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Abstract

Let $H$ be a self-adjoint operator (a Hamiltonian) on a complex Hilbert
space $\mathcal{H}$ . A symmetric operator $T$ on $\underline{r}$ト $\zeta$ is called a strong time operator of
$H$ if the pair $(T, H)$ obeys the operator equation $e^{itH}Te^{-itH}=T+t$ for all
$t\in \mathbb{R}$ ( $\mathbb{R}$ is the set of real numbers and $i$ is the imaginary unit). In this note
we review some results on the uniqueness (up to unitary equivalences) of the
pairs $(T_{\}H)$ .
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1 Introduction
A pair $(T, H)$ of a symmetric operator $T$ and a self-adjoint operator $H$ on a complex
Hilbert space $\mathcal{H}$ is called a weak $\mathcal{W}^{\gamma}eyl$ representation of the canonical commutation
relation (CCR) with one degree of freedom if it obeys the weak Weyl relation: For
all $t\in \mathbb{R}$ (the set of real numbers), $e^{-itH}D(T)\subset D(T)(i$ is the imaginary unit and
$D(T)$ denotes the domain of $T$ ) and

$Te^{-itH}\psi=e^{-itH}(T+t)\psi,$ $\forall t\in \mathbb{R},\forall\psi\in D(T)$ . (1.1)
$*$ This work is supported bv the Grant-in-Aid No.17340032 for Scientific Research from Japan
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It is easy to see that the weak Weyl relation is equivalent to the operator equation

$e^{itH}Te^{-itH}=T+t$ , $\forall t\in \mathbb{R}$ , (1.2)

implying that $e^{-itH}D(T)=D(T),$ $\forall t\in \mathbb{R}$ .
One can prove that, if $(T, H)$ is a weak Weyl representation of the CCR, then

$(T, H)$ obeys the CCR
$[T, H]=i$ (1.3)

on $D(TH)\cap D(HT)$ , where $[X, Y]:=XY-YX$ . But the converse is not true.
In the context of quantum theory where $H$ is the Hamiltonian of a quantum

system, $T$ is called a strong time operator of $H[3,5]$ .
We remark that a standard time operator (simply a time operator) of $H$ is defined

to be a symmetric operator $T$ on $\mathcal{H}$ obeying CCR (1.3) on a subspace $\mathcal{D}\neq\{0\}$ (not
necessarily dense) of ’Jf $($ i.e., $D\subset D(TH)\cap D(HT)$ and $[T,$ $H]\psi=i\psi,$ $\forall\psi\in D)$

(cf. [1]). Obviously this notion of time operator is weaker than that of strong time
operator. General classes of time operators (not strong ones) of a Hamiltonian with
discrete eigenvalues have been investigated by Galapon [12], Arai-Matsuzawa [9] and
Arai [7].

Weak Weyl representations of the CCR were first discussed by Schm\"udgen [19,
20] from a purely operator theoretical point of view and then by Miyamoto [14] in
application to a theory of time operator in quantum theory. A generalization of a
weak Weyl relation was presented by the present author [2] to cover a wider range
of applications to quantum physics including quantum field theory.

Arai-Matsuzawa [8] discovered a general structure for construction of a weak
Weyl representation of the CCR from a given weak Weyl representation and estab-
lished a theorem for the former representation to be a Weyl representation of the
CCR. These results were extended by Hiroshima-Kuribayashi-Matsuzawa [13] to a
wider class of Hamiltonians.

In the previous paper [6] the author considered the problem on uniqueness (up
to unitary equivalences) of weak Weyl representations. In the context of theory of
time operators, this is a problem on uniqueness (up to unitary equivalences) of pairs
$(T, H)$ with $H$ a Hamiltonian and $T$ a strong time operator of $H$ . This problem has
an independent interest in the theory of weak Weyl representations. This note is a
review of some results obtained in [6].

