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Abstract

Let H be a self-adjoint operator (a Hamiltonian) on a complex Hilbert
space H. A symmetric operator T on H is called a strong time operator of
H if the pair (T, H) obeys the operator equation e*ffTe~#*H — T 1 ¢ for all
t € R (R is the set of real numbers and i is the imaginary unit). In this note
we review some results on the uniqueness (up to unitary equivalences) of the
pairs (T, H).
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1 Introduction

A pair (T, H) of a symmetric operator T and a self-adjoint operator H on a complex
Hilbert space H is called a weak Weyl representation of the canonical commutation
relation (CCR) with one degree of freedom if it obeys the weak Weyl relation: For
all t € R (the set of real numbers), e™*# D(T) C D(T) (i is the imaginary unit and
D(T) denotes the domain of T) and

Te ) = e (T 4 )y, Vt € R,Vy € D(T). (1.1)
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It is easy to see that the weak Weyl relation is equivalent to the operator equation
eHTe *H =T 1t VieR, (1.2)

implying that e=*# D(T) = D(T),Vt € R.
One can prove that, if (T, H) is a weak Weyl representation of the CCR, then
(T, H) obeys the CCR
T,H| =1 (1.3)

on D(TH)ND(HT), where [X,Y] := XY — Y X. But the converse is not true.

In the context of quantum theory where H is the Hamiltonian of a quantum
system, T is called a strong time operator of H [3, 5].

We remark that a standard time operator (simply a time operator) of H is defined
to be a symmetric operator T' on { obeying CCR (1.3) on a subspace D # {0} (not
necessarily dense) of 3 (i.e., D C D(TH) N D(HT) and [T, H|¢ = i,V € D)
(cf. [1]). Obviously this notion of time operator is weaker than that of strong time
operator. General classes of time operators (not strong ones) of a Hamiltonian with
discrete eigenvalues have been investigated by Galapon [12], Arai-Matsuzawa [9] and
Arai [7].

Weak Weyl representations of the CCR were first discussed by Schmiidgen [19,
20] from a purely operator theoretical point of view and then by Miyamoto [14] in
application to a theory of time operator in quantum theory. A generalization of a
weak Weyl relation was presented by the present author (2| to cover a wider range
of applications to quantum physics including quantum field theory.

Arai-Matsuzawa [8] discovered a general structure for construction of a weak
Weyl representation of the CCR from a given weak Weyl representation and estab-
lished a theorem for the former representation to be a Weyl representation of the
CCR. These results were extended by Hiroshima-Kuribayashi-Matsuzawa [13] to a
wider class of Hamiltonians.

In the previous paper [6] the author considered the problem on uniqueness (up
to unitary equivalences) of weak Weyl representations. In the context of theory of
time operators, this is a problem on uniqueness (up to unitary equivalences) of pairs
(T, H) with H a Hamiltonian and T a strong time operator of H. This problem has
an independent interest in the theory of weak Weyl representations. This note is a
review of some results obtained in [6].

2 Preliminaries
We denote by W(H) the set of all the weak Weyl representations on JH:

W(H) := {(T, H)|(T, H) is a weak Weyl representation on J{}. (2.1)
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It is easy to see that, if (T, H) is in W(3{), then so are (T, H) and (—T, —H), where
T denotes the closure of T
For a linear operator A on a Hilbert space, o(A) (resp. p(A)) denotes the spec-

trum (resp. the resolvent set) of A (if A is closable, then 0(A) = o(A)). Let C be
the set of complex numbers and

I, :={z€C|llmz >0}, I_:={z€Cllmz <0} (2.2)
In the previous paper [4], we proved the following facts:
Theorem 2.1 [4] Let (T, H) € W(H). Then:

(i) If H is bounded below, then either o(T) = 11, (the closure of 11, ) or o(T) =
C.

(i) If H is bounded above, then either o(T) =11 or o(T) = C.
(#i) If H is bounded, then o(T) = C.

This theorem has to be taken into account in considering the uniqueness problem
of weak Weyl representations.

