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1 Introduction

In future, it is expected that triple systems will be useful for the characteri-
zation of noncommutative structures in mathematics and physics as well as
that of (classical) Yang-Baxter equations ({9],[17],[20]).

Our aim is to use triple systems to investigate a characterization of dif-
ferential geometry and mathematical physics from the viewpoint of nonasso-
ciative algebras that contain a class of Lie algebras or Jordan algebras ([7],
(8], [14], [16], [17], [20]). Thus, in particular, for Bs-type Lie algebras, we
will provide some examples of triple systems and their correspondence with
extended Dynkin diagrams in this article.

A (2v + 1) graded Lie algebra is a Lie algebra of the form g = ®}__, g
such that [gk, gi] C gr4:- It is well-known that 3-graded Lie algebras are essen-
tially in bijection with certain theoretic objects called Jordan pairs. Kantor
remarked that more general graded Lie algebras correspond to generalized
Jordan triple systems. In particular, the graded Lie algebra

g2Dg-1D go D g1 D g2

has the structure of a triple product on the subspace ¢g_;, and is known
as a generalized Jordan triple system (GJTS) of second order or a (-1,1)-
Freudenthal-Kantor triple system (F-K.t.s.)([7], [12]). Also g_; @ g; has the
structure of a Lie triple system (in particular, a system over a real number is
known to correspond with a symmetric Riemannian space). We will discuss
the corresponding geometrical object by means of these triple systems. To
the notation and terminology used for the geometry, we can be found in ([4],
[5], [19]). We will often use the symbols g and L to denote a Lie algebra or
Lie superalgebra as is conventionally used ([2],[3],[6],{23]).

Speaking from the viewpoint of an algebraic study, our purpose is to pro-
pose a unified structural theory for triple systems in nonassociative algebras.
In previous works ([11],[12],[13]), we have studied the Peirce decomposition
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of the GJTS U of second order by employing a tripotent element e of U ( for
a tripotent element, {eee} = e).

The Peirce decomposition of U is described as follows:

lf = Uoo 25 U%% &%) U11 EB Ug% @U_%o S UOl &b U%g &b U13a

where L(a) = {eea} = Ma and R(a) = {aee} = pa if a € U,,.

These viewpoints have formed the basis of our study on triple systems.

We are concerned with triple systems which have finite dimensionality
over a field ® of characteristic # 2 or 3, unless otherwise specified.

This note is an announcement of new results, and the details will be
published elsewhere.

2 Definitions and Preamble

To make this paper as self-contained as possible, we first recall the definition
of a generalized Jordan triple system of second order (hereafter, referred to -
as the GJTS of 2nd order), and the construction of Lie algebras associated
with GJTS of 2nd order.

A vector space V over a field ¢, endowed with a trilinear operation V' x
VxV 3V, (z,y,2) — {zyz}, is said to be a GJTS of 2nd order if the
following two conditions are satisfied:

(J1)  {ab{zyz}} = {{abz}yz} — {z{bay}2} + {zy{ab2} H(GIT'S)
(K1) K(K(a,b)z,y) — L(y,z)K(a,b) — K(a,b)L(z,y) = 0(2nd order),

where L(a,b)c = {abc} and K(a,b)c = {acb} — {bca}.

Remark. If K(a,b) = 0 (identically zero), then this triple system is a
Jordan triple system (JTS), i.e., it satisfies the relations {acb} = {cba} and
GJTS..

We can also generalize the concept of the GJTS of 2nd order as follows
(for examples, see [7],[8],{10],[14] and the references therein).

For ¢ = x1 and ¢ = =1, if the triple product satisfies

(ab(zyz)) = ((abz)yz) + e(x(bay)z) + (zy(abz)),
K (K (a,b)c,d) — L(d, c)K(a,b) + K (a, b)L(c, d) = 0,

where L(z,y)z = (zyz) and K(a,b)c = (acb) — 8(bca), then it is said to be
a (g,0)-Freudenthal-Kantor triple system (hereafter abbreviated as (g, d)-F-
K.t.s).

Furthermore, if the (g,0)-F-K.t.s) satisfies

dime{K(a,b)}span = 1,
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then it is said to be balanced.
Remark. Weset S(z,y) := L(z,y) +€L(y, z), and A(z,y) := L(z,y) —

eL(y,x), then this S(z,y) (resp. A(z,y) ) is a derivation (resp. anti-
derivation) of U (e, 9).