2 Preliminaries
We denote by $W(\mathcal{H})$ the set of all the weak Weyl representations on $\mathcal{H}$ :

$W(\mathcal{H})$ $:=$ { $(T,$ $H)|(T,$ $H)$ is a weak Weyl representation on $\mathcal{H}$ }. (2.1)
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It is easy to see that, if $(T, H)$ is in W(S-C), then so are $(\overline{T}, H)$ and $(-T, -H)$ . where
$\overline{T}$ denotes the closure of $T$ .

For a linear operator $A$ on a Hilbert space, $\sigma(A)$ (resp. $\rho(A)$ ) denotes the spec-
trum (resp. the resolvent set) of $A$ (if $A$ is closable, then $\sigma(A)=\sigma(\overline{A})$ ). Let $\mathbb{C}$ be
the set of complex numbers and

$\Pi_{+}:=\{z\in \mathbb{C}|{\rm Im} z>0\}$ , $\Pi_{-}:=\{\approx\in \mathbb{C}|{\rm Im} z<0\}$ . (2.2)

In the previous paper [4], we proved the following facts:

Theorem 2.1 [4] Let $(T, H)\in W(\mathcal{H})$ . Then:

$(i)\mathbb{C}$

.
If $H$ is bounded below, then either $\sigma(T)=\overline{\Pi}_{+}$ (the closure of $\Pi_{+}$ ) or $\sigma(T)=$

(ii) If $H$ is bounded above, then either $\sigma(T)=\overline{\Pi}_{-}$ or $\sigma(T)=\mathbb{C}$ .

(iii) If $H$ is bounded, then $\sigma(T)=\mathbb{C}$ .

This theorem has to be taken into account in considering the uniqueness problem
of weak Weyl representations.

A form of representations of the CCR stronger than weak Weyl representations
is known as a Weyl representation of the CCR which is a pair $(T, H)$ of self-adjoint
operators on $\mathcal{H}$ obeying the Weyl relation

$e^{itT}e^{isH}=e^{-its}e^{isH}e^{itT}$ , $\forall t,\forall s\in \mathbb{R}$ . (2.3)

It is well known (the von Neumann uniqueness theorem [15]) that, every Weyl
representation on a separable Hilbert space is unitarily equivalent to a direct sum of
the Schr\"odinger representation $(q,p)$ on $L^{2}(\mathbb{R})$ , where $q$ is the multiplication operator
by the variable $x\in \mathbb{R}$ and $p=-iD_{x}$ with $D_{x}$ being the generalized differential
operator in $\prime c$ (cf. [3, \S 3.5], [16, Theorem 4.3.1], [17, Theorem VIII.14]).

It is easy to see that a Weyl representation is a weak Weyl representation (but
the converse is not true). Therefore, as far as the Hilbert space under consideration
is separable, the non-trivial case for the uniqueness problem of weak Weyl represen-
tations is the one where they are not Weyl representations. A general class of such
weak Weyl representations $(T, H)$ are given in the case where $H$ is semi-bounded
(bounded below or bounded above). In this case, $T$ is not essentially self-adjoint [2,
Theorem 2.8], implying Theorem 2.1.

Two simple examples in this class are constructed as follows:
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Example 2.1 Let $a\in \mathbb{R}$ and consider tlae Hilbert space $L^{2}(\mathbb{R}_{a}^{+})$ with $\mathbb{R}_{a}^{+}:=(a, \infty)$ .
Let $q_{a_{3}+}$ be the multiplication operator on $L^{2}(\mathbb{R}_{a}^{+})$ by the variable $\lambda\in \mathbb{R}_{a}^{+}$ :

$D(q_{a,+}):= \{f\in L^{2}(\mathbb{R}_{a}^{+})|\int_{a}^{\infty}\lambda^{2}|f(\lambda)|^{2}d\lambda<\infty\}$ , (2.4)

$q_{a,+}f:=\lambda f$ , $f\in D(q_{a,+})$ (2.5)

and
$p_{a_{1}+}:=-i \frac{d}{d\lambda}$ (2.6)

with $D(p_{a_{t}+})=C_{0}^{\infty}(\mathbb{R}_{a}^{+})$ , the set of infinitely differentiable functions on $\mathbb{R}_{a}^{+}$ with
bounded support in $\mathbb{R}_{a}^{+}$ . Then it is easy to see that $q_{a,+}$ is self-adjoint, bounded below
with $\sigma(q_{a,+})=[a, \infty)$ and $p_{a,+}$ is a symmetric operator. Moreover, $(-p_{a,+}, q_{a,+})$ is a
weak Weyl representation of the CCR. Hence, as remarked above, $(-\overline{p}_{a+7}q_{a,+}))$ also
is a weak Weyl representation.