A form of representations of the CCR stronger than weak Weyl representations
is known as a Weyl representation of the CCR which is a pair (T, H) of self-adjoint
operators on H obeying the Weyl relation

eitTeisH —_ e-itseisHeitT’ Vt,VS cR. (23)
It is well known (the von Neumann uniqueness theorem ([15]) that, every Weyl
representation on a separable Hilbert space is unitarily equivalent to a direct sum of
the Schrodinger representation (g, p) on L?(R), where ¢ is the multiplication operator
by the variable z € R and p = —iD, with D, being the generalized differential
operator in x (cf. [3, §3.5), [16, Theorem 4.3.1], [17, Theorem VIII.14]).

It is easy to see that a Weyl representation is a weak Weyl representation (but
the converse is not true). Therefore, as far as the Hilbert space under consideration
is separable, the non-trivial case for the uniqueness problem of weak Weyl represen-
tations is the one where they are not Weyl representations. A general class of such
weak Weyl representations (T, H) are given in the case where H is semi-bounded
(bounded below or bounded above). In this case, T is not essentially self-adjoint 2,
Theorem 2.8], implying Theorem 2.1.

Two simple examples in this class are constructed as follows:



49

Example 2.1 Let a € R and consider the Hilbert space L2(R}) with R} := (a, c0).
Let ¢o,+ be the multiplication operator on L?(R}) by the variable A € R}:

D(gos) = {f e @] [N 0P <o}, (2.4)
Yot [ =Af, [ € D(qay) (2.5)

and P
Da+ = —iﬁ (2.6)

with D(p, ) = C§°(R7), the set of infinitely differentiable functions on R} with
bounded support in R}". Then it is easy to see that g, . is self-adjoint, bounded below
with 0(qq,+) = [a,00) and p,  is a symmetric operator. Moreover, (—pg, +,qa +) is a
weak Weyl representation of the CCR. Hence, as remarked above, (=7, 4, gq,+) also
is a weak Weyl representation.

Note that p, + is not essentially self-adjoint and

0(=Pa,+) = 0(=B,4) = L. (2.7)

In particular, +p, , are maximal symmetric, i.e., they have no non-trivial symmetric
extensions (e.g., [18, §X.1, Corollary]).

Example 2.2 Let b € R and consider the Hilbert space L*(R;) with R, :=
(—o0,b). Let g be the multiplication operator on L?(R; ) by the variable A € R; .

&Ild
pb, . )\ o)

with D(py,-) = C§P(R, ). Then g _ is self-adjoint, bounded above with o(g-) =
(=00, b], ps,— is a symmetric operator, and (—py _, g» — ) is a weak Weyl representation
of the CCR. As in the case of p, +, ps— is not essentially self-adjoint and

o(=pp-) =TI_. (2.9)

A relation between (—pg +,4s,+) and (—pp.—, s~ ) is given as follows. Let Uy, :
L3(R}) — L%(R;) be a linear operator defined by

(Uasf)(A) := fla+b—2X), feL*R)), aelcR;.
Then U,; is unitary and

Uaan,«l»Lra,—bl =a+b-— db.—, Uabpa,ﬁ—UcE;l = —Db,—- (210)
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In view of the von Neumann uniqueness theorem for Weyl representations, the

pair (=P, 1, Ga+) (resp. (—Dy_,qs—) ) may be a reference pair in classifying weak
Weyl representations (7', H) with H being bounded below (resp. bounded above).
By Theorem 2.1, we can define two subsets of W(H):

W (H) := {(T, H) € W(H)|H is bounded below and ¢(T) = I, }, (2.11)
W_(H) := {(T, H) € W(H)|H is bounded above and o(T) =II_}. (2.12)
Then, as shown above, (—pg +,ga,+) € W(L2(R])) and (—pp,—, o~ ) € W_(LA(R})).

3 Irreducibility

For a set A of linear operators on a Hilbert space JH, we set
A :={B € B(H)|BA C AB,VA € A},

called the strong commutant of A in H, where B(J) is the set of all bounded linear
operators on H with D(B) = H.
We say that A is irreducible if A’ = {cI|c € C}, where I is the identity on K.

