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1 Introduction
In future, it is expected that triple systems will be useful for the characteri-
zation of noncommutative structures in mathematics and physics as well as
that of (classical) Yang-Baxter equations ([9],[17],[20]).

Our aim is to use triple systems to investigate a characterization of dif-
ferential geometry and mathematical physics from the viewpoint of nonasso-
ciative algebras that contain a class of Lie algebras or Jordan algebras ([7],
[8], [14], [16], [17], [20] $)$ . Thus, in particular, for $B_{3}$-type Lie algebras, we
will provide some examples of triple systems and their correspondence with
extended Dynkin diagrams in this article.

A $(2\nu+1)$ graded Lie algebra is a Lie algebra of the form $g=\oplus_{k=-\nu}^{\nu}g_{k}$

such that $[g_{k}, g_{l}]\subset g_{k+l}$ . It is well-known that 3-graded Lie algebras are essen-
tially in bijection with certain theoretic objects called Jordan pairs. Kantor
remarked that more general graded Lie algebras correspond to generalized
Jordan triple systems. In particular, the graded Lie algebra

$g_{-2}\oplus g_{-1}\oplus g_{0}\oplus g_{1}\oplus g_{2}$

has the structure of a triple product on the subspace $g_{-1}$ , and is known
as a generalized Jordan triple system (GJTS) of second order or a $(- 1,1)-$

Freudenthal-Kantor triple system $(F- K.t.s.)([7], [12])$ . Also $g_{-1}\oplus g_{1}$ has the
structure of a Lie triple system (in particular, a system over a real number is
known to correspond with a symmetric Riemannian space). We will discuss
the corresponding geometrical object by means of these triple systems. To
the notation and terminology used for the geometry, we can be found in ([4],
[5], [19] $)$ . We will often use the symbols $g$ and $L$ to denote a Lie algebra or
Lie superalgebra as is conventionally used ([2],[3],[6],[23]).

Speaking from the viewpoint of an algebraic study, our purpose is to pro-
pose a unified structural theory for triple systems in nonassociative algebras.
In previous works ([11],[12],[13]), we have studied the Peirce decomposition
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of the GJTS $U$ of second order by employing a tripotent element $e$ of $U$ (for
a tripotent element, $\{eee\}=e)$ .
The Peirce decomposition of $U$ is described as follows:

$U=U_{00}\oplus U_{\frac{1}{2}\frac{1}{2}}\oplus U_{11}\oplus U\epsilon a\oplus U_{-1_{0},2}\oplus U_{01}\oplus U_{\frac{1}{2}2}\oplus U_{13}22$
’

where $L(a)=\{eea\}=\lambda a$ and $R(a)=\{aee\}=\mu a$ if $a\in U_{\lambda\mu}$ .
These viewpoints have formed the basis of our study on triple systems.
We are concerned with triple systems which have finite dimensionality

over a field $\Phi$ of characteristic $\neq 2$ or 3, unless otherwise specified.
This note is an announcement of new results, and the details will be

published elsewhere.

2 Definitions and Preamble
To make this paper as self-contained as possible, we first recall the definition
of a generalized Jordan triple system of second order (hereafter, referred to
as the GJTS of 2nd order), and the construction of Lie algebras associated
with GJTS of 2nd order.

A vector space $V$ over a field $\Phi$ , endowed with a trilinear operation $V\cross$

$V\cross Varrow V,$ $(x, y, z)\mapsto\{xyz\}$ , is said to be a GJTS of 2nd order if the
following two conditions are satisfied:

$(J1)$ $\{ab\{xyz\}\}=\{\{abx\}yz\}-\{x\{bay\}z\}+\{xy\{abz\}\}$(GJTS)
$(K1)$ $K(K(a, b)x, y)-L(y,x)K(a, b)-K(a, b)L(x, y)=0$ ($2nd$ order),

where $L(a, b)c=\{abc\}$ and $K(a, b)c=\{acb\}-\{bca\}$ .
Remark. If $K(a, b)\equiv 0$ (identically zero), then this triple system is a

Jordan triple system (JTS), i.e., it satisfies the relations $\{acb\}=\{cba\}$ and
GJTS..

We can also generalize the concept of the GJTS of 2nd order as follows
(for examples, see [7],[8],[10],[14] and the references therein).

For $\epsilon=\pm 1$ and $\delta=\pm 1$ , if the triple product satisfies

$(ab(xyz))=((abx)yz)+\epsilon$ ($x$ (bay) $z$ ) $+(xy(abz))$ ,
$K(K(a, b)c, d)-L(d, c)K(a, b)+\epsilon K(a, b)L(c, d)=0$ ,

where $L(x, y)z=(xyz)$ and $K(a, b)c=(acb)-\delta(bca)$ , then it is said to be
a $(\epsilon, \delta)- F\succ eudenthal$-Kantor treple system (hereafter abbreviated as $(\epsilon, \delta)$-F-
K.t.s).