Note that $p_{a_{\dagger}+}$ is not essentially self-adjoint and

$\sigma(-p_{a,+})=\sigma(-\overline{p}_{a,+})=\overline{\Pi}_{+}$ . (2.7)

In particular, $\pm\overline{p}_{a,+}$ are maximal symmetric, i.e., they have no non-trivial symmetric
extensions ($e.g.,$ $[18$ , \S X.1, Corollary]).

Example 2.2 Let $b\in \mathbb{R}$ and consider the Hilbert space $L^{2}(\mathbb{R}_{b}^{-})$ with $\mathbb{R}_{b}^{-}$ $:=$

$(-\infty, b)$ . Let $q_{b}$,-be the multiplication operator on $L^{2}(\mathbb{R}_{b}^{-})$ by the variable $\lambda\in \mathbb{R}_{b}^{-}$ .
and

$p_{b,-}:=-i \frac{d}{d\lambda}$ (2.8)

with $D(p_{b.-})=C_{0}^{\infty}(\mathbb{R}_{b}^{-})$ . Then $q_{b,-}$ is self-adjoint, bounded above with $\sigma(q_{b,-})=$

$(-\infty, b],$ $p_{b}$,-is a symmetric operator, and $(-p_{b,-}, q_{b.-})$ is a weak Weyl representation
of the CCR. As in the case of $p_{a,+},$ $p_{b,-}$ is not essentially self-adjoint and

$\sigma(-p_{b,-})=\overline{\Pi}_{-}$ . (2.9)

A relation between $(-p_{a,+}, q_{a,+})$ and $(-p_{b.-}, q_{b,-})$ is given as follows. Let $U_{ab}$ :
$L^{2}(\mathbb{R}_{a}^{+})arrow L^{2}(\mathbb{R}_{b}^{-})$ be a linear operator defined by

$(U_{ab}f)(\lambda)$ $:=f$ ( $a+$ \’o-- $\lambda$ ). $f\in L^{2}(\mathbb{R}_{a}^{+}),$ $a.e.\lambda\in \mathbb{R}_{b}^{-}$ .

Then $U_{ab}$ is unitary and

$U_{ab}q_{a,+}U_{ab}^{-1}=a+b-q_{b.-}$ , $U_{ab}p_{a.+}U_{ab}^{-1}=-p_{b,-}$ . (2.10)
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In view of the von Neumann uniqueness theorem for Weyl representations, the
pair $(-\overline{p}_{a,+}, q_{a.+})$ (resp. $(-\overline{p}_{b,-},$ $q_{b,-})$ ) may be a reference pair in classifying weak
Weyl representations $(T_{1}H)$ with $H$ being bounded below (resp. bounded above).

By Theorem 2.1, we can define two subsets of $W(\mathcal{H})$ :

$W_{+}(\mathcal{H})$ $:=$ { $(T,$ $H)\in W(\mathcal{H})|H$ is bounded below and $\sigma(T)=\overline{\Pi}_{+}$ }, $(2.11)$

$W_{-}(\mathcal{H})$ $:=$ { $(T,$ $H)\in W(\mathcal{H})|H$ is bounded above and $\sigma(T)=\overline{\Pi}_{-}$ } . $(2.12)$

Then, as shown above, $(-p_{a,+}, q_{a,+})\in W_{+}(L^{2}(\mathbb{R}_{a}^{+}))$ and $(-p_{b,-}, q_{b,-})\in W_{-}(L^{2}(\mathbb{R}_{b}^{-}))$ .

