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Abstract

We give a summary of the theory of (weak) quantum vertex $\mathbb{C}((t))-$

algebras and the association of quantum affine algebras with (weak)
quantum vertex $\mathbb{C}((t))$ -algebras.

1 Introduction
In the earliest days of vertex (operator) algebra theory, Lie algebras had played
an important role, and in particular, an important family of vertex operator
algebras (see [FLM], [FZ]. [DL]) was associated with untwisted affine Lie alge-
bras. A fundamental problem, posed in [FJ] (cf. [EFK]), has been to establish
a suitable theory of quantum vertex algebras. so that quantum affine alge-
bras can be canonically associated with quantum vertex algebras in the same
(or a similar) way that affine Lie algebras are associated with vertex operator
algebras. In literature, there have been a few of notions of quantum vertex
(operator) algebra ( $[eFR]$ , [EK], [B3], [Li3], [AB]), however this particular
problem is still to be solved.

In a series of papers, starting with [Li3], we have been investigating vertex
algebra-like structures arising from various algebras including quantum affine
algebras and Yangians, with an ultimate goal to solve the aforementioned prob-
lem. Our key idea is to start with the algebraic structures that the generating
functions of those quantum algebras on highest weight modules could possibly
“generate.” This is the fundamental guideline of this series of studies.

The first paper [Li3] was to provide a foundation for the whole series.
Starting with an arbitrary vector space $W$ , we studied general (formal) vertex
operators ( $=$quantum fields) on $W$ , which are elements of $Hom(W, W((x)))$ .
Let $\mathcal{E}(W)$ denote the space $Hom(W, W((x)))$ alternatively. Then we studied
various types of subsets of $\mathcal{E}(W)$ and the algebraic structures generated by such
subsets, where the operations of vertex operators on vertex operators are given
by what is often called “operator product expansion.” The most general type
consists of what were called “quasi compatible subsets,” whereas compatible
subsets are relatively restrictive, but still very general. It was proved therein
that any (quasi) compatible subset of $\mathcal{E}(W)$ generates a nonlocal vertex algebra
with $W$ as a (quasi) module in a certain sense. (Nonlocal vertex algebras
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are analogs of noncommutative associative algebras, in contrast to that vertex
algebras are analogs of commutative and associative algebras.) This generalizes
the main result of [Li2], which states that every compatible subset generates
a nonlocal vertex algebra with $W$ as a module. It follows from this general
result that a wide variety of algebras can be associated with nonlocal vertex
algebras. In particular, if $W$ is taken to be a highest weight module for a
quantum affine algebra, the generating functions in the Drinfeld realization
form a quasi compatible subset of $\mathcal{E}(W)$ , and therefore they generate a nonlocal
vertex algebra with $W$ as a quasi module.

Furthermore, with the defining relations of quantum affine algebras in
mind, we formulated and studied a notion of “pseudo local subset” of $\mathcal{E}(W)$

with $W$ a general vector space, to single out a family of quasi compatible sub-
sets. Now, given a pseudo local subset $U$ , one has a nonlocal vertex algebra
$\langle U\rangle$ with $W$ as a quasi module. Under a certain assumption, we proved in
[Li3] that there exists a unitary quantum Yang-Baxter operator on $\langle U)$ with
two spectral parameters, which describes the braided commutativity relation
of the vertex operators from the set $\langle U\rangle$ . Roughly speaking, one obtains a de-
formed chiral algebra structure in the sense of $[eFR]$ . Note that this quantum
Yang-Baxter operator is for vertex operators on the quasi module $W$ , not for
the adjoint vertex operators on the algebra $\langle U\rangle$ .

Motivated by Etingof-Kazhdan’s notion of quantum vertex operator alge-
bra [EK], in particular by the S-locality axiom, we studied in [Li3] a notion of
“S-local subset” of $\mathcal{E}(W)$ (with $W$ a vector space), which singles out a family
of compatible subsets. It was proved that if $U$ is an S-local subset of $\mathcal{E}(W)$ ,
the adjoint vertex operators on the nonlocal vertex algebra $\langle U\rangle$ satisfies S-
locality (commutativity). This lead us to a theory of (weak) quantum vertex
algebras and their modules. A conceptual result is that for any S-local subset
$U$ of $\mathcal{E}(W),$ $\langle U\rangle$ is a weak quantum vertex algebra with $W$ as a canonical
module. As the set of the Drinfeld generating functions of quantum affine
algebras is not S-local, this theory of (weak) quantum vertex algebras leaves
quantum affine algebras out. Nevertheless, it has been proved to be suitable
for studying Yangians. More specifically, in [Li6] we have associated certain
versions of double Yangians with quantum vertex algebras. Furthermore, in
[Li7], we formulated a notion of $\hslash_{r}$ adic (weak) quantum vertex algebra and
we associated centrally extended double Yangians with $\hslash$-adic quantum vertex
algebras and their modules.