We generally denote the triple products by {zyz}, (zyz), [zyz], and <
zyz >. Bilinear forms are denoted by < z|y >, (z,¥), and B(z,y).

Remark. Note that the concept of a GJTS of 2nd order coincides
with that of (—1,1)-F-K.t.s. Thus we can construct simple Lie algebras or
superalgebras by means of the standard embedding method ( for example,

(2], (3], [7)-{11], [13], {14], [15}, [21]).

Proposition 1([8],[15]).  Let U(e,d) be an (¢,6)-F-K.t.s. If J is an
endomorphism of U(e,d) such that J < zyz >=< JzJyJz > and J? =
—ebld, then (Ul(e,d), [ryz]) is a Lie triple system (the case of 6 = 1) or an
anti-Lie triple system (the case of 6 = —1) with respect to the product

[xyz] =< axJyz > -d<yJzz>+d <zxJzy > — < yJzz > .

Corollary. Let U(e, ) be an (g,9)-F-K.t.s. Then the vector space
T(e,6) = Ul(e,8) ® U(e,8) becomes a Lie triple system (the case of 6 = 1)
or an anti-Lie triple system (the case of § = -1) with respect to the triple
product defined by

[(a> (c)(e>]_ (L(a,d)—dL(c,b) 0K (a,c) )(e)
b/\d/\f)' — —eK(b,d) e(L(d,a) — dL(b,c)) /) \f/"~
Thus we can obtain the standard embedding Lie algebra (the case of § =
1) or Lie superalgebra (the case of 6 = —1), L(¢,8) = D(T(¢,6),T (g, 6)) &
T'(g,4), associated with T'(g, ), where D(T'(g,6),T'(g,4)) is the set of inner

derivations of T'(g,4). That is, these vector spaces D(T(g,6),T(e,d)) and
T(e,d) imply

L(a,b) 6K(c,d)

D(T(e, ), T e, 8)) := (_EK(e, ) eLire )W, and

T(e,8) i= {(z ) 2,y € U(e, )} opan.

In fact, we have

Lo = {(L(t(z), b) 8L((I)), 2 )}mn = {L(a,b)} span,
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L_,= {((O) JK(OC’ d) )}gpan = {K(c, d)}spanand Ly = DerU & Anti— DerU.

Remark. For the standard embedding algebras obtained from these
triple systems, note that L(c,6) ;== Lo ® L 1 ® Lo L_; ® L_y (or g =
g—2Pg-_1DgPg:19g- ) is a 5-graded Lie algebra or Lie superalgebra, such that
L, =g, =Ul(,d0)and DerT(U) := D(T(,6),T(¢,6)) = Lo ® Lo ® L_,
with [L,, LJ] g Li+j.

By straightforward calculations, for the correspondence of the (1,1) bal-
anced F.K.t.s with the (-1,1) balanced F.K.t.s, we obtain the following.

Proposition 2.  Let (U, < zyz >) be a (1,1) F-K.t.s. If there is an
endomorphism J of U such that J < zyz >=< JxJyJz > and J? = —Id,
then (U, {zyz}) is a GJTS of 2nd order (that is, (-1,1)-F-K.t.5.) with respect
to the new product defined by {zyz} =< zJyz > .

We now give an explicit example of a JTS and a Lie triple system.

Example. Let U be a vector space with a symmetric bilinear form
<, >. Then the triple system (U, [zyz]) is a Lie triple system with respect
to the product '

[zyz] =< y,z > z— < 2,2 > y.
That is, this triple system is induced from the JTS

) ,
{zyz} = -2-(< T,y > 2+ <y,z2>1— < 2, >Y),

by means of
[zy2] = {zyz} — {yzz}.

3 Construction of Bs-type Lie algebras from
several triple systems

In this section, we will discuss the construction of simple B3-type Lie algebras
associated with several triple systems (the details will be described in a future
paper).

a) the case of a JTS,

b) the case of a balanced GJTS,

c) the case of a GJTS of 2nd order,

d) the case of a derivation induced from a JTS.
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To consider these cases, we will start with an extended Dynkin diagram
for the Bs-type Lie algebra.

2 2
o => O©0
|
o)

—P
where —p =ay + 2a5 + 203.
For the root system, it is well known that

{ay, ag, a3, a1 + Qg, a0 + a3, @1 + Q2 + a3, a3 + 203, @y + ag + 2a3, 01 +
2042 + 2&3}.