3 Irreducibility
For a set $\mathcal{A}$ of linear operators on a Hilbert space $\mathcal{H}$ , we set

$A’$ $:=\{B\in B(\mathcal{H})|BA\subset AB,\forall A\in A\}$ ,

called the strong commutant of $A$ in $\mathcal{H}$ , where B(St) is the set of all bounded linear
operators on $\mathcal{H}$ with $D(B)=\mathcal{H}$ .

We say that $\mathcal{A}$ is irreducible if $A’=\{cI|c\in \mathbb{C}\}$ , where $I$ is the identity on $\mathcal{H}$ .

Proposition 3.1 For all $a\in \mathbb{R}$ , the set $\{\overline{p}_{a,+},p_{a,+}^{*}, q_{a,+}\}$ (Example 2.1) is iwe-
ducible.

To prove this proposition, we need a lemma.
Let $a\in \mathbb{R}$ be fixed. For each $t\geq 0$ , we define a linear operator $U_{a}(t)$ on $L^{2}(\mathbb{R}_{a}^{+})$

as follows: For each $f\in L^{2}(\mathbb{R}_{a}^{+})$ ,

$(U_{a}(t)f)(\lambda):=\{\begin{array}{ll}f(\lambda-t) \lambda>t+a0 a<\lambda\leq t+a\end{array}$ (3.1)

Then it is easv to see that $\{U_{a}(t)\}_{t\geq 0}$ is a strongly continuous one-parameter semi-
group of isometries on $L^{2}(\mathbb{R}_{+}^{a})$ .
Lemma 3.2 The generator of $\{U_{a}(t)\}_{t\geq 0}is-ip_{a,+}$ :

$\frac{dU_{a}(t)f}{dt}=-i\overline{p}_{a,+}U_{a}(t)f$. $\forall f\in D(\overline{p}_{a,+}),$ $t\in \mathbb{R}$ , (3.2)

where the derivative in $t$ is taken in the strong sense.

Proof. Let $iA$ be the generator of $\{U_{a}(t)\}_{t\geq 0}$ :

$\frac{dU_{a}(t)f}{dt}=iAU_{a}(t)f$ , $\forall f\in D(A),$ $t\in \mathbb{R}$ .

Then it follows from the isometry of $U_{a}(t)$ that $A$ is a closed symmetric operator.
It is easy to see that $-p_{a,+}\subset A$ and hence $-\overline{p}_{a,+}\subset A$ . As already remarked in
Example 2.1, $-\overline{p}_{a,+}$ is maximal symmetric. Hence $A=-\overline{p}_{a,+}$ . I
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Proof of Proposition 3.1
Let $B\in\{\overline{p}_{a,+},p_{a,+}^{*}, q_{a,+}\}’$ . Then

$B\overline{p}_{a,+}\subset\overline{p}_{a,+}B$ , (3.3)
$Bp_{a,+}^{*}\subset p_{a,+}^{*}B$ , (3.4)
$Bq_{a,+}\subset q_{a,+}B$ . (3.5)

As in the case of bounded linear operators on $L^{2}(\mathbb{R})$ strongly commuting with $q$

(the multiplication operator by the variable $x\in \mathbb{R}$)[$3$ , Lemma 3.13], (3.5) implies
that there exists an essentially bounded function $F$ on $\mathbb{R}_{a}^{+}$ such that $B=M_{F}$ , the
multiplication operator by $F$ .

Let $f\in D(\overline{p}_{a,+})$ and $g(t);=BU_{o}(t)f$ . Then, by Lemma 3.2, $g$ is strongly
differentiable in $t\geq 0$ and

$\frac{dg(t)}{dt}=B(-i\overline{p}_{a,+})U_{a}(t)f=-i\overline{p}_{a,+}g(t)$ ,

where we have used (3.3). Note that $g(O)=Bf$ . Hence, by the uniqueness of
solutions of the initial value problem on differential equation (3.2), we have $g(t)=$
$U_{a}(t)Bf$ . Therefore it follows that $BU_{a}(t)=U_{a}(t)B,$ $\forall t\geq 0$ . Hence $FU_{a}(t)f=$

$U_{a}(t)Ff,\forall f\in L^{2}(\mathbb{R}_{a}^{+})$ , which implies that

$F(\lambda)f(\lambda-t)=F(\lambda-t)f(\lambda-t)$ , $\lambda>t+a$ .