In [Li8], we came back to the problem with quantum affine algebras again.
On the basis of [Li3], we developed a theory of (weak) quantum vertex $\mathbb{C}((t))-$

algebras and we successfully associated quantum affine algebras with weak
quantum vertex $\mathbb{C}((t))$ -algebras. In this theory, a weak quantum vertex $\mathbb{C}((t))arrow$

algebra is a $\mathbb{C}((t))$-module and a nonlocal vertex algebra over $\mathbb{C}$ , that satisfies
a Jacobi-like identity. As a nonlocal vertex algebra, a weak quantum vertex
$\mathbb{C}((t))$-algebra satisfies the associativity for ordinary vertex algebras. Further-
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more, a quantum vertex $\mathbb{C}((t))$-algebra is a weak quantum vertex $\mathbb{C}((t))$ -algebra
equipped with a unitary quantum Yang-Baxter operator on $V$ with two formal
parameters, which describes the braided commutativity relation of vertex op-
erators $Y(v, x)$ for $v\in V$ and satisfies some other properties. Even though a
weak quantum vertex $\mathbb{C}((t))$ -algebra $V$ is a $\mathbb{C}((t))$-module, the vertex operator
map $Y$ is not $\mathbb{C}((t))$ -linear, as by definition

$Y(f(t)u, x)g(t)v=f(t+x)g(t)Y(u, x)v$ for $f(t),$ $g(t)\in \mathbb{C}((t)),$ $u,$ $v\in V$

(where linearity is deformed). Thus, the formal variable $t$ in this theory is not
a deformation parameter, unlike the formal variable $\hslash$ in Etingof-Kazhdan’s
theory of quantum vertex operator algebras [EK].

The notion of weak quantum vertex $\mathbb{C}((t))$-algebra naturally arisen from
our study on the nonlocal vertex algebras generated by pseudo local subsets
of $\mathcal{E}(W)$ with $W$ a vector space over $\mathbb{C}$ , (Recall that any quasi compatible
subset $U$ of $\mathcal{E}(W)$ generates a nonlocal vertex algebra $\langle U\rangle$ over $\mathbb{C}.$ ) It has
been realized in [Li3] that $\langle U\rangle$ is not large enough to describe the braided
commutativity relation and one needs to consider the span $\mathbb{C}((x))\langle U\rangle$ , noticing
that $\mathcal{E}(W)(=Hom(W, W((x))))$ is naturally a $\mathbb{C}((x))$-module. It has also
been proved therein that $\mathbb{C}((x))\langle U\rangle$ is a nonlocal vertex algebra over $\mathbb{C}$ , but
it is not a nonlocal vertex algebra over $\mathbb{C}((x))$ , as the adjoint vertex operator
map is not $\mathbb{C}((x))$-linear. This lead us to a notion of nonlocal vertex $\mathbb{C}((t))-$

algebra, where a nonlocal vertex $\mathbb{C}((t))$-algebra $V$ is simply a $\mathbb{C}((t))$ -module
and a nonlocal vertex algebra over $\mathbb{C}$ whose vertex operator map $Y$ satisfies
the deformed $\mathbb{C}((t))$ -linear property mentioned previously. In terms of this
notion, for any quasi compatible subset $U$ of $\mathcal{E}(W),$ $\mathbb{C}((x))\langle U\rangle$ is a nonlocal
vertex $\mathbb{C}((t))$-algebra with $f(t)\in \mathbb{C}((t))$ acting as $f(x)$ . Furthermore, we
considered what we called (quasi $S(x_{1}, x_{2})$-local subsets” and $S(x_{1}, x_{2})$ -local
subsets” of $\mathcal{E}(W)$ , where quasi $S(x_{1}, x_{2})$-local subsets are quasi compatible
while $S(x_{1}, x_{2})$-local subsets are compatible. (The notion of quasi $S(x_{1}, x_{2})-$

local subset is a slight reformulation of the notion of pseudo local subset.)
Our conceptual result is that for any (quasi) $S(x_{1}, x_{2})$-local subset $U$ of $\mathcal{E}(W)$ ,
$\mathbb{C}((x))\langle U\rangle$ is a weak quantum vertex $\mathbb{C}((t))$-algebra with $f(t)\in \mathbb{C}((t))$ acting as
$f(x)$ , and the space $W$ becomes a (quasi) module. Furthermore, to construct
a quantum vertex $\mathbb{C}((t))$ -algebra from a weak quantum vertex $\mathbb{C}((t))$-algebra,
we extended Etingof-Kazhdan’s notion of non-degeneracy for nonlocal vertex
$\mathbb{C}((t))$ -algebras and we proved that just as with quantum vertex algebras [Li5],
every non-degenerate weak quantum $\mathbb{C}((t))$-algebra has a (unique) canonical
quantum vertex $\mathbb{C}((t))$-algebra structure.

Now, taking $W$ to be a highest weight module for a quantum affine algebra
and taking $U$ to be the set of the Drinfeld generating functions, one has a quasi
$S(x_{1}, x_{2})$-local subset $U$ of $\mathcal{E}(W)$ , and then one has a weak quantum vertex
$\mathbb{C}((t))$-algebra $\mathbb{C}((x))\langle U\rangle$ with $W$ as a canonical quasi module. To a certain
extent, this solves the problem mentioned at the very beginning, though we
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still have to show that this weak quantum vertex $\mathbb{C}((t))$-algebra is a quantum
vertex $\mathbb{C}((t))$ -algebra, or sufficiently to show that it is non-degenerate.

We mention that there is a very interesting and closely related work [AB], in
which Anguelova and Bergvelt studied a class of vertex algebra-like structures,
called $H_{D}$-quantum vertex algebras. The notion of $H_{D}$-quantum vertex algebra
generalizes Etingof-Kazhdan’s notion of braided vertex operator algebra [EK]
in certain directions. In particular, the underlying space of an $H_{D}$-quantum
vertex algebra is a topologically free $\mathbb{C}[[t]]$-module and the vertex operator map
$Y$ is $\mathbb{C}[[t]]$ -linear, where the variable $t$ plays the same role as $\hslash$ does in [EK]. One
of the generalizations is that the braiding operator $S$ (for the vertex operators
on the algebra) is allowed to have two (independent) spectral parameters,
instead of one. A fact is that general $H_{D}$-quantum vertex algebras fail to satisfy
the associativity for ordinary vertex algebras, though they do satisfy a braided
associativity, just as Etingof-Kazhdan’s braided vertex operator algebras do.
(On the other hand, Etingof-Kazhdan’s quantum vertex operator algebras by
definition satisfy the associativity.)

