On the Uniqueness of Pairs of a Hamiltonian and a Strong Time Operator in Quantum Mechanics

Asao Arai^{*}(新井朝雄) Department of Mathematics, Hokkaido University Sapporo 060-0810, Japan E-mail: arai@math.sci.hokudai.ac.jp

Abstract

Let H be a self-adjoint operator (a Hamiltonian) on a complex Hilbert space \mathcal{H} . A symmetric operator T on \mathcal{H} is called a *strong time operator* of H if the pair (T, H) obeys the operator equation $e^{itH}Te^{-itH} = T + t$ for all $t \in \mathbb{R}$ (\mathbb{R} is the set of real numbers and i is the imaginary unit). In this note we review some results on the uniqueness (up to unitary equivalences) of the pairs (T, H).

Keywords: canonical commutation relation, Hamiltonian, strong time operator, weak Weyl relation, weak Weyl representation, Weyl representation, spectrum.

Mathematics Subject Classification 2000: 81Q10, 47N50

1 Introduction

A pair (T, H) of a symmetric operator T and a self-adjoint operator H on a complex Hilbert space \mathcal{H} is called a *weak Weyl representation* of the canonical commutation relation (CCR) with one degree of freedom if it obeys the *weak Weyl relation*: For all $t \in \mathbb{R}$ (the set of real numbers), $e^{-itH}D(T) \subset D(T)$ (*i* is the imaginary unit and D(T) denotes the domain of T) and

$$Te^{-itH}\psi = e^{-itH}(T+t)\psi, \ \forall t \in \mathbb{R}, \forall \psi \in D(T).$$
(1.1)

^{*}This work is supported by the Grant-in-Aid No.17340032 for Scientific Research from Japan Society for the Promotion of Science (JSPS).

It is easy to see that the weak Weyl relation is equivalent to the operator equation

$$e^{itH}Te^{-itH} = T + t, \quad \forall t \in \mathbb{R},$$

$$(1.2)$$

implying that $e^{-itH}D(T) = D(T), \forall t \in \mathbb{R}.$

One can prove that, if (T, H) is a weak Weyl representation of the CCR, then (T, H) obeys the CCR

$$[T,H] = i \tag{1.3}$$

on $D(TH) \cap D(HT)$, where [X, Y] := XY - YX. But the converse is not true.

In the context of quantum theory where H is the Hamiltonian of a quantum system, T is called a *strong time operator* of H [3, 5].

We remark that a standard time operator (simply a time operator) of H is defined to be a symmetric operator T on \mathcal{H} obeying CCR (1.3) on a subspace $\mathcal{D} \neq \{0\}$ (not necessarily dense) of \mathcal{H} (i.e., $\mathcal{D} \subset D(TH) \cap D(HT)$ and $[T, H]\psi = i\psi, \forall \psi \in \mathcal{D}$) (cf. [1]). Obviously this notion of time operator is weaker than that of strong time operator. General classes of time operators (not strong ones) of a Hamiltonian with discrete eigenvalues have been investigated by Galapon [12], Arai-Matsuzawa [9] and Arai [7].

Weak Weyl representations of the CCR were first discussed by Schmüdgen [19, 20] from a purely operator theoretical point of view and then by Miyamoto [14] in application to a theory of time operator in quantum theory. A generalization of a weak Weyl relation was presented by the present author [2] to cover a wider range of applications to quantum physics including quantum field theory.

Arai-Matsuzawa [8] discovered a general structure for construction of a weak Weyl representation of the CCR from a given weak Weyl representation and established a theorem for the former representation to be a Weyl representation of the CCR. These results were extended by Hiroshima-Kuribayashi-Matsuzawa [13] to a wider class of Hamiltonians.

In the previous paper [6] the author considered the problem on uniqueness (up to unitary equivalences) of weak Weyl representations. In the context of theory of time operators, this is a problem on uniqueness (up to unitary equivalences) of pairs (T, H) with H a Hamiltonian and T a strong time operator of H. This problem has an independent interest in the theory of weak Weyl representations. This note is a review of some results obtained in [6].