Hence $F(\lambda)=F(\lambda+t),$ $a.e.\lambda>0_{J}\forall t>0$ . This means that $F$ is equivalent to a
constant function. Hence $B=M_{F}=cI$ with some $c\in \mathbb{C}$ . I

Proposition 3.3 For all $b\in \mathbb{R}$ , the set $\{\overline{p}_{b.-},p_{b,-}^{*}, q_{b,-}\}$ (Example 2.2) is irre-
ducible.

Proof. Let $B\in\{\overline{p}_{b,-},p_{b,-}^{*}, q_{b,-}\}’$ . Then, by (2.10), the operator $C$ $:=U_{ab}^{-1}BU_{ab}$ is
$in_{h}\{\overline{p}_{a,+},p_{a,+}^{*}, q_{a,+}\}’$

. Hence, by Proposition 3.1, $C=cI$ with some constant
$c\in \mathbb{C}I$

Thus $B=cI$ .

4 Uniqueness Theorem

One can prove the following theorem:

Theorem 4.1 Let $?t$ be separable and $(T, H)\in W_{+}(\mathcal{H})$ with $\epsilon_{0}$ $:= \inf\sigma(H).$ Sup-
pose that $\{\overline{T}, T^{*}, H\}$ is irreducible. Then there exists a unitary operator $U$ : $\mathcal{H}arrow$

$L^{2}(\mathbb{R}_{\epsilon_{0}}^{+})$ such that
$U\overline{T}U^{-1}=-\overline{p}_{\epsilon}\vee 0\cdot+$

’
$UHU^{-1}=q_{\epsilon 0,+}$ . (4.1)
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In particular
$\sigma(H)=[\epsilon_{0}, \infty)$ . (4.2)

Remark 4.1 It is known that, for every weak Weyl representation $(T, H)\in W(\mathcal{H})$

( $\mathcal{H}$ is not necessarily separable), $H$ is purely absolutely continuous [14, 19].

We prove Theorem 4.1 in the next section. For the moment, we note a result
which immediately follows from Theorem 4.1:

Theorem 4.2 Let $J\{$ be separable and $(T, H)\in W_{-}(\mathcal{H})$ with $b:= \sup\sigma(H).$ Sup-
pose that $\{\overline{T}, T^{*}, H\}$ is iweducible. Then there exists a unitary operator $V$ : $\mathcal{H}arrow$

$L^{2}(\mathbb{R}_{b}^{-})$ such that
$V\overline{T}V^{-1}=-\overline{p}_{b,-}$ , $VHV^{-1}=q_{b,-}$ . (4.3)

In particular
$\sigma(H)=(-\infty, b]$ . (4.4)

Proof. As remarked in Section 2, $(-T$. $-H)\in W_{+}(\mathcal{H})$ with $a$ $:= \inf\sigma(-H)=-b$

and $\sigma(-T)=\overline{\Pi}_{+}$ . Hence, we can apply Theorem 4.1 to conclude that there exists
a unitary operator $U:\mathcal{H}arrow L^{2}(\mathbb{R}_{a}^{+})$ such that

$U\overline{T}U^{-1}=\overline{p}_{a,+}$ , $UHU^{-1}=-q_{a,+}$ .