3.1 The case of a JTS
First we study the case of g_.; = U = Mat(1,5; ®). (Hereafter, we assume
&=C.)

In this case, g_; is a JTS respect to the product

{zyz} = gtyz + yt2x — 2y,

where !z denotes the transpose matrix of z.
By straightforward calculations, the standard embedding Lie algebra L(U) =
g can be shown to be 3-graded B;-type Lie algebra with g_; @ go @ ¢;. Thus,

we have
go = DerU & Anti — DerU

— B, ® ®H, where H = (Id 0 )

0 -—-Id
Der(g-, ® ¢1) = {o---0 => o} = B3, (© omitted).

1 2 2
® --- o => O©0
l
o]

—p
Furtheremore, we obtain

DerU = {L(z,y) — L(y, x) }span = Ba,
Anti — DerU = {L(z,y) + L(y, x) }span = ®H,

go = {(L(J(S), y) __L(Oy,x)>}span = {S($7 y) + A(-’E,y)}spam
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where
S(z,y) = L(z,y) — L(z,y), A(z,y) = L(z,y) + L(y, ).

Here, g_; corresponds to the root system

{a, o+, a; + a0y +oas, o + o+ 203, oy + 200 + 203}

3.2 The case of a balanced GJTS

Second we study the case of g_; = U = Mat(2, 3; ).
In this case, g_; is a balanced GJTS of 2nd order w.r.t. the product

{zyz} = 2tyx + 2tyz — 2J5 tzyJs,

1
where J3 = 1
1
By straightforward calculations, it can be shown that L(U) = g is a 5-
graded Bs-type Lie algebra with g_o @ --- @ go and dim g, = 1. Thus, we
have

go = DerU @ Anti — DerU = A, @ A, ® ®H, where H := (Iod —(.)rd)

Der(g:1® 1) =g-2® go D g2 = A1 ® A1 ® A1 (O omitted) = DerT(U)

1 2 2
O e @ => 0
l
(o]

—p

Furthermore we obtain
9-2 = {K(2,y)}span = ®Id--- which is one dimensional,
i.e., balanced. This g_, correspbnds to the root system
{og, on + a2, oy + as + a3, az + a3, oz + 203, o3 + oz + 2as, }
g-2 corresponds to the highest root
{1 + 209 + 203},

and g/(g-2 D go ® 92) = T(= g_1 ® 1) is the tangent space of a quaternion
symmetric space of dimension 12, since T is a Lie triple system associated
with g_;.
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3.3 The case of a GJTS of 2nd order

Third we study the case of g_; = U = Mai(1, 3; D).
In this case, g_; is a GJTS of 2nd order with respect to the product

{zy2} = ztyz + 2tyz — y'z2.

By straightforward calculations, it can be shown that L(U) is a 5-graded
Bs-type Lie algebra with g_o ® --- @ g2 and dim g_, = 3,

go = DerU & Anti — DerU = A, ® ®H, where H := (Iod _OId)

Der(g-_,® g1) = g—2 ® go ® g2 = A3(© omitted) = DerT(U).

1 2 2
O e le) => @
|
(e}

—p
Furthermore, we obtain

g-2 = {K(2,y) }span = Alt(3,3; ).
That is, the triple system g_;(resp. g_2) corresponds to th the root system

{az, ao+as, ay+az+az}(resp. {az+2a;3, a;+az+2as, a1+ 20, +2a3}),

implying that

Oevrnnn o--- = ©® (® omitted) and
go = Ay, @ ®H.

Remark. Following [18], for the case of a GJT of 2nd order, note that
g—2(= k) has the structure of the JTS associated with a GJTS of 2nd order.

3.4 The case of a derivation induced from a JTS

Finally, we study the case of g_; = U = Mat(1,7;®).
In this case g_, is a JTS with respect to the product

{zyz} = ztyz + ytzz — 2'zy.
For this case, we obtain

DerU = {L(z,y) — L(y, %) }span = AlL(7,7;®) = Bs,
Anti — DerU = ®H (which is one dimensional).
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The standard embedding Lie algebra is a 3-graded By-type Lie algebra with
g-1 D 90D g1-

Furthermore, we have

®---0---0= o (® omitted)

gdo =B3@@H

This case is obtained from DerU such that U = Mat(1,7; ®) with the JTS
structure.

Remark. In the above constructions, note that there exist four different

constructions for the Bs-type Lie algebras. It appears that these results may

be applicable to mathematical physics, for example, quark theory and gravity
theory.
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