Proposition 3.1 For all a € R, the set {P, ,,py 1 4a,+} (Example 2.1) is irre-
ducible.

To prove this proposition, we need a lemma.
Let a € R be fixed. For each t > 0, we define a linear operator U,(t) on L*(R})
as follows: For each f € L*(R}),

Ua(O)F)(A) = { g(A —Y) . i i t;;ia (3.1)

Then it is easy to see that {U,(t)}:>0 is a strongly continuous one-parameter semi-
group of isometries on L*(R%). :

Lemma 3.2 The generator of {Ua(t)}s>0 @8 =D, 4 :

dU(;(tt)f = =P, Ua(t)f, Vf € D([@,,),t €R, (3.2)

where the derivative in t is taken in the strong sense.
Proof. Let iA be the generator of {U,(t)}+>o:

dU,(t) f

dt
Then it follows from the isometry of U,(t) that A is a closed symmetric operator.
It is easy to see that —p, + C A and hence —p, ., C A. As already remarked in
Example 2.1, —P, , is maximal symmetric. Hence A = —p, ,. |

= iAU,(t)f, Vf e D(A),t€R.
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Proof of Proposition 3.1

Let B € {P, 47} 1, da+} . Then

BI_)a,+ - pa,+B’ (33)
Bp,+ Cp, . B, (3.4)
Bga,+ C go+ B. (3.5)

As in the case of bounded linear operators on L?*(R) strongly commuting with ¢
(the multiplication operator by the variable = € R) [3, Lemma 3.13], (3.5) implies
that there exists an essentially bounded function F on RY such that B = Mp, the
multiplication operator by F.

Let f € D(p,.) and g(t) :== BU,(t)f. Then, by Lemma 3.2, g is strongly
differentiable in ¢t > 0 and

didiﬂ = B(—ip, . )Ua(t) f = —iD, . 9(2),

where we have used (3.3). Note that g(0) = Bf. Hence, by the uniqueness of
solutions of the initial value problem on differential equation (3.2), we have g(t) =
U.(t)Bf. Therefore it follows that BU,(t) = U,(t)B,Vt > 0. Hence FU,(t)f =
U,(t)Ff,Vf € L} R]), which implies that

FAOfA=t)=FA-t)f(A—1t), A>t+a.
Hence F(A) = F(A+1t), a.eA > 0,Vt > 0. This means that F is equivalent to a

constant function. Hence B = Mp = ¢l with some c € C. |

Proposition 3.3 For all b € R, the set {p,_,p}_,q,—} (Evample 2.2) is irre-
ducible.

Proof. Let B € {p, _,p;_,q,—} - Then, by (2.10), the operator C := Uy BUy is
in {P, +,P; +»%,+} - Hence, by Proposition 3.1, C = cI with some constant ¢ € C.
Thus B = cl. |

4 Uniqueness Theorem

One can prove the following theorem:

Theorem 4.1 Let H be separable and (T, H) € W (H) with go := inf o(H). Sup-
pose that {T,T*, H} is irreducible. Then there exmists a unitary operator U : H —
L3(R}) such that

UTU-' = —p.,,, UHU™=gq,. (4.1)
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In particular
o(H) = [go, 00). (4.2)

Remark 4.1 It is known that, for every weak Weyl representation (T, H) € W(H)
(3 is not necessarily separable), H is purely absolutely continuous [14, 19]

We prove Theorem 4.1 in the next section. For the moment, we note a result
which immediately follows from Theorem 4.1:

Theorem 4.2 Let H be separable and (T, H) € W_(H) with b := supo(H). Sup-

pose that {T,T*, H} is irreducible. Then there exists a unitary operator V : H —
L*(R;) such that _
VIV-'=—5,_, VHV l=g,_. (4.3)
In particular

o(H) = (—oc,b]. (4.4)

Proof. As remarked in Section 2, (=T, —H) € W, (H) witha := info(—H) = —b
and o(—T) = II,. Hence, we can apply Theorem 4.1 to conclude that there exists
a unitary operator U : H — L?(R}) such that

U—TU_I = _pa,,+7 UHU—l = —(qa,+-
By Example 2.2, we have

Uabﬁa,-&- Uazl = -ﬁb,~v Uaan,-i-U;[;l = —Qp,—,

where we have used that a+b = 0. Hence, putting V' := U, U, we obtain the desired
result. ]

Remark 4.2 In view of Theorems 4.1 and 4.2, it would be interesting to know when
o(T) = I (resp. IL.) for (T, H) € W(H) with H bounded below (resp. above).