By Example 2.2, we have

$U_{ab}\overline{p}_{a,+}U_{ab}^{-1}=-\overline{p}_{b,-}$ , $U_{ab}q_{a,+}U_{ab}^{-1}=-q_{b_{t}-}$ ,

where we have used that $a+b=0$ . Hence, putting $V$ $:=U_{ab}U$ , we obtain the desired
result. I

Remark 4.2 In view of Theorems 4.1 and 4.2, it would be interesting to know when
$\sigma(T)=\overline{\Pi}_{+}$ (resp. $\overline{\Pi}_{-}$ ) for $(T, H)\in W(\mathcal{H})$ with $H$ bounded below (resp. above).
Concerning this problem, we have the following results [5]:

(i) Let $(T, H)\in$ W(St) and $H$ be bounded below. Suppose that, for some
$\beta_{0}>0$ , Ran $(e^{-\beta_{0}H}T)$ (the range of $e^{-\beta_{0}H}T$) is dense in $\mathcal{H}$ . Then $\sigma(T)=\overline{\Pi}_{+}$ .

(ii) Let $(T, H)\in W(\mathcal{H})$ and $H$ be bounded above. Suppose that, for some
$\beta_{0}>0$ , Ran$(e^{\beta oH}T)$ is dense in $\mathcal{H}$ . Then $\sigma(T)=\overline{\Pi}_{-}$ .
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5 Proof of Theorem 4.1
Lemma 5.1 Let $S$ be a closed symmetric operator on $\mathcal{H}$ such that $\sigma(S)=\overline{\Pi}_{+}$ .
Then there exists a unique strongly continuous one-parameter semi-group $\{Z(t)\}_{t\geq 0}$

whose generator is $iS$ . Moreover, each $Z(t)$ is an isometry:

$Z(t)^{*}Z(t)=I$ , $\forall t\geq 0$ . (5.1)

Proof. This fact is probably well known. But, for completeness, we give a proof.
By the assumption $\sigma(S)=\Pi_{+}$ , we have $\sigma(iS)=\{z\in \mathbb{C}|{\rm Re}\approx\leq 0\}$. Therefore
the positive real axis $(0, \infty)$ is included in the resolvent set $\rho(iS)$ of $iS$ . Since $S$ is
symmetric, it follows that

$\Vert(iS-\lambda)^{-1}\Vert\leq\frac{1}{\lambda}$ , $\lambda>0$ .

Hence, by the Hille-Yosida theorem, $iS$ generates a strongly continuous one-parameter
semi-group $\{Z(t)\}_{t\geq 0}$ of contractions. For all $\psi\in D(iS)=D(S),$ $Z(t)\psi$ is in $D(S)$
and strongly differentiable in $t\geq 0$ with

$\frac{d}{dt}Z(t)\psi=iSZ(t)\psi=Z(t)iS\psi$ .

This equation and the symmetricity of $S$ imply that $\Vert Z(t)\psi\Vert^{2}=\Vert\psi\Vert^{2},\forall t\geq 0$.
Hence (5.1) follows. 1

Lemma 5.2 Let $(T, H)\in W_{+}(\mathcal{H})$ . Then there exists a unique strongly continuous
one-parameter semi-group $\{U_{T}(t)\}_{t\geq 0}$ whose generator is $i\overline{T}$ . Moreover, each $U_{T}(t)$

is an isometry and

$U_{T}(t)e^{-isH}=e^{its}e^{-isH}U_{T}(t)$ , $t\geq 0,$ $s\in \mathbb{R}$ . (5.2)

Proof. We can apply Lemma 5.1 to $S=\overline{T}$ to conclude that $i\overline{T}$ generates a
strongly continuous one-parameter semi-group $\{U_{T}(t)\}_{t\geq 0}$ of isometries on St. For
all $\psi\in D(\overline{T})$ and all $t\geq 0,$ $U_{T}(t)\psi$ is in $D(\overline{T})$ and strongly differentiable in $t\geq 0$

with
$\frac{d}{dt}U_{T}(t)\psi=i\overline{T}U_{T}(t)\psi=U_{T}(t)i\overline{T}\psi$ .

Let $s\in \mathbb{R}$ be fixed and $V(t)$ $:=e^{its}e^{-isH}U_{T}(t)e^{isH}$ . Then $\{V(t)\}_{t\geq 0}$ is a strongly
continuous one-parameter semi-group of isometries. Let $\psi\in D(\overline{T})$ . Then $e^{-isH}\psi\in$

$D(\overline{T})$ and
$\overline{\tau}_{e^{-isH}\psi=e^{-isH}\overline{T}\psi+se^{-isH}\psi}$.
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Hence $V(t)\psi$ is in $D(\overline{T})$ and strongly differentiable in $t$ with

$\frac{d}{dt}V(t)\psi=i\overline{T}V(t)\psi l$ .