We would like to thank Professor Hiromichi Yamada for organizing this
conference and for financial support.

2 Nonlocal vertex algebras and their modules
In this section, we review the basics on nonlocal vertex algebras and their mod-
ules and quasi modules, and we give a summary of the conceptual construction
of nonlocal vertex algebras and their (quasi) modules.

For this paper, letters such as $t,$ $x,$ $y,$ $z,$ $x_{0},$ $x_{1},$ $x_{2},$ $\ldots$ are mutually commut-
ing independent formal variables. We shall use the formal variable notations
and conventions as established in [FLM] and [FHL] (cf. [LL]). For this paper
we shall be working on the field $\mathbb{C}$ of complex numbers. For any positive in-
teger $r$ , denote by $\mathbb{C}[[x_{1}, x_{2}, \ldots, x_{r}]]$ the algebra of formal nonnegative power
series and by $\mathbb{C}((x_{1}\ldots..x_{r}))$ the algebra of formal Laurent series which are
globally truncated with respect to all the variables. Note that in the case
$r=1,$ $\mathbb{C}((x))$ is in fact a field. By $\mathbb{C}_{*}(x_{1}.x_{2}, \ldots, x_{r})$ we denote the extension
of $\mathbb{C}[[x_{1}, x_{2}, \ldots, x_{r}]]$ by inverting all the nonzero polynomials.

For any permutation $(i_{1}, \cdot i_{2}, \ldots, i_{r})$ on $\{$ 1, $\ldots$ , $r\},$ $\mathbb{C}((x_{i_{1}}))\cdots((x_{i_{r}}))$ is a
field, containing $\mathbb{C}[[x_{1}, \ldots, x_{r}]]$ as a subalgebra, so (by a basic fact in classical
ring theory), there exists a unique algebra embedding

$\iota_{x_{i_{1}},\ldots,x_{i_{r}}}:\mathbb{C}_{*}(x_{1}, x_{2}, \ldots, x_{r})arrow \mathbb{C}((x_{i_{1}}))\cdots((x_{i_{r}}))$ , (2.1)

extending the identity endomorphism of $\mathbb{C}[[x_{1}, \ldots, x_{r}]]$ (cf. [FHL]). Note
that both $\mathbb{C}_{*}(x_{1}, \ldots, x_{r})$ and $\mathbb{C}((x_{i_{1}}))\cdots((x_{i_{r}}))$ contain $\mathbb{C}((x_{1}, \ldots, x_{r}))$ as a
subalgebra. We see that $\iota_{xx_{i_{r}}}t_{1},\ldots$, preserves $\mathbb{C}((x_{1\}}\ldots, x_{r}))$ element-wise and
that $\iota_{x_{i_{1}},\ldots,x_{tr}}$ is also $\mathbb{C}((x_{1}, \ldots, x_{r}))$-linear. For any nonzero polynomial $p\in$
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$\mathbb{C}[x_{1}, \ldots, x_{r}]$ , (as $\iota_{x_{i_{1}}\ldots,x_{i_{r}}\rangle}$ is an algebra homomorphism) we have

$\iota_{x_{t_{1}},\ldots,x_{i_{f}}}(1/p)=p^{-1}$ , (2.2)

where $p^{-1}$ denotes the inverse of $p$ in $\mathbb{C}((x_{i_{1}}))\cdots((x_{i_{r}}))$ .
In the general field of vertex algebras, a very basic notion is that of nonlocal

vertex algebra, which generalizes the notion of vertex algebra in the way that
the notion of associative algebra generalizes that of commutative associative
algebra.

Definition 2.1. A nonlocal vertex algebra over $\mathbb{C}$ is a vector space $V$ , equipped
with a linear map

$Y$ : $Varrow Hom(V, V((x)))\subset(EndV)[[x, x^{-1}]]$ ,
$v\mapsto Y(v, x)$

and a vector $1\in V$ , satisfying the conditions that $Y(1, x)=1$ ,

$Y(v, x)1\in V[[x]]$ and $\lim_{xarrow 0}Y(v, x)1=v$ for $v\in V$,

and that for $u,$ $v,$ $w\in V$ , there exists a nonnegative integer $l$ such that

$(x_{0}+x_{2})^{\iota}Y(u, x_{0}+x_{2})Y(v, x_{2})w=(x_{0,\sim}+x_{2})^{\iota}Y(Y(u, x_{0})v, x_{2})w$ . (2.3)

Remark 2.2. The notion of nonlocal vertex algebra, which was defined in
[Li3], is exactly the notion of weak axiomatic $G_{1}$-vertex algebra in [Li2], and it
is essentially the same as the notion of field algebra, studied in [BK] (cf. [K]).