2 Preliminaries

We denote by $W(\mathcal{H})$ the set of all the weak Weyl representations on \mathcal{H} :

 $W(\mathcal{H}) := \{ (T, H) | (T, H) \text{ is a weak Weyl representation on } \mathcal{H} \}.$ (2.1)

It is easy to see that, if (T, H) is in W(\mathcal{H}), then so are (\overline{T}, H) and (-T, -H), where \overline{T} denotes the closure of T.

For a linear operator A on a Hilbert space, $\sigma(A)$ (resp. $\rho(A)$) denotes the spectrum (resp. the resolvent set) of A (if A is closable, then $\sigma(A) = \sigma(\overline{A})$). Let \mathbb{C} be the set of complex numbers and

$$\Pi_{+} := \{ z \in \mathbb{C} | \operatorname{Im} z > 0 \}, \quad \Pi_{-} := \{ z \in \mathbb{C} | \operatorname{Im} z < 0 \}.$$
(2.2)

In the previous paper [4], we proved the following facts:

Theorem 2.1 [4] Let $(T, H) \in W(\mathcal{H})$. Then:

(i) If H is bounded below, then either $\sigma(T) = \overline{\Pi}_+$ (the closure of Π_+) or $\sigma(T) = \mathbb{C}$.

(ii) If H is bounded above, then either $\sigma(T) = \overline{\Pi}_{-}$ or $\sigma(T) = \mathbb{C}$.

(iii) If H is bounded, then $\sigma(T) = \mathbb{C}$.

This theorem has to be taken into account in considering the uniqueness problem of weak Weyl representations.

A form of representations of the CCR stronger than weak Weyl representations is known as a Weyl representation of the CCR which is a pair (T, H) of self-adjoint operators on \mathcal{H} obeying the Weyl relation

$$e^{itT}e^{isH} = e^{-its}e^{isH}e^{itT}, \quad \forall t, \forall s \in \mathbb{R}.$$
(2.3)

It is well known (the von Neumann uniqueness theorem [15]) that, every Weyl representation on a *separable* Hilbert space is unitarily equivalent to a direct sum of the Schrödinger representation (q, p) on $L^2(\mathbb{R})$, where q is the multiplication operator by the variable $x \in \mathbb{R}$ and $p = -iD_x$ with D_x being the generalized differential operator in x (cf. [3, §3.5], [16, Theorem 4.3.1], [17, Theorem VIII.14]).

It is easy to see that a Weyl representation is a weak Weyl representation (but the converse is not true). Therefore, as far as the Hilbert space under consideration is separable, the non-trivial case for the uniqueness problem of weak Weyl representations is the one where they are *not* Weyl representations. A general class of such weak Weyl representations (T, H) are given in the case where H is semi-bounded (bounded below or bounded above). In this case, T is not essentially self-adjoint [2, Theorem 2.8], implying Theorem 2.1.

Two simple examples in this class are constructed as follows:

Example 2.1 Let $a \in \mathbb{R}$ and consider the Hilbert space $L^2(\mathbb{R}^+_a)$ with $\mathbb{R}^+_a := (a, \infty)$. Let $q_{a,+}$ be the multiplication operator on $L^2(\mathbb{R}^+_a)$ by the variable $\lambda \in \mathbb{R}^+_a$:

$$D(q_{a,+}) := \left\{ f \in L^2(\mathbb{R}^+_a) \Big| \int_a^\infty \lambda^2 |f(\lambda)|^2 d\lambda < \infty \right\},$$
(2.4)

$$q_{a,+}f := \lambda f, \quad f \in D(q_{a,+}) \tag{2.5}$$

and

$$p_{a,+} := -i\frac{d}{d\lambda} \tag{2.6}$$

with $D(p_{a,+}) = C_0^{\infty}(\mathbb{R}_a^+)$, the set of infinitely differentiable functions on \mathbb{R}_a^+ with bounded support in \mathbb{R}_a^+ . Then it is easy to see that $q_{a,+}$ is self-adjoint, bounded below with $\sigma(q_{a,+}) = [a, \infty)$ and $p_{a,+}$ is a symmetric operator. Moreover, $(-p_{a,+}, q_{a,+})$ is a weak Weyl representation of the CCR. Hence, as remarked above, $(-\overline{p}_{a,+}, q_{a,+})$ also is a weak Weyl representation.