This implies that $V(t)\psi=U_{T}(t)\psi,$ $\forall t\in \mathbb{R}$ . Since $D(\overline{T})$ is dense, it follows that
$V(t)=U_{T}(t),$ $\forall t\in \mathbb{R}$ , implying (5.2). 1

We recall a result of Bracci and Picasso [10]. Let $\{U(\alpha)\}_{\alpha\geq 0}$ and $\{V(\beta)\}_{\beta\in \mathbb{R}}$

be a strongly continuous $onearrow parameter$ semi-group and a strongly continuous one-
parameter unitary group on $\mathcal{H}$ respectively, satisfying

$U(\alpha)^{*}U(\alpha)=I$ , $\mathfrak{a}\geq 0$ , (5.3)
$U(\alpha)V(\beta)=e^{i\alpha\beta}V(\beta)U(\alpha)$ , $\alpha\geq 0,$ $\beta\in \mathbb{R}$ . (5.4)

Then, by the Stone theorem, there exists a unique self-adjoint operator $P$ on $g\{$ such
that

$V(\beta)=e^{-i\beta P}$ , $\beta\in \mathbb{R}$ . (5.5)

Lemma 5.3 [10] Let $?f$ be separable and $P$ is bounded below with $\nu$ $:= \inf\sigma(P)$ .
Suppose that $\{U(\alpha), U(\alpha)^{*}, V(\beta)|\alpha\geq 0, \beta\in \mathbb{R}\}$ is irreducible. Then, there exists a
unitary operator $Y$ : $\mathcal{H}arrow L^{2}(\mathbb{R}_{\nu}^{+})$ such that

$YL^{r}(\beta)Y^{-1}=e^{-i\beta q_{\nu_{2}+}},$ $\beta\in \mathbb{R}$ , (5.6)
$YU(\alpha)Y^{-1}=U_{\nu}(\alpha)$ , $\alpha\geq 0$ . (5.7)

We denote the generator of $\{U(\alpha)\}_{a\geq 0}$ by $iQ$ . It follows that $Q$ is closed and
symmetric.

Lemma 5.4 Under the assumption of Lemma 5.3,

$YP\}’--1=q_{\nu,+}$ , (5.8)
$YQY^{-1}=-\overline{p}_{\nu,+}$ . (5.9)

In pa7$icular
$\sigma(P)=[\nu, \infty)$ . (5.10)

Proof. Lemma 5.3 and (5.6) imply (5.8). Simlarly (5.9) follows from Lemma 5.3,

(5.7) and Lemma 3.2. 1

Lemma 5.5 Let $(T, H)\in W(Jt)$ with $\sigma(T)=\overline{\Pi}_{+}$ . Suppose that $\{\overline{T}, T^{*}\dot{}H\}$ is
iweducible. Then $\{U_{T}(t), U_{T}(t)^{*}, e^{-isH}|t\geq 0, s\in \mathbb{R}\}$ is iweducible.
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Proof. Let $B\in B(\mathcal{H})$ be such that

$BU_{T}(t)=U_{T}(t)B$ , (5.11)
$BU_{T}(t)^{*}=U_{T}(t)^{*}B$ , (5.12)
$Be^{-isH}=e^{-isH}B_{7}\forall t\geq 0,\forall s\in \mathbb{R}$ . (5.13)

Let $\psi\in D(\overline{T})$ . Then, by (5.11), we have $BU_{T}(t)\psi=U_{T}(t)B\psi,$ $\forall t\geq 0$ . By
Lemma 5.2, the left hand side is strongly differentiable in $t$ with $d(BU_{T}(t)\psi)/dt=$