Definition 2.3. Let $V$ be a nonlocal vertex algebra. A V-module is a vector
space $W$ , equipped with a linear map

$Y_{W}$ : $Varrow Hom(W, W((x)))\subset(EndW)[[x, x^{-1}]]$ ,
$v\mapsto Y_{W}(v\rangle x)$ ,

satisfying the conditions that

$Y_{W}(1, x)=1_{W}$ (the identity operator on $W$ )

and that for $u,$ $\tau$ ) $\in V,$ $w\in W$ , there exists a nonnegative integer $l$ such that

$(x_{0}+x_{2})^{l}Y_{W}(u, x_{0}+x_{2})Y_{W}(v, x_{2})w=(x_{0}+x_{2})^{l}Y_{W}(Y(u, x_{0})v, x_{2})w$.

A quasi V-module is defined by simply replacing the last condition with that
for $u,$ $v\in V,$ $w\in W$ , there exists a nonzero polynomial $p(x_{1}, x_{2})\in \mathbb{C}[x_{1}, x_{2}]$

such that

$p(x_{0}+x_{2}, x_{2})Y_{W}(u, x_{0}+x_{2})Y_{W}(v, x_{2})w=p(x_{0}+x_{2}, x_{2})Y_{W}(Y(u, x_{0})v, x_{2})w$ .
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Remark 2.4. The notion of module for a nonlocal vertex algebra was in-
troduced and a conceptual construction of nonlocal vertex algebras and their
modules was established in [Li2]. The notion of quasi module for a vertex
algebra was first introduced and studied in $[$Li4$]$ , in order to associate vertex
algebras to a certain type of Lie algebras. Later, quasi modules for nonlocal
vertex algebras were studied in [Li3] and a general construction of nonlocal
vertex algebras and their quasi modules was established therein.

Let $W$ be a general vector space over $\mathbb{C}$ . Set
$\mathcal{E}(W)=Hom(W, W((x)))\subset$ (End$W$) $[[x, x^{-1}]]$ . (2.4)

The identity operator on $W$ , denoted by $1_{W}$ , is a special element of $\mathcal{E}(W)$ .

Definition 2.5. A finite sequence $a_{1}(x),$
$\ldots,$

$a_{r}(x)$ in $\mathcal{E}(W)$ is said to be quasi
compatible if there exists a nonzero polynomial $p(x, y)\in \mathbb{C}[x, y]$ such that

$( \prod_{1\leq i<j\leq r}p(x_{i}, x_{j}))a_{1}(x_{1})\cdots a_{r}(x_{r})\in Hom(W, W((x_{1}, \ldots , x_{r})))$. (2.5)

The sequence $a_{1}(x),$
$\ldots,$

$a_{r}(x)$ is said to be compatible if there exists a nonneg-
ative integer $k$ such that

$( \prod_{1\leq i<j\leq r}(x_{i}-x_{j})^{k})a_{1}(x_{1})\cdots a_{r}(x_{f})\in Hom(W, W((x_{1}, \ldots , x_{r})))$ . (2.6)

Furthermore, a subset $T$ of $\mathcal{E}(W)$ is said to be quasi compatible (compatible) if
every finite sequence in $T$ is quasi compatible (compatible).

Let $(a(x), b(x))$ be a quasi compatible ordered pair in $\mathcal{E}(W)$ . That is, there
is a nonzero polynomial $p(x, y)\in \mathbb{C}[x, y]$ such that

$p(x_{1}, x_{2})a(x_{1})b(x_{2})\in Hom(W, W((x_{1}, x_{2})))$ . (2.7)

We define $Y_{\mathcal{E}}(a(x), x_{0})b(x)\in \mathcal{E}(W)((x_{0}))$ by

$Y_{\mathcal{E}}(a(x), x_{0})b(x)= \iota_{x_{2}x_{0}}(\frac{1}{p(x+x_{0},x)})(p(x_{1}, x)a(x_{1})b(x))|_{x=x+xo}1$ (2.8)

and we then define $a(x)_{n}b(x)\in \mathcal{E}(W)$ for $n\in \mathbb{Z}$ by

$Y_{\mathcal{E}}(a(x), x_{0})b(x)= \sum_{n\in Z}a(x)_{n}b(x)x_{0}^{-n-1}$
. (2.9)

One can show that this is well defined; the expression on the right-hand side
is independent of the choice of $p(x,y)$ . In this way we have defined partial
operations $(a(x), b(x))\mapsto a(x)_{n}b(x)$ for $n\in \mathbb{Z}$ on $\mathcal{E}(W)$ . We say that a quasi
compatible $\mathbb{C}$-subspace $U$ of $\mathcal{E}(W)$ is $Y_{\mathcal{E}}$ -closed if

$a(x)_{n}b(x)\in U$ for $a(\prime r),$ $b(x)\in U,$ $n\in \mathbb{Z}$ . (2.10)

The main results of [Li3] (cf. [Li2]) can be summarized as follows:
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Theorem 2.6. Let $W$ be a geneml vector space over $\mathbb{C}$ . $a$) For any $Y_{\mathcal{E}}$ -closed
(quasi) compatible subspace $V$ of $\mathcal{E}(W)$ , that contains $1_{W},$ $(V, Y_{\mathcal{E}}, 1_{W})$ carries
the structure of a nonlocal vertex algebra with $W$ as a (quasi) module where
$Y_{W}(\alpha(x), x_{0})=\alpha(x_{0})$ for $\alpha(x)\in V$ . $b)$ For every (quasi) compatible subset $U$

of $\mathcal{E}(W)$ , there erists a unique smallest $Y_{\mathcal{E}}$ -closed (quasi) compatible subspace
$\langle U\rangle$ that contains $U$ and $1_{W}$ , and $\langle U\rangle$ is a nonlocal vertex algebra with $U$ as a
genemting subset and with $W$ as a (quasi) module.