Concerning this problem, we have the following results [5]:

(i) Let (T, H) € W(H) and H be bounded below. Suppose that, for some
Bo > 0, Ran(e=HT) ( the range of e=HT) is dense in H. Then o(T) = IL,.

(ii) Let (T, H) € W(H) and H be bounded above. Suppose that, for some
Bo > 0, Ran(e®HT) is dense in K. Then o(T) =TI_.
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5 Proof of Theorem 4.1

Lemma 5.1 Let S be a closed symmetric operator on H such that o(S) = II,.
Then there eists a unique strongly continuous one-parameter semi-group {Z (t) }e>0
whose generator is iS. Moreover, each Z(t) is an isometry:

Z()*Z@t) =1, Vt>0. (5.1)

Proof. This fact is probably well known. But, for completeness, we give a proof.
By the assumption o(S) = II;, we have ¢(iS) = {z € C|Rez < 0}. Therefore
the positive real axis (0, 00) is included in the resolvent set p(iS) of iS. Since S is
symmetric, it follows that

[GS =N <5 A>0
Hence, by the Hille-Yosida theorem, .S generates a strongly continuous one-parameter
semi-group {Z(t)}:>o of contractions. For all ¢ € D(iS) = D(S), Z(t)y is in D(S)
and strongly differentiable in t > 0 with

2 2ty = iSZ(0 = Z(0)iSv.

This equation and the symmetricity of S imply that ||Z(t)¥||? = ||%||2,Vt > 0.
Hence (5.1) follows. | |

Lemma 5.2 Let (T, H) € W, (H). Then there exists a untique strongly continuous
one-parameter semi-group {Ur(t)}t>0 whose generator is iT'. Moreover, each Up(t)
is an isometry and

Ur(t)e ™ = e Hy(t), ¢t>0,s€R. (5.2)

Proof. 'We can apply Lemma 5.1 to S = T to conclude that ¢T' generates a
strongly continuous one-parameter semi-group {Ur(t)}:>0 of isometries on 3. For
all ¥ € D(T) and all t > 0, Ur(t)¥ is in D(T) and strongly differentiable in t > 0
with p

?iiUT(t)w = {TUr(t)y = Ur(t)iT .

Let s € R be fixed and V(t) := e?**e™*HUr(t)e"*. Then {V(t)}ixo is a strongly
continuous one-parameter semi-group of isometries. Let ¢ € D(T). Then e *H ¢
D(T) and o o ‘

Te-tsH,w — e——stT,d} + se—stw.
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Hence V' (¢)¢ is in D(T") and strongly differentiable in ¢ with
SV (e = TV (1
o r =1 .

This implies that V(t)y = Ur(t)¥,vt € R. Since D(T) is dense, it follows that
V(t) = Ur(t),Vt € R, implying (5.2). |

We recall a result of Bracci and Picasso [10]. Let {U(a)}a>o and {V(3)}ser
be a strongly continuous one-parameter semi-group and a strongly continuous one-
parameter unitary group on H respectively, satisfying

U)'Ula) =1, «a=>0, (5.3)
U(@)V(B) = €*PV(B)U(a), a>03€eR. (5.4)

Then, by the Stone theorem, there exists a unique self-adjoint operator P on JH such
that

V(3) =e®P, BeR (5.5)

Lemma 5.3 [10] Let H be separable and P is bounded below with v := inf o(P).

