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1 Introduction
The aim of this talk is to introduce a compound basis for the space of sym-
metric functions. This is based on ajoint work with Kazuya Aokage (Okayama
University) and Hiroshi Mizukawa (National Defense Academy).

Fixing an arbitrary prime number $p$ , we construct a basis consisting of prod-
ucts of Schur functions and Brauer-Schur functions. The basis elements are
indexed by the partitions. It is well known that the Schur functions form an
orthonormal basis for our space. A natural question arises. How are these two
bases connected ? In this talk I present some numerical results on the transition
matrix for these bases. In particular we will see that the determinant of the
transition matrix is a power of $p$ . The explicit formulas for the determinants
and for the elementary divisors involve an interesting combinatorial feature.

Our compound basis comes from the twisted homogeneous realization of the
basic representation of the affine Lie algebra $A_{1}^{(1)}$ ([2]). Also an expression of
rectangular Schur functions in terms of the compound basis is given in [3].

This is a supplement to our previous note [1].

2 Space of symmetric functions
Throughout this note $V$ denotes the space of polynomials in infinitely many
variables:

$V= \mathbb{Q}[t_{j};j\geq 1]=\bigoplus_{n=0}^{\infty}V(n)$ .

Here $V(n)$ denotes the space of homogeneous polynomials of degree $n$ , subject
to $\deg t_{j}=j$ . The space $V$ can be regarded as the ring of symmetric functions
by identifying $t_{j}= \frac{1}{j}(x_{1}^{j}+x_{2}^{j}+\cdots)$ , where $x_{k}$ ’s are the “original” variables.

A typical basis for $V$ is that consisting of the Schur functions. Let $P(n)$

denote the set of the partitions of $n$ . For $\lambda\in P(n)$ , the Schur function $S_{\lambda}(t)$

indexed by $\lambda$ is defined by

$S_{\lambda}(t)= \sum_{\rho\in P(n)}\chi_{\rho}^{\lambda}\frac{t_{1}^{m_{1}}t_{2}^{m_{2}}}{m_{1}!m_{2}!}$
$\in V(n)$ .
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Here the summation runs over all $\rho=(1^{m_{1}}2^{m_{2}}\cdots)\in P(n)$ , and the integer $\chi_{\rho}^{\lambda}$

is the irreducible character of $\lambda$ of the symmetric group $\mathfrak{S}_{n}$ , evaluated at the
conjugacy class $\rho$ . It is known that these Schur functions are orthonormal with
respect to the inner product

$\langle F,$ $G\rangle=F(\partial)G(t)|_{t=0}$ ,

where $\partial=(\frac{\partial}{\partial t_{1}}, \frac{1}{2}\frac{\partial}{\partial t_{2}}, \frac{1}{3}\frac{\partial}{\partial t_{3}}, \cdots)$ . By this orthogonality, $\{S_{\lambda}(t);\lambda\in P(n)\}$ forms
an orthonormal basis for the space $V(n)$ .

3 Compound bases
In the rest of the note, we always fix a prime number $p$ . A partition $\lambda=$

$(\lambda_{1}, \cdots, \lambda_{l})$ is said to be “p-regular” if there are no $i$ ’s such that $\lambda_{i}=\cdots=$

$\lambda_{i+p-1}$ . The set of all p-regular partitions of $n$ is denoted by $P^{r}(n)$ . A partition
$\lambda=(1^{m_{1}}\cdots n^{m_{n}})$ is said to be “p-class regular” if $m_{pk}=0$ for any $k\geq 1$ .
The set of all p-class regular partitions of $n$ is denoted by $P^{cr}(n)$ . It is well
known that these two sets have the same cardinality. In fact, there is a natural
bijection

$G:P^{r}(n)arrow P^{cr}(n)$

defined as follows. Let $\lambda=(\lambda_{1}, \cdots\lambda p)$ be p-regular. If $\lambda_{i}=pk$ , a positive
multiple of $p$ , then replace $\lambda_{i}$ by $(k, \cdots, k)$ , a $1\succ repetition$ of $k$ . Repeat this
process to get a $parrow class$ regular partition $\tilde{\lambda}$ . For example, if $p=2$ and $\lambda=(6,4)$ ,
then $\tilde{\lambda}=(3,3,1,1,1,1)$ . It is easily observed that $\ell(\tilde{\lambda})-\ell(\lambda)$ is divisible by
$p-1$ for any $\lambda\in P^{r}(n)$ . This map $G$ is called the p-Glaisher map.

For a partition $\lambda=(\lambda_{1}, \cdots, \lambda_{\ell})$ of $n$ , partitions $\lambda^{r}$ and $\lambda^{q}$ are defined in the
following way. The multiplicities $m_{i}(\lambda^{r})$ and $m_{i}(\lambda^{q})$ of the number $i$ are given
respectively by

$m_{i}(\lambda^{r})=k$ if $m_{i}(\lambda)\equiv k$ $(mod p)$

and

$m_{i}( \lambda^{q})=\frac{m_{i}(\lambda)-k^{\wedge}}{p}$ if $m_{i}(\lambda)\equiv k$ $(mod p)$ .

For example, if $p=3$ and $\lambda=(5^{3}4^{4}2^{11}1^{2})\in P^{r}(55)$ , then $\lambda^{r}=(42^{2}1^{2})\in$

$P^{r}(10)$ and $\lambda^{q}=(542^{3})\in P(15)$ . This gives a bijection

$\beta:P(n)arrow\bigcup_{no+pn_{1}=n}P^{r}(n_{0})\cross P(n_{1})$
.