3 Quantum vertex $\mathbb{C}((t))$-algebras and their mod-
ules

In this section, we review the basics on nonlocal vertex $\mathbb{C}((t))$ -algebras, (weak)
quantum vertex $\mathbb{C}((t))$-algebras and their modules, and we summarize the con-
ceptual construction of weak quantum vertex $\mathbb{C}((t))$-algebras and their (quasi)
modules.

Deflnition 3.1. A nonlocal vertex $\mathbb{C}((t))$ -algebm is a nonlocal vertex algebra
$V$ over $\mathbb{C}$ , equipped with an $\mathbb{C}((t))$ -module structure, such that

$Y(f(t)u, x)(g(t)?\})=f(t+x)g(t)Y(c\iota, x)v$ (3.1)

for $f(t),g(t)\in \mathbb{C}((t)),$ $u,$ $v\in V$ .

For any field $K$ , we denote by Vec$(K)$ the category of vector spaces over
$K$ . Note that for any vector space $W$ (over $\mathbb{C}$ ), $Hom(W, W((x)))$ , alternatively
denoted as $\mathcal{E}(W)$ , is naturally a $\mathbb{C}((x))$-module.

Definition 3.2. Let $V$ be a nonlocal vertex $\mathbb{C}((t))$-algebra. A V-module in
category Vec $(\mathbb{C})$ is a module $(W, Y_{W})$ for $V$ viewed as a nonlocal vertex algebra
over $\mathbb{C}$ , satisfying the condition that

$Y_{W}(f(t)\tau),$ $x)w=f(x)Y_{W}(\tau’, x)u)$ for $f(t)\in \mathbb{C}((t)),$ $\tau’\in V,$ $w\in W$. (3.2)

A notion of quasi V-module in category Vec $(\mathbb{C})$ is defined in the obvious way–
with the word “module” replaced by “quasi module” in the two places.

The following is a conceptual result which was obtained in [Li8]:

Theorem 3.3. Let $W$ be a vector space $over\mathbb{C}$ and let $U$ be any (quasi) compat-
ible subset of $\mathcal{E}(W)$ . Then $\mathbb{C}((x))\langle U\rangle$ is the smallest $Y_{\mathcal{E}}$ -closed (quasi) compati-
ble $\mathbb{C}((x))$ -submodule of $\mathcal{E}(W)$ , that contains $U$ and $1_{W}$ , where $\langle U\rangle$ denotes the
smallest $Y_{\mathcal{E}}$ -closed $\mathbb{C}$ -subspace of $\mathcal{E}(W)$ , that contains $U$ and $1_{W}$ . $Furthe7more$,
$(\mathbb{C}((x))\langle U\rangle, Y_{\mathcal{E}}, 1_{W})ca7\gamma\dot{\tau}es$ the structure of a nonlocal vertex $\mathbb{C}((t))$ -algebra,
where

$f(t)a(x)=f(x)a(x)$ for $f(t)\in \mathbb{C}((t)),$ $a(x)\in \mathbb{C}((x))\langle U\rangle$ ,
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and $(W, Y_{W})$ cawies the structure of a (quasi) $\mathbb{C}((x))\langle U\rangle$ -module in category
Vec $(\mathbb{C})$ , where $Y_{W}(a(x), x_{0})=a(x_{0})$ for $a(x)\in \mathbb{C}((x))\langle U\rangle$ .

The following notion of weak quantum vertex $\mathbb{C}((t))$-algebra singles out an
important family of nonlocal vertex $\mathbb{C}((t))$-algebras:

Definition 3.4. A weak quantum vertex $\mathbb{C}((t))$ -algebra is a nonlocal vertex
$\mathbb{C}((t))$-algebra $V$ satisfying the condition that for any $u,$ $v\in V$ , there exist

$u^{(i)},$ $v^{(i)}\in V,$ $f_{i}(x_{1}, x_{2})\in \mathbb{C}_{*}(x_{1}, x_{2})$ $(i=1, \ldots, r)$

such that

$x_{0}^{-1} \delta(\frac{x_{1}-x_{2}}{x_{0}})Y(u, x_{1})Y(v, x_{2})$

$-x_{0}^{-1} \delta(\frac{x_{2}-x_{1}}{-x_{0}})\sum_{i=1}^{r}\iota_{t|x2x1}(f_{i}(t+x_{1}, t+x_{2}))Y(v^{(i)}.x_{2})Y(u^{(i)}, x_{1})$

$=$ $x_{2}^{-1} \delta(\frac{x_{1}-x_{0}}{x_{2}})Y(Y(u, x_{0})\uparrow, x_{2})$ . (3.3)

A refinement of Theorem 3.3 is that if a quasi compatible subset $U$ of $\mathcal{E}(W)$

is of a certain type, $\mathbb{C}((x))\langle U\rangle$ is a weak quantum vertex $\mathbb{C}((t))$-algebra.

