T as j— oo.



155

This implies that the sequence {d™(y;)}; converges in (C(R™)/R, p™) to n((po—#)-x) as j — oo.
Thus, in view of the fact that Ay = @, we may identify Ap with 8B(0,1) through the mapping

0B(0,1) 39 +— 7((po —9) - z) € Do = (Do/R) \ (Do/R).

We now fix any go € 8B(0,1) and set ¢(z) := (po + qo) - = for z € R™. Note that ¢ € Sy.
We try to identify the set Ag(¢) defined by (26). Observe first that v is an extremal curve for
¢ at some z € R" if and only if

0
8() = 80(=0) = [ L(x(s),4(s))ds = dm(e,7(-1)  foral £>0.
—t
From this and the explicit forms of ¢, L and dg, we see that

(Po+go) - (x —v(=t)) = po - (x —¥(—t)) + t = |z — y(—t)| + po - (z — v(-1)),

from which we deduce after some computations that y(—t) = x — tgp for all t > 0. Let
{t;} C (0,00) be any diverging sequence and set y; := vy(—t;). Then as j — oo,

Yj T—tig 9 _.
= —— ——— =: —qg € 0B(0, 1),
ly;l |z —tiqof lqo

from which we conclude that Ag(¢) = {—qo}-

We now set ¢o(z) := min{(po+ ¢o) - z, 0}, z € R™. Notice that ¢g € Sy in view of (A3), and
that (A4) is valid with the above ¢p and ¥o(z) := ¢(z) = (po + o) - = € Sy. Let up € ¥4 be
any initial function satisfying

Alim (uo — ¢o)(z — Ago) =0 for all z € R™.
—00

Then, we can see that u(z) = ¢(z) for z € R™, and therefore Ag = {—go} and (17) holds.
Hence, by Theorem 2.5, we have the convergence (9). We remark here that if we choose
up == ¢p, then, lim; .o0(up — Uo)(x;) = —oo for any {z;} such that lim; .o te(z;) = o0.
This example shows that (22) is strictly stronger than (17).

On the other hand, if we set ¢(x) := inf{(po + q) - z|¢q € 8B(0,1)}, z € R", then ¢ € Sy in
view of (A3). Since ¢ = —dy(0, -) in R™, we observe that v € £;(¢) for z # 0 if and only if

'y(——t)=:4c-§-t|—g—l for all t > 0.

We conclude in particular that Ag(¢) = 8B(0,1). Hence, {z;} € A(¢) if and only if lim; .o |z;| =
00.

We now choose ¢p = 39 = ¢ in (A4) and let ug € ®o be any initial function such that
lim|z| oo (10 — ¢)(z) = 0. Then, we easily see that us, = ¢ in R™. Thus, two conditions (17)
and (22) are equivalent in this case.

The next example is concerned with Theorem 3.1.

Example 5.2. Let H satisfy (A1)-(A3) and H(z,0) < 0 for all z € R™. By setting Hp :=
H -~ H(-,0) and 0 := —-H(-,0), H can be written as

H(z,p) = Ho(z,p) —o(z), o(z) 20, (z,p) €R™
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Note that Hp(x,0) = 0 for all z € R™.
We assume here that there exist @« > 0, 3> 1, vy > 1 and Cy > 0 such that

alpiﬂ < Hy(z,p) < a_llpiﬁ, o(z) < Co(1 + ):1:|)‘B'7, for all (z,p) € R?". (51)

Next, we define ¥y € Lip(R") by o(z) := —a~1C) féﬂ(l +r)~Ydr +C1, z € R", where Cy > 0
is taken so that yg > 0 in R™. Then, for = # 0,

H(z, Dyo(z)) = a|Dyo(x)|? — o(z) = Co(1 + |2)) P — o(z) > 0,

which implies that g € S};. In particular, H satisfies (A4) with ¢g = 0 and the above .

We now claim that H satisfies property (A6). Let A > 0 be a constant which will be specified
later. Observe that

Ho(z,—Ap) > a|Apl’ = o®N - a7 pl? = o® P Hy(z,p) for all (z,p) € R*™.

Since Hp > 0 in R?™ in view of the first condition of (51), by choosing A so that a2)? > 1, we

get H(x,—Ap) > H(z,p) for all (z,p) € R?™. Hence, H satisfies (A6). In this case, we have
&, = BUC(R™).

We give here an example of Theorem 4.1.