Suppose that {U(a),U(a)*, V(B)|la = 0,3 € R} is irreducible. Then, there ezists a
unitary operator Y : H — L3(R]) such that

YV(B)Y ! =e o+ 3R, (5.6)
YUY '=U,(a), a>0. (5.7)

We denote the generator of {U(a)}a>o0 by iQ. It follows that @ is closed and
symmetric.

Lemma 5.4 Under the assumption of Lemma 5.3,

YPY ' =g, (5.8)
YQY™'=-5,,. (5.9)

In particular
o(P) = [v, 00). (5.10)

Proof. Lemma 5.3 and (5.6) imply (5.8). Simlarly (5.9) follows from Lemma 5.3,
(5.7) and Lemma 3.2. i

Lemma 5.5 Let (T, H) € W(H) with o(T) = II,. Suppose that {T, T*,H} is
irreducible. Then {Ur(t), Ur(t)*, e *H|t > 0,s € R} is irreducible.
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Proof. Let B € B(H) be such that

BUr(t) = Ur(t)B, (5.11)
BUr(t)* = Ur(t)*B, (5.12)
Be™#H = 70 B vt > 0, Vs € R. (5.13)

Let ¥ € D(T). Then, by (5.11), we have BUr(t)y = Ur(¢t)By,Vt > 0. By
Lemma 5.2, the left hand side is strongly differentiable in t with d(BUr(t)e)/dt =
zBTUT( )w Hence so does the right hand side and we obtain that By € D(T)
and BTy = TBe). Therefore BT C TB. Note that (5.12) implies that Urp(t)B* =
B*Urp(t). Hence it follows that B*T C T B*, which implies that BT* C T* B, where
we have used the following general facts: for every densely defined closable linear
operator A on H and all C € B(H), (CA)* = A*C*, (AC)* D C*A*, (A)* = A*
Similarly (5.13) implies that BH C HB. Hence B € {T,T*, H}'. Therefore B = cI
for some ¢ € C.

Proof of Theorem 4.1

By Lemmas 5.2 and 5.5, we can apply Lemma 5.3 to the case where V(3) =
e#H 3 € R and U(a) = Ur(a),a > 0. Then the desired results follow from
Lemmas 5.3 and 5.4. |

Remark 5.1 Recently Bracci and Picasso [11] have obtained an interesting result
on the reducibility of the von Neumann algebra generated by {U(a), U(a)*, V(8)|a >
0,3 € R} obeying (5.3) and (5.4). By employing the result, one can generalize The-
orem 4.1 to the case where {T,T*, H} is not necessarily irreducible.

6 Application to Construction of a Weyl repre-
sentation

In the previous paper [8], a general structure was found to construct a Weyl repre-
sentation from a weak Weyl representation. Here we recall it.

Theorem 6.1 [8, Corollary 2.6] Let (T, H) be a weak Weyl representation on a
Hilbert space H with T closed. Then the operator

L :=log|H| (6.1)

is well-defined, self-adjoint and the operator

= %(TH +HT) (6.2)
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is a symmetric operator. Moreover, if D is essentially self-adjoint, then (D.L) is a
Weyl representation of the CCR and o(|H|) = [0, o0).

To apply this theorem, we need a lemma.

Lemma 6.2 [6]Let a € R and

1
da, = _i(pa.+Qa,+ + Qa,+pa,+) (63)

acting in L*(R}). Then d, is essentially self-adjoint if and only if a = 0.

Theorem 6.3 Let H be separable and (T, H) € W (H) with info(H) = 0 and T
closed. Suppose that {T,T*, H} is irreducible. Let L and D be as in (6.1) and (6.2)

respectively. Then D is essentially self-adjoint and (D, L) is a Weyl representation
of the CCR.

Proof. Let dy be the operator do with po , replaced by 7, .. Then, by Theorem
4.1, D is unitarily equivalent to do. We have dy C cio. By Lemma 6.2, dj is
essentially self-adjoint. Hence dj is essentially self-adjoint. Therefore it follows that

D is essentially self-adjoint. The second half of the theorem follows from Theorem
6.1. [
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