Definition 3.5. Let $W$ be a vector space over $\mathbb{C}$ . A subset $U$ of $\mathcal{E}(W)$ is said
to be quasi $S(x_{1}, x_{2})$ -local if for any $a(x),$ $b(x)\in U$ , there exist finitely many

$u^{(i)}(x),$ $\tau^{(i)}(x)\in U,$ $f_{i}(x_{1}, x_{2})\in \mathbb{C}_{*}(x_{1}, x_{2})(i=1, \ldots, r)$

such that

$p(x_{1}, x_{2})a(x_{1})b(x_{2})= \sum_{i=1}^{r}p(x_{1}, x_{2})\iota_{x2,x1}(f_{i}(x_{1}, x_{2}))u^{(i)}(x_{2})v^{(i)}(x_{1})$ (3.4)

for some nonzero polynomial $p(x_{1}, x_{2})\in \mathbb{C}[x_{1}, x_{2}]$ , depending on $a(x)$ and $b(x)$ .
We say that $U$ is $S(x_{1}, x_{2})$ -local if for any $a(x),$ $b(x)\in U$ , there exist

$u^{(i)}(x),$ $v^{(i)}(x)\in U,$ $f_{i}(x_{1}, x_{2})\in \mathbb{C}_{*}(x_{1}, x_{2})(i=1, \ldots, r)$

such that

$(x_{1}-x_{2})^{k}a(x_{1})b(x_{2})=(x_{1}-X_{2})^{k} \sum_{i=1}^{r}2,1\}$ (3.5)

for some nonnegative integer $k$ .

It was proved in [Li8] that quasi $S(x_{1}, x_{2})$-local subsets of $\mathcal{E}(W)$ are quasi
compatible while $S(x_{1}, x_{2})$-local subsets are compatible. We have the following
fundamental result (see [Li8]):
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Theorem 3.6. Let $W$ be a vector space over $\mathbb{C}$ and let $U$ be any (quasi)
$S(x_{1}, x_{2})$ -local subset of $\mathcal{E}(W)$ . Denote by $\langle U\rangle$ the nonlocal vertex algebm over
$\mathbb{C}$ genemted by U. Then $\mathbb{C}((x))\langle U\rangle$ is a weak quantum vertex $\mathbb{C}((t))$ -algebm
with

$f(t)a(x)=f(x)a(x)$ for $f(t)\in \mathbb{C}((t)),$ $a(x)\in \mathbb{C}((x))\langle U\rangle$ ,

and $(W, Y_{W})$ is a (quasi) module for $\mathbb{C}((x))\langle U\rangle$ in category Vec $(\mathbb{C})$ , where

$Y_{W}(a(x), x_{0})=a(x_{0})$ for $a(x)\in \mathbb{C}((x))\langle U\rangle$ .

For nonlocal vertex $\mathbb{C}((t))$-algebras, there is another category of modules
which are like the adjoint modules.

Definition 3.7. Let $V$ be a nonlocal vertex $\mathbb{C}((t))$-algebra. A (quasi) V-
module in category Vec $(\mathbb{C}((t)))$ is a $\mathbb{C}((t))$ -module $W$ which is also a (quasi)
module for $V$ viewed as a nonlocal vertex algebra over $\mathbb{C}$ such that

$Y_{W}(f(t)v, x)(g(t)w)=f(t+x)g(t)Y_{W}(v, x)w$ (3.6)

for $f(t),$ $g(t)\in \mathbb{C}((t)))?\in V,$ $?1)\in W$ .

Definition 3.8. Let $W$ be a $\mathbb{C}((t))$-module and let $t_{1}$ be a formal variable.
We define a $\mathbb{C}((t_{1}))$ -module structure on $\mathcal{E}(W)$ by

$f(t_{1})a(x)=f(t+x)a(x)$ for $f(t_{1})\in \mathbb{C}((t_{1})),$ $a(x)\in \mathcal{E}(W)$ . (3.7)

With these notions we have:

Proposition 3.9. Let $W$ be a $\mathbb{C}((t))$ -module and let $U$ be a compatible sub-
set of $\mathcal{E}(W)$ . Denote by $\langle U\rangle$ the nonlocal vertex algebm over $\mathbb{C}$ generated by
U. Then $\mathbb{C}((t_{1}))\langle U\rangle$ is a nonlocal vertex $\mathbb{C}((t_{1}))$ -algebm, and $W$ , viewed as
$a\mathbb{C}((t_{1}))$ -module with $f(t_{1})\in \mathbb{C}((t_{1}))$ acting as $f(t)$ , is a module in category
Vec $(\mathbb{C}((t_{1})))$ .

The notion of quantum vertex $\mathbb{C}((t))$-algebra involves quantum Yang-Baxter
operators. Let $H$ be a vector space over $\mathbb{C}$ . A quantum Yang-Baxter opemtor
with two spectral parameters on $H$ is a linear map

$S(x_{1}, x_{2}):H\otimes Harrow H\otimes H\otimes \mathbb{C}_{*}(x_{1}, x_{2})$

satisfying the quantum Yang-Baxter equation
$S_{12}(x_{1}, x_{2})S_{13}(x_{1}, x_{3})S_{23}(x_{2}, x_{3})=S_{23}(x_{2}, x_{3})S_{13}(x_{1}, x_{3})S_{12}(x_{1}, x_{2})$ , (3.8)

where $S_{ij}(x_{i}, x_{j})$ are linear maps from $H^{\otimes 3}arrow H^{\otimes 3}\otimes \mathbb{C}_{*}(x_{i}, x_{j})$ , defined by
$S_{12}(x, z)=S(x, z)\otimes 1,$ $S_{23}(x, z)=1\otimes S(x, z)$ , and

$S_{13}(x, z)=P_{23}(S(x, z)\otimes 1)P_{23}$ .