By the theory of modular representations of the symmetric group $\mathfrak{S}_{n}$ , the
irreducible $parrow modular$ representations are indexed by the set $P^{r}(n)$ . Let $\varphi_{\rho}^{\lambda}$ be
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the Brauer character value of the irreducible representation $\lambda\in P^{r}(n)$ , eval-
uated at the p-regular conjugacy class $\rho\in P^{cr}(n)$ . This is an integer. One
finds Brauer character tables $\Phi_{n}^{(p)}=(\phi_{\rho}^{\lambda})_{\lambda,\rho}$ for some small $p$ and $n$ in [4]. For
example, the table for $p=2$ and $n=5$ looks

$\Phi_{5}^{(2)}=$

Our “Brauer-Schur function” $B_{\lambda}(t)$ for $\lambda\in P^{r}(n)$ is defined by

$B_{\lambda}(t)= \sum_{\rho\in P^{c.r}(n)}\varphi_{\rho}^{\lambda}\frac{t_{1}^{m_{1}}t_{2}^{m_{2}}}{m_{1}!m_{2}!}$

Here the summation runs over all $\rho=(1^{m_{1}}2^{m_{2}}\cdots)\in P^{cr}(n)$ . We set $V^{(p)}(n)=$

$V^{(p)}\cap V(n)$ , where

$V^{(p)}=\mathbb{Q}[t_{j};j\geq 1,j\not\equiv O(mod p)\}$ .

Then the Brauer-Schur functions $\{B_{\lambda}(t);\lambda\in P^{r}(n)\}$ form a basis for $V^{(p)}(n)$ .
In general, they are not orthogonal with respect to the inner product

$\langle F,$ $G\rangle=F(\partial)G(t)|_{t=0}$ .

A dual basis is obtained by using the “projective covers” of irreducible repre-
sentations ([6]).

In view of the bijection $\beta$ , we define, for $\lambda\in P(n)$ ,

$W_{\lambda}(t)=B_{\lambda^{r}}(t)S_{\lambda^{q}}(t_{(p)})$ ,

where $t_{(p)}=(t_{p}, t_{2p}, t_{3p}, \cdots)$ . The functions $\{W_{\lambda}(t);\lambda\in P(n)\}$ are linearly
independent and form a basis for the space $V(n)$ . We call this the “compound
basis”

4 Transition matrices
For a fixed prime number $p$ , let $A_{n}^{(p)}=(a_{\lambda\mu})$ be the transition matrix between
two bases, defined by

$S_{\lambda}(t)= \sum_{\mu\in P(n)}a_{\lambda\mu}W_{\mu}(t)$

for $\lambda\in P(n)$ . We give matrices of the cases $(p, n)=(3,3),$ $(3,4),$ $(3,5)$ and
(3, 6).
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$A_{3}^{(3)}=$

$A_{4}^{(3)}=$

Here the columns are labeled by the pairs $(\mu^{f}, \mu^{q})$ . The partition $\mu^{r}$ indexing
column means $(\mu^{r}, \emptyset)$ . The minor matrix consisting of such columns that $\mu^{q}=\emptyset$

is nothing but the decomposition matrix $D_{n}^{(p)}$ of the symmetric group $G_{n}$ at
characteristic $p$ .

One verifies that $A_{n}^{(p)}$ is an integral matrix and

$|\det A_{n}^{(p)}|=p^{k_{n}}$ ,
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where $k_{n}= \sum_{\lambda\in P(n)}\ell(\lambda^{q})$ .
A new result which is not written in [1] is as follows. The elementary divisors

of the matrix $A_{n}^{(p)}$ are given by

$\{p\frac{\ell(\overline{\lambda^{r}})-\ell(\lambda^{r})}{p-1}; \lambda\in P(n)\}$ .

Here $\overline{\lambda^{r}}$ denotes the image of the partition $\lambda^{r}$ by p-Glaisher map $G$ . From this
result we have another formula for the determinant of $A_{n}^{(p)}$ .

$k_{n}= \sum_{\lambda\in P(n)}\frac{\ell(\overline{\lambda^{r}})-\ell(\lambda^{r})}{p-1}$ .

The elementary divisors of the matrices $A_{3}^{(3)},$ $A_{4}^{(3)},$ $A_{5}^{(3)}$ and $A_{6}^{(3)}$ are, respec-
tively, {1, 1, 3}, {1, 1, 1, 1, 3}, {1.1.1, 1, 1, 3, 3} and {1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 9}.

Finally we mention about an orthogonality of the matrices $A_{n}^{(p)}$ . The matrix
${}^{t}A_{n}^{(p)}A_{n}^{(p)}$ is block diagonal, each block labeled by the pair $(n_{0}, n_{1})$ . Let $B_{n_{0},n_{1}}^{(p)}$

be the block corresponding to $(n_{0}, n_{1})$ . Then the determinant is given by

$|\det B_{n_{0},n_{1}}^{(p)}|=p^{\Delta_{n_{0},n_{1}}}$ ,

where

$\Delta_{n_{0},n_{1}}=\sum_{(\lambda^{t},\lambda^{q})\in P^{r}(n_{0})xP(n_{1})}(\frac{\ell(\lambda^{\tilde{r}})-\ell(\lambda^{r})}{p-1}+\ell(\lambda^{q}))$ .

The “principal block” $B_{n,0}^{(p)}$ is nothing but the Cartan matrix for $G_{n}$ at charac-
teristic $p$ ([7]).
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