Example 5.3. Let n = 1, and let f € BUC(R) be any function such that f > 0 in R. We set
F(z) := [ f(y) dy for z € R and define H € C(R?) and ¢ € UC(R) by

H(m?p) = p2 - f(x)z» ¢((IJ) = mm{F(z), "F(x)}v (:r,p) € Rz'

Note that H satisfies (A1)-(A3) and (A5)y. Moreover, since F, —F € Sy, we see in view of
convexity (A3) that ¢ € Sy. Thus, assumption (A4) is also fulfilled with ¢g = 19 = ¢.

Now, let pg € BUC(R) be any function satisfying the following property: for any & > 0, there
exists an [ > 0 such that

lmli<r};oo(:z +y) < irRxfpo +e forall r € R. (52)
yi<
Remark that (52) is valid for any (lower semi-) almost periodic function.

We set up := ¢ + pg € ®g and let u(z,t) be the solution of the Cauchy problem (1) with H
and up defined above. What we prove is the following convergence:

u(-,t) — ¢+i§f(uo - @) in C(R) as t— oo. (53)

In what follows, we only consider the case where infr(up — ¢) = infg pp = 0 (which does not
lose any generality). In this case, we have uo, = ¢ in R. Note also that condition (17) of
Theorem 2.5 does not hold in general.

To show the convergence (53), we check (42) in Theorem 4.1. Notice that Theorem 2.2 of
[14] cannot be applied to this example since both H and ug do not satisfy semi- or semi-almost
periodicity assumptions. Fix any = € R, v € &, and choose any diverging {t;} C (0,00) such
that u*(z) = lim;—.oo u(z,t;). We set y; := y(—t;) for j € N. By taking a subsequence of {y;}
if necessary, we have either sup; |y;| < oo or lim;_. |y;| = co. Since the former case can be
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reduced to Theorem 2.5, it suffices to consider the latter case. In what follows, we assume that
limj o y; = oo (the case where lim;_,o y; = —o0 can be treated in a similar way), and any
subsequence of {y;} will be denoted by the same {y,}.

Since {f(- +y;)};, {po(- +y;)}; and {uo(- +y;) — uo(y;)}; are pre-compact in C(R), there
exist f1, go € BUC(R) and vy € UC(R) such that

f(-+yj) — f+ and po(- +y;) — qo in C(R) as j— oo (54)

and uo( - +v;) —uo(y;) — vo in C(R) as j — co. Remark here that qo inherits property (52).
Indeed, fix any € > 0 and choose an ! > 0 so that (52) holds. Observe that infg go = 0 by the
second convergence in (54) and the fact that infg pg = infg(ug — ¢) = 0. For each j € N, we
choose a z; € (—1,1) such that po(z + y; + 2;) = miny,<; po(z +y; +y) < e. Since sup;, |z;| <,
we may assume that lim;_, 2; = 2z for some z € (—I,!). Thus,

mingo(z + y) < go(z + 2z) = lim po(z + y; + z;) <€,
lyl<t J—o0

which shows that (52) is valid with go in place of pg.
We now set Fi(z) := [§ f+(y) dy for z € R. Then, we see that

¢(- +y;) —¢(y;) — —F4+ inC(R) as j— oo (85)

It is also not difficult to check that vg = —F, + go — qo(0) in R. We set G(z,p) := p? — f.(x)?
and define dg € C(R?) by (7) with G instead of H. Observe that

de(w,y) = max{Fy(z) — Fi(y), F+(y) — Fi(z)}, z,y €R.

Since F. is non-decreasing on R, we have

vo (2) < Inf{da(z,y) + v0(y)} = it {F4(y) — Fi(2) ~ F(y) + 90(y) — 90(0)}
= —Fi(2) — 0(0) + inf go(y).
In view of property (52) for go, we obtain vy < —F, —qo(0) in R. On the other hand, observing

that vo(z) = —F4(x) — go(0) € S, we have vy > —F, — go(0) in R. Thus, vy = —F; — go(0)
in R. This implies that v, = vg in R. Since veo(0) = —F4(0) — go(0) = —go(0), we find that

lim sup (uee ~ u0)(y5) = = liminf (uo — 9)(35) = ~40(0) = veo(0),

J—oo
which is (42).

The following can be regarded as a generalization of the previous example to multi-dimensional
cases.