Furthermore, $S(x_{1}, x_{2})$ is said to be unitary if

$S_{21}(x_{2}, x_{1})S(x_{1}, x_{2})=1$ , (3.9)

where $S_{21}(x_{2}, x_{1})=PS(x_{2}, x_{1})P$ with $P$ the flip operator on $H\otimes H$ .
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Definition 3.10. A quantum vertex $\mathbb{C}((t))$ -algebm is a weak quantum ver-
tex $\mathbb{C}((t))$-algebra $V$ equipped with a $\mathbb{C}$-linear unitary quantum Yang-Baxter
operator $S(x_{1}, x_{2})$ on $V$ , satisfying the conditions that

$S(x_{1}, x_{2})(f(t)u\otimes g(t)v)=f(x_{1})g(x_{2})S(x_{1}, x_{2})(u\otimes v)$ (3.10)

for $f(t),$ $g(t)\in \mathbb{C}((t)),$ $u,$ $v\in V$ , and that for any $u,$ $v\in V,$ $(3.3)$ holds with

$S(x_{1}, x_{2})(u \otimes v)=\sum_{i\overline{\sim}1}^{r}u^{(i)}\otimes v^{(i)}\otimes f_{i}(x_{1}, x_{2})$ ,

and that

$[ \mathcal{D}\otimes 1,S(x_{1}, x_{2})]=-\frac{\partial}{\partial x_{1}}S(x_{1}, x_{2})$ , (3.11)

$S(x_{1}, x_{2})(Y(x)\otimes 1)=(Y(x)\otimes 1)S_{23}(x_{1}, x_{2})S_{13}(x_{1}+x-t, x_{2}),(3.12)$

where $\mathcal{D}$ is the $\mathbb{C}$-linear operator on V. defined by $\mathcal{D}(v)=v_{-2}1$ for $v\in V$ .

In the study of quantum vertex operator algebras, Etingof-Kazhdan [EK]
introduced a notion of non-degeneracy, which has played a very important
role. This notion is also a very important tool in the study of quantum vertex
algebras in [Li3]. The following is a version of non-degeneracy for nonlocal
vertex $\mathbb{C}((t))$-algebras (cf. [EK]):

Definition 3.11. Let $V$ be a nonlocal vertex $\mathbb{C}((t))$ -algebra. Denote by
$V^{\otimes n}$ the tensor product in the category of $\mathbb{C}$-vector spaces and define $V^{\otimes n}\otimes$

$\mathbb{C}_{*}(x_{1}, \ldots, x_{n})$ to be the quotient space of $V^{\otimes n}\otimes \mathbb{C}_{*}(x_{1}, \ldots, x_{n})$ by the relations

$f_{1}(t)\uparrow^{(1)}\otimes\cdots\otimes f_{n}(t)?)(\otimes f=\ell\iota’\otimes\cdots\otimes t)\otimes f_{1}(x_{1})\cdots f_{n}(x_{n})f$

for $f\in \mathbb{C}_{*}(x_{1}, \ldots, x_{n}),$ $f_{i}(t)\in \mathbb{C}((t)),$ $t’(i)\in V(i=1, \ldots, n,)$ . For each positive
integer $n$ . define a $\mathbb{C}$-linear map

$Z_{n}:V^{\otimes n}\otimes \mathbb{C}_{*}(x_{1}, \ldots.x_{n})arrow V((x_{1}))\cdots((x_{n}))$

by

$Z_{n}(\uparrow)(\otimes\cdots\otimes t)\otimes f)=\iota_{t,x,\ldots,x_{n}}l1f(t+x_{1}, \ldots, t+x_{n})Y(c^{(1)}),$ $x_{1})\cdots Y(?’(n), x_{n})1$ .

We say that $V$ is non-degenerate if for every positive integer $n,$ $Z_{n}$ is injective.

With this notion we have (see [Li8], cf. [EK], Proposition 1.11):

Theorem 3.12. Let $V$ be a weak quantum vertex $\mathbb{C}((t))$ -algebra. Assume that
$V$ is non-degenerate. Then there etists a $\mathbb{C}$ -linear map

$S(x_{1}, x_{2}):V\otimes Varrow V\otimes V\otimes \mathbb{C}_{*}(x_{1}, x_{2})$ ,
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which is uniquely determined by the condition that for $u,$ $v,$ $w\in V$ ,

$(x_{1}-x_{2})^{k}Y(v, x_{2})Y(u, x_{1})w$

$=$ $(x_{1}-x_{2})^{k}Y(x_{1})(1\otimes Y(x_{2}))(S(x_{1}+t, x_{2}+t)(u\otimes v)\otimes w)$ (3.13)

for some nonnegative integer $k$ , depending only on $u$ and $v$ . Furthermore,
$S(x_{1}, x_{2})$ is a unitary quantum Yang-Baxter opemtor on $V$ , and $V$ equipped
with $S(x_{1}, x_{2})$ is a quantum vertex $\mathbb{C}((t))$ -algebm.

The following is a general result on non-degeneracy (see [Li8], cf. [Li5]):

Proposition 3.13. Let $V$ be a nonlocal vertex $\mathbb{C}((t))$ -algebm such that $V$ as a
V-module is iweducible with $End_{V}(V^{mod})=\mathbb{C}((t))$ . Then $V$ is non-degenemte.

4 Quantum affine algebras and weak quantum
vertex $\mathbb{C}((t))$-algebras

In this section we give a summary of the association of quantum affine algebras
with weak quantum vertex $\mathbb{C}((t))$-algebras and their quasi modules.