$iB\overline{T}U_{T}(t)\psi$ . Hence so does the right hand side and we obtain that $B\psi\in D(\overline{T})$

and $B\overline{T}\psi=\overline{T}B\psi$ . Therefore $B\overline{T}\subset\overline{T}B$ . Note that (5.12) implies that $U_{T}(t)B^{*}=$

$B^{*}U_{T}(t)$ . Hence it follows that $B^{*}\overline{T}\subset\overline{T}B^{*}$ , which implies that $BT^{*}\subset T^{*}B$ , where
we have used the following general facts: for every densely defined closable linear
operator $A$ on $\mathcal{H}$ and all $C\in$ B(St), $(CA)^{*}=A^{*}C^{*},$ $(AC)^{*}\supset C^{*}A^{*},$ $(\overline{A})^{*}=A^{*}$ .
Similarly (5.13) implies that $BH\subset HB$ . Hence $B\in\{\overline{T}, T^{*}, H\}’$ . Therefore $B=cI$
for some $c\in \mathbb{C}$ .

Proof of Theorem 4.1
By Lemmas 5.2 and 5.5, we can apply Lemma 5.3 to the case where $V(\beta)=$

$e^{-i\beta H},$ $\beta\in \mathbb{R}$ and $U(\alpha)=U_{T}(\alpha),$ $\alpha\geq 0$ . Then the desired results follow from
Lemmas 5.3 and 5.4. 1

Remark 5.1 Recently Bracci and Picasso [11] have obtained an interesting result
on the reducibility of the von Neumann algebra generated by $\{U(\alpha),$ $U(\alpha)^{*},$ $V(\beta)|\alpha\geq$

$0,$ $\beta\in \mathbb{R}\}$ obeying (5.3) and (5.4). By employing the result, one can generalize The-
orem 4.1 to the case where $\{\overline{T}, T^{*}, H\}$ is not necessarily irreducible.

6 Application to Construction of a Weyl repre-
sentation

In the previous paper [8], a general structure was found to construct a Weyl repre-
sentation from a weak Weyl representation. Here we recall it.

Theorem 6.1 [8, Corollary 2.6] Let $(T, H)$ be a weak Weyl representation on a
Hilbert space $\mathcal{H}$ with $T$ closed. Then the operator

$L:=\log|H|$ (6.1)

is well-defined, self-adjoint and the operator

$D$ $:= \frac{1}{2}(TH+\overline{HT})$ (6.2)
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is a symmetric operator. Moreover, if $D$ is essentially $self- ad_{J^{O}}int$ , then $(\overline{D}.L)$ is a
Weyl representation of the $CCR$ and $\sigma(|H|)=[0, \infty)$ .

To apply this theorem, we need a lemma.

Lemma 6.2 $[6]Leta\in \mathbb{R}$ and

$d_{a}$ $:=- \frac{1}{2}(p_{a,+}q_{a,+}+\overline{q_{a,+}p_{a+})})$ (6.3)

acting in $L^{2}(\mathbb{R}_{a}^{+})$ . Then $d_{a}$ is essentially self-adjoint if and only if $a=0$ .

Theorem 6.3 Let $g\{$ be separable and $(T, H)\in w_{+}(:\kappa)$ with $\inf\sigma(H)=0$ and $T$

closed. Suppose that $\{T, T^{*}, H\}$ is irreducible. Let $L$ and $D$ be as in (6.1) and (6.2)
respectively. Then $D$ is essentially self-odjoint and $(\overline{D}, L)$ is a Weyl representation
of the $CCR$ .

Proof. Let $\hat{d}_{0}$ be the operator $d_{0}$ with $p_{0,+}$ replaced by $\overline{p}_{0,+}$ . Then, by Theorem
4.1, $D$ is unitarily equivalent to $\hat{d}_{0}$ . We have $d_{0}\subset d_{0}$ . By Lemma 6.2, $d_{0}$ is
essentially self-adjoint. Hence $\hat{d}_{0}$ is essentially self-adjoint. Therefore it follows that
$D$ is essentially self-adjoint. The second half of the theorem follows from Theorem
6.1. 1
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