Example 5.4. Foreachi=1,...,n, let f; € BUC(R"),i = 1,...,n, be such that infgs f; > 0
or suprn fi < 0. We set

H(z,p) = max {p} - fi(z)pi}, = €R" p=(p,...,pn) ER™
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Clearly, H(z.0) = O for all z € R™ and H satisfles (A1)-(A3), (A4) with ¢y = o = 0, and
(A5)+. Observe here that &g = BUC(R"). We choose any ug € ®q satisfying the following
property: for any € > 0, there exists an [ > 0 such that

minug(z + y) < infug + ¢ for all z € R™. (56)
lyi<i R~

Let u(z,t) be the solution of the Cauchy problem (1) with H and ug defined above. We
claim here that (53) holds with ¢ = 0, that is,

u(-,t)———»imr%fuo in C(R") as t— oo. (57)

To prove this, we check (45) in Corollary 4.2. For this purpose, we may assume without loss of
generality that infgr ug = 0. Then, up > uy > 0 in R". We also observe from the assumption
on f; that, for any ¢ € Sj, ¢(x) is non-increasing or non-decreasing with respect to the k-th
component of = for every 1 < k < n. This and (56) implies that ug = 0 in R".

Let {y;} € R™ be any sequence such that ug(- + y;) — v in C(R") as j — oo for
some vp € BUC(R"). Remark that infgn v9 = 0 and v inherits property (56). By taking a
subsequence of {y;} if necessary, we may assume that f;(- + y;) — g; in C(R") as j — oo
for each 1 = 1,...,n for some g; € BUC(R"), ¢ = 1,...,n. Then, we have infgng; > 0 or
supgr~ i < 0 according to the sign of f; foreachi=1,...,n.

Now, we set G(z,p) = maxi<i<n {P? — 6:i(z)pi}, £ € R, p = (p1,...,pn) € R™. Then, for
any ¢ € S;, ¢(x) is non-increasing or non-decreasing with respect to the k-th component of z
for every 1 < k < n. This fact together with property (56) for vy ensure that vy = 0 in R™.
Hence, we conclude that (45) is valid.

Remark 5.5. The Hamiltonian in Example 5.4 can be generalized in the following way. Let
H satisfy (A1)-(A3), (A5)+ and H(z,0) =0 for all z € R®. We set ¢g = ¥ = 0 in (A4) and
choose any ug € ®q satisfying (56). We set Ky (z) = {p € R*|H(z,p) < 0} for z € R™ and
denote by K (x) the polar cone of Ky(x), i.e.,

Ky(z):={£eR"|&-p<0 forall pe Ky(x)}.

Fix any z € R", v € &, and any diverging {t;} C (0,00) and set y; := y(—t;) for j € N. Let
G € C(R?™) and vy € C(R™) be the functions satisfying, respectively, H(- +y;, ) — G in
C(R?*™) as j — oo, and ug(- + yj) — vo in C(R™) as j — co. We define Kg(z) and K%(z)
similarly as Ky (z) and K[ (x), respectively. Now, we assume the following:

(H) There exists a cone K C R™ with vortex 0 such that

Int(K) #0 and K C Ky(z), K&(z) forall z e R™.

We claim that the convergence (57) still holds under (H). Note that H in Example 5.4 satisfies
property (H).

To check the claim, we first observe that dy(z,y) = 0if z — y € K. Indeed, for £ € K and
t > 0, there exists a ¢ € L*°(0,¢;R"™) such that q(s) € (8.du(-,y))(y + s§) C Ku(y + s&) a.e.
s €[0,t], and

t
dir(y + t€.7) =/0 a(s) - €ds <0,



from which we obtain dy (y+&,y) =0 forally € R™ and ¢ € K. Similarly, we have dg(y+¢&,y) =
Oforallye R™ and £ € K.

Now, fix any ¢ € R”. Then, in view of (56), for any € > 0, there exists a sequence {z;} C R"
such that z—z; € K and ug(z;) < infrn ug+¢ for all j € N. Thus, ug (z) < dg (=, 2;)+uo(z;) <
infgrn up + €, which implies that uy = infg~ ug in R™. Similarly, we see that vy = infgs vg in
R™.

We now show that infgrn uo = infg~ vg, from which we obviously obtain (45) in Corollary 4.2
and therefore (57). In view of property (56), we can choose a sequence {z;} C R™ such that
uo(2;) < infgn up+¢ and |y; — z;| <1 for all j € N. We may assume by taking a subsequence of
{25} that y; — 2; — z for some z € R™ as j — oco. Then,ug(z;) = uo(2; — y; +y;) — vo(z) as
Jj — oo, which implies that infgn vg9 < vg(2) < infgn ug +&. Thus, we have infgs vg < infrn up.
Since the opposite inequality is obvious by definition, we conclude that infrs vg = infgn ug.
Hence, the proof is complete.
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