First, we follow [FJ] (cf. [Dr]) to present the quantum affine algebras. Let
$\mathfrak{g}$ be a finitc-dimensional simple Lie algebra of rarik $l$ of type $A,$ $D$ , or $E$ and
let $A=(a_{ij})$ be the Cartan matrix. Let $q$ be a nonzero complex number. For
$1\leq i.j\leq l$ , set

$f_{ij}(x)=(q^{a_{ij}}x-1)/(x-q^{a_{1j}})\in \mathbb{C}(x)$ . (4.1)

Then we set

$g_{ij}(x)^{\pm 1}=\iota_{x,0}f_{ij}(x)^{\pm 1}\in \mathbb{C}[[x]]$ , (4.2)

where $\iota_{x,0}f_{ij}(x)^{\pm 1}$ are the formal Taylor series expansions of $f_{ij}(x)^{\pm 1}$ at $0$ . Let
$\mathbb{Z}_{+}$ denote the set of positive integers. The quantum affine algebra $U_{q}(\hat{\mathfrak{g}})$ is
(isomorphic to) the associative algebra with identity 1 with generators

$X_{ik}^{\pm}$ , $\phi_{im}$ , $\psi_{in},$ $\gamma^{1/2},$ $\gamma^{-1/2}$ (4.3)

for $1\leq i\leq l,$ $k\in \mathbb{Z},$ $m\in-\mathbb{Z}_{+},$ $n\in \mathbb{Z}_{+}$ , where $\gamma^{\pm 1/2}$ are central, satisfying
the relations below, written in terms of the following generating functions in
a formal variable $z$ :

$X_{i}^{\pm}(z)= \sum_{k\in z}X_{ik}^{\pm}z^{-k}$
, $\phi_{i}(z)=\sum_{m\in-z_{+}}\phi_{im}z^{-m}$

,
$\psi_{i}(z)=\sum_{n\in Z+}\psi_{in}z^{-n}$

. $(4.4)$
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The relations are

$\gamma^{1/2}\gamma^{-1/2}=\gamma^{-1/2}\gamma^{1/2}=1$ ,
$\phi_{i0}\psi_{i0}=\psi_{i0}\phi_{i0}=1$ ,
$[\phi_{i}(z), \phi_{j}(w)]=0$ , $[\psi_{i}(z), \psi_{j})(w)]=0$ ,

$\phi_{t}(z)\psi_{j}(w)\phi_{i}(z)^{\sim 1}\psi_{j}(w)^{-1}=g_{ij}(z/w\gamma)/g_{ij}(z\gamma/w)$ ,
$\phi_{i}(z)X_{j}^{\pm}(w)\phi_{i}(z)^{-1}=\backslash q_{ij}(z/w\gamma^{\pm 1/2})^{\pm 1}X_{j}^{\pm}(w)$,

$\psi_{i}(z)X_{j}^{\pm}(w)\psi_{i}(z)^{-1}=g_{ij}(w/z\gamma^{\pm 1/2})^{\mp 1}X_{j}^{\pm}(w)$ ,
$(z-q^{\pm 4a_{ij}}w)X_{i}^{\pm}(z)X_{j}^{\pm}(w)=(q^{\pm 4a_{ij}}z-w)X_{j}^{\pm}(\tau v)X_{i}^{\pm}(z)$ ,

$[X_{i}^{+}(z), X_{j}^{-}(w)]= \frac{\delta_{ij}}{q-q^{-1}}(\delta(\frac{z}{w\gamma})\psi_{i}(w\gamma^{1/2})-\delta(\frac{z\gamma}{w})\phi_{i}(z\gamma^{1/2}))$ ,

and there is one more set of relations of Serre type.
A $U_{q}(\hat{\mathfrak{g}})$ -module $W$ is said to be restr\’icted if for any $w\in W,$ $X_{ik}^{\pm}w=0$ and

$\psi_{ik}w=0$ for $1\leq i\leq l$ and for $k$ sufficiently large. We say $W$ is of level $\ell\in \mathbb{C}$

if $\gamma^{\pm 1/2}$ act on $W$ as scalars $q^{\pm\ell/4}$ . (Rigorously speaking, one needs to choose
a branch of $\log q.$ ) We have (cf. [Li3], Proposition 4.9):

Proposition 4.1. Let $q$ and $\ell$ be complex numbers with $q\neq 0$ and let $W$ be a
restricted $U_{q}(\hat{\mathfrak{g}})$ -module of level $l$ . Set

$\lceil J_{W}=\{\phi_{i}(x), \psi_{i}(x), X_{i}^{\pm}(x)|1\leq i\leq l\}$ .

Then $lJ_{W}$ is a quasi $S(x_{1}, x_{2})$ -local subset of $\mathcal{E}(W)$ and $\mathbb{C}((x))\langle U_{W}\rangle$ is a weak
quantum vertex $\mathbb{C}((t))$ -algebra with $W$ as a quasi module in category Vec $(\mathbb{C})_{f}$

where $\langle U_{W}\rangle$ denotes the nonlocal vertex algebm over $\mathbb{C}$ generated by $U_{W}$ .

With Proposition 4.1 on hand, the remaining problem is to determine the
weak quantum vertex $\mathbb{C}((t))$-algebras $V_{W}$ explicitly and to show that they are
quantum vertex $\mathbb{C}((t))$ -algebras, sufficiently by establishing the non-degeneracy.
We expect that just as with vertex algebras associated with affine Lie algebras
(cf. [LL]), these weak quantum vertex $\mathbb{C}((t))$-algebras are vacuum modules for
certain associative algebras derived from quantum affine algebras.
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