Furthermore, if the $(\epsilon, \delta)arrow F- K$ .t.s$)$ satisfies

$dim_{\Phi}\{K(a, b)\}_{span}=1$ ,
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then it is said to be balanced.
Remark. We set $S(x, y)$ $:=L(x, y)+\epsilon L(y, x)$ , and $A(x, y)$ $:=L(x, y)-$

$\epsilon L(y, x)$ , then this $S(x, y)$ (resp. $A(x,$ $y)$ ) is a derivation (resp. anti-
derivation) of $U(\epsilon, \delta)$ .

We generally denote the triple products by $\{xyz\},$ $(xyz),$ $[xyz]$ , and $<$

$xyz>$ . Bilinear forms are denoted by $<x|y>,$ $(x, y)$ , and $B(x, y)$ .
Remark. Note that the concept of a GJTS of 2nd order coincides

with that of $(-1,1)- F- K.t.s$ . Thus we can construct simple Lie algebras or
superalgebras by means of the standard embedding method (for example,
[2], [3], $[7]-[11],$ $[13],$ $[14],$ $[15],$ $[21])$ .

Proposition 1([8],[15]). Let $U(\epsilon, \delta)$ be an $(\epsilon, \delta)- F- K.t.s$ . If $J$ is an
endomorphism of $U(\epsilon, \delta)$ such that $J<xyz>=<JxJyJz>and$ $J^{2}=$

$-\epsilon\delta Id$ , then $(U(\epsilon, \delta), [xyz])$ is a Lie trzple system (the case of $\delta=1$) or an
anti-Lie triple system (the case of $\delta=-1$ ) with respect to the product

$[xyz]:=<xJyz>-\delta<yJxz>+\delta<xJzy>-<yJzx>$ .

Corollary. Let $U(\epsilon, \delta)$ be an $(\epsilon, \delta)- F- K.t.s$ . Then the vector space
$T(\epsilon, \delta)=U(\epsilon, \delta)\oplus U(\epsilon, \delta)$ becomes a Lie triple system (the case of $\delta=1$)
or an anti-Lie triple system (the case of $\delta=- 1$) with respect to the triple
product defined by

$[(\begin{array}{l}ab\end{array})(\begin{array}{l}cd\end{array})(\begin{array}{l}ef\end{array})]=$ $(^{L(a,d)-\delta L(c,b)}-\epsilon K(b,d)$ $\epsilon(L(d^{\delta K(a,c)}a)-\delta L(b, c)))(\begin{array}{l}ef\end{array})$ .

Thus we can obtain the standard embedding Lie algebra (the case of $\delta=$

1 $)$ or Lie superalgebra (the case of $\delta=-1$ ), $L(\epsilon, \delta)=D(T(\epsilon, \delta), T(\epsilon, \delta))\oplus$

$T(\epsilon, \delta)$ , associated with $T(\epsilon, \delta)$ , where $D(T(\epsilon, \delta), T(\epsilon, \delta))$ is the set of inner
derivations of $T(\epsilon, \delta)$ . That is, these vector spaces $D(T(\epsilon, \delta), T(\epsilon, \delta))$ and
$T(\epsilon, \delta)$ imply

$D(T(\epsilon, \delta), T(\epsilon, \delta))$ $:=(_{-\epsilon K(e,f)}L(a,b)$ $\delta K(c,d)\epsilon L(b,a))_{span}$ , and

$T(\epsilon, \delta):=\{(\begin{array}{l}xy\end{array})|x, y\in U(\epsilon, \delta)\}_{span}$ .

In fact, we have

$L_{0}=\{(\begin{array}{lll}L(a b) 00 \epsilon L(b,a)\end{array})\}_{span}=\{L(a, b)\}_{span}$ ,
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$L_{-2}=\{$ ( $\delta K(c,$

$d)0$ ) $\}_{span}=\{K(c, d)\}_{span}$and $L_{0}=DerU\oplus Anti-DerU$.

Remark. For the standard embedding algebras obtained from these
triple systems, note that $L(\epsilon, \delta):=L_{-2}\oplus L_{-1}\oplus L_{0}\oplus L_{-1}\oplus L_{-2}$ (or $g=$
$g_{-2}\oplus g_{-1}\oplus go\oplus g_{1}\oplus g_{2})$ is a 5-graded Lie algebra or Lie superalgebra, such that
$L_{-1}=g_{-1}=U(\epsilon, \delta)andDerT(U)$ $:=D(T(\epsilon, \delta), T(\epsilon, \delta))=L_{arrow 2}\oplus L_{0}\oplus L_{-2}$

with $[L_{i}, L_{j}]\subseteq L_{i+j}$ .
By straightforward calculations, for the correspondence of the (1,1) bal-

anced F.K. $t.s$ with the $(- 1,1)$ balanced F.K. $t.s$ , we obtain the following.
Proposition 2. Let $(U, <xyz>)$ be a (1, 1) F-K.t.s. If there is an

endomorphism $J$ of $U$ such that $J<xyz>=<JxJyJz>and$ $J^{2}=-Id$ ,
then $(U, \{xyz\})$ is a GJTS of 2nd order $($that is, $(- 1,1)- F- K.t.s.)$ with respect
to the new product defined by $\{xyz\}:=<xJyz>$ .

We now give an explicit example of a JTS and a Lie triple system.
Example. Let $U$ be a vector space with a symmetric bilinear form

$<,$ $>$ . Then the triple system $(U, [xyz])$ is $a$
. Lie triple system with respect

to the product
$[xyz]=<y,$ $z>x-<z,x>y$ .

That is, this triple system is induced from the JTS

$\{xyz\}=\frac{1}{2}(<x, y>z+<y, z>x-<z, x>y)$ ,

by means of
$[xyz]=\{xyz\}-\{yxz\}$ .

3 Construction of $B_{3}$-type Lie algebras from
several triple systems

In this section, we will discuss the construction of simple $B_{3}$-type Lie algebras
associated with several triple systems (the details will be described in a future
paper).
a$)$ the case of a JTS,
b$)$ the case of a balanced GJTS,
c $)$ the case of a GJTS of 2nd order,
d $)$ the case of a derivation induced from a JTS.
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To consider these cases, we will start with an extended Dynkin diagram
for the $B_{3}$-type Lie algebra.

1 2 2
$0$ ... $0$ $=>$ $\circ$

$0$

$-\rho$

where $-\rho=\alpha_{1}+2\alpha_{2}+2\alpha_{3}$ .
For the root system, it is well known that
$\{\alpha_{1},$

$\alpha_{2},$ $\alpha_{3},$ $\alpha_{1}+\alpha_{2},$ $\alpha_{2}+\alpha_{3},$ $\alpha_{1}+\alpha_{2}+\alpha_{3},$ $\alpha_{2}+2\alpha_{3},$ $\alpha_{1}+\alpha_{2}+2\alpha_{3},$ $\alpha_{1}+$

$2\alpha_{2}+2\alpha_{3}\}$ .

3.1 The case of a JTS
First we study the case of $g_{-1}=U=Mat(1,5;\Phi)$ . (Hereafter, we assume
$\Phi=C.)$

In this case, $g_{-1}$ is a JTS respect to the product

$\{xyz\}=x^{t}yz+y^{t}zx-z^{t}xy$ ,

where $t_{X}$ denotes the transpose matrix of $x$ .
By straightforward calculations, the standard embedding Lie algebra $L(U)=$

$g$ can be shown to be 3-graded $B_{3}$-type Lie algebra with $g_{-1}\oplus g_{0}\oplus g_{1}$ . Thus,
we have

$g_{0}$ $=DerU\oplus Anti-DerU$

$=B_{2}\oplus\Phi H$, where $H:=(\begin{array}{ll}Id 00 -Id\end{array})$

Der $(g_{-1}\oplus g_{1})\cong\{\circ\cdots 0\Rightarrow\circ\}=B_{3}$ , ( omitted).

1 2 2
... $\circ$ $=>$ $\circ$

$1$

$\circ$

$-\rho$

Furtheremore, we obtain

$DerU=\{L(x, y)-L(y, x)\}_{span}=B_{2}$ ,
$Anti-DerU=\{L(x, y)+L(y, x)\}_{span}=\Phi H$ ,

$g_{0}=\{(\begin{array}{lll}L(x y) 00 -L(y,x)\end{array})\}_{span}=\{S(x, y)+A(x, y)\}_{span}$ ,
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where
$S(x, y)=L(x, y)-L(x, y),$ $A(x, y)=L(x, y)+L(y, x)$ .

Here, $g_{-1}$ corresponds to the root system

$\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+2\alpha_{3}, \alpha_{1}+2\alpha_{2}+2\alpha_{3}\}$

3.2 The case of a balanced GJTS
Second we study the case of $g_{-1}=U=Mat(2,3;\Phi)$ .

In this case, $g_{-1}$ is a balanced GJTS of 2nd order w.r. $t$ . the product

$\{xyz\}:=z^{t}yx+x^{t}yz-zJ_{3}^{t}xyJ_{3}$ ,

where $J_{3}=(\begin{array}{lll} 11 1 \end{array})$ .

By straightforward calculations, it can be shown that $L(U)=g$ is a 5-
graded $B_{3}$-type Lie algebra with $g_{-2}\oplus\cdots\oplus g_{2}$ and $dimg_{arrow 2}=1$ . Thus, we
have

$g_{0}=DerU\oplus Anti-DerU=A_{1}\oplus A_{1}\oplus\Phi H$, where $H:=(\begin{array}{ll}Id 00 -Id\end{array})$

Der $(g_{1}\oplus g_{1})=g_{-2}\oplus g_{0}\oplus g_{2}=A_{1}\oplus A_{1}\oplus A_{1}$ ( omitted) $\cong DerT(U)$

1 2 2
$0$ . .. $=>$ $0$

I
$\circ$

$-\rho$

Furthermore we obtain

$g_{-2}=\{K(x, y)\}_{span}=\Phi Id\cdots$ which is one dimensional,

i.e., balanced. This $g_{-1}$ corresponds to the root system

$\{\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}, \alpha_{2}+2\alpha_{3}, \alpha_{1}+\alpha_{2}+2\alpha_{3}, \}$

$g_{arrow 2}$ corresponds to the highest root

$\{\alpha_{1}+2\alpha_{2}+2\alpha_{3}\}$ ,

and $g/(g_{-2}\oplus g_{0}\oplus g_{2})\cong T(=g_{-1}\oplus g_{1})$ is the tangent space of a quaternion
symmetric space of dimension 12, since $T$ is a Lie triple system associated
with $g_{-1}$ .
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3.3 The case of a GJTS of 2nd order
Third we study the case of $g_{-1}=U=Mat(1,3_{j}\cdot\Phi)$ .

In this case, $g_{-1}$ is a GJTS of 2nd order with respect to the product

$\{xyz\}=x^{t}yz+z^{t}yx-y^{t_{XZ}}$ .

By straightforward calculations, it can be shown that $L(U)$ is a 5-graded
$B_{3}$-type Lie algebra with $g_{-2}\oplus\cdots\oplus g_{2}$ and $dimg_{-2}=3$ ,

$g_{0}=DerU\oplus Anti-DerU=A_{2}\oplus\Phi H$ , where $H:=(\begin{array}{ll}Id 00 -Id\end{array})$

Der $(g_{-1}\oplus g_{1})=g_{-2}\oplus g_{0}\oplus g_{2}=A_{3}$ ( omitted) $\cong DerT(U)$ .

1 2 2
$\circ$ $\circ$ $=>$

$1$

$0$

$-\rho$

Furthermore, we obtain

$g_{-2}=\{K(x, y)\}_{span}=Alt(3,3_{!}\Phi)$ .

That is, the triple system $g_{-1}$ (resp. $g_{-2}$ ) corresponds to th the root system

$\{\alpha_{3}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\}($ resp. $\{\alpha_{2}+2\alpha_{3},$ $\alpha_{1}+\alpha_{2}+2\alpha_{3},$ $\alpha_{1}+2\alpha_{2}+2\alpha_{3}\})$ ,

implying that
$\sim\circ\cdots\cdots O\cdots\Rightarrow$ ( omitted) and

$g_{0}=A_{2}\oplus\Phi H$.

Remark. Following [18], for the case of a GJT of 2nd order, note that
$g_{-2}(\cong k)$ has the structure of the JTS associated with a GJTS of 2nd order.

3.4 The case of a derivation induced from a JTS
Finally, we study the case of $g_{-1}=U=Mat(1,7;\Phi)$ .

In this case $g_{-1}$ is a JTS with respect to the product

$\{xyz\}=x^{t}yz+y^{t}zx-z^{t}xy$ .

For this case, we obtain

$DerU=$ $\{L(x, y)-L(y, x)\}_{span}=Alt(7,7;\Phi)$ $\cong B_{3}$ ,
$Anti-DerU$ $\cong\Phi H$ (which is one dimensional).
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The standard embedding Lie algebra is a 3-graded $B_{4}$-type Lie algebra with
$g_{-1}\oplus g_{0}\oplus g_{1}$ .

Furthermore, we have

$\cdots\underline{\circ\cdots\circ\cong\circ}$ ( omitted)

$g_{0}=B_{3}\oplus\Phi H$ .

This case is obtained from $DerU$ such that $U=Mat(1,7;\Phi)$ with the JTS
structure.

Remark. In the above constructions, note that there exist four different
constructions for the $B_{3}$-type Lie algebras. It appears that these results may
be applicable to mathematical physics, for example, quark theory and gravity
theory.
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