Note that $p_{a,+}$ is not essentially self-adjoint and

$$\sigma(-p_{a,+}) = \sigma(-\overline{p}_{a,+}) = \overline{\Pi}_+.$$
(2.7)

In particular, $\pm \bar{p}_{a,+}$ are maximal symmetric, i.e., they have no non-trivial symmetric extensions (e.g., [18, §X.1, Corollary]).

Example 2.2 Let $b \in \mathbb{R}$ and consider the Hilbert space $L^2(\mathbb{R}_b^-)$ with $\mathbb{R}_b^- := (-\infty, b)$. Let $q_{b,-}$ be the multiplication operator on $L^2(\mathbb{R}_b^-)$ by the variable $\lambda \in \mathbb{R}_b^-$. and

$$p_{b,-} := -i\frac{d}{d\lambda} \tag{2.8}$$

with $D(p_{b,-}) = C_0^{\infty}(\mathbb{R}_b^-)$. Then $q_{b,-}$ is self-adjoint, bounded above with $\sigma(q_{b,-}) = (-\infty, b], p_{b,-}$ is a symmetric operator, and $(-p_{b,-}, q_{b,-})$ is a weak Weyl representation of the CCR. As in the case of $p_{a,+}, p_{b,-}$ is not essentially self-adjoint and

$$\sigma(-p_{b,-}) = \overline{\Pi}_{-}.$$
 (2.9)

A relation between $(-p_{a,+}, q_{a,+})$ and $(-p_{b,-}, q_{b,-})$ is given as follows. Let U_{ab} : $L^2(\mathbb{R}^+_a) \to L^2(\mathbb{R}^-_b)$ be a linear operator defined by

$$(U_{ab}f)(\lambda) := f(a+b-\lambda), \quad f \in L^2(\mathbb{R}^+_a), \text{ a.e.} \lambda \in \mathbb{R}^-_b.$$

Then U_{ab} is unitary and

$$U_{ab}q_{a,+}U_{ab}^{-1} = a + b - q_{b,-}, \quad U_{ab}p_{a,+}U_{ab}^{-1} = -p_{b,-}.$$
 (2.10)

In view of the von Neumann uniqueness theorem for Weyl representations, the pair $(-\overline{p}_{a,+}, q_{a,+})$ (resp. $(-\overline{p}_{b,-}, q_{b,-})$) may be a reference pair in classifying weak Weyl representations (T, H) with H being bounded below (resp. bounded above).

By Theorem 2.1, we can define two subsets of $W(\mathcal{H})$:

$$W_{+}(\mathcal{H}) := \{ (T, H) \in W(\mathcal{H}) | H \text{ is bounded below and } \sigma(T) = \Pi_{+} \}, (2.11)$$
$$W_{-}(\mathcal{H}) := \{ (T, H) \in W(\mathcal{H}) | H \text{ is bounded above and } \sigma(T) = \overline{\Pi}_{-} \}. (2.12)$$

Then, as shown above, $(-p_{a,+}, q_{a,+}) \in W_+(L^2(\mathbb{R}^+_a))$ and $(-p_{b,-}, q_{b,-}) \in W_-(L^2(\mathbb{R}^+_b))$.

Irreducibility 3

For a set \mathcal{A} of linear operators on a Hilbert space \mathcal{H} , we set

$$\mathcal{A}' := \{ B \in \mathsf{B}(\mathcal{H}) | BA \subset AB, \forall A \in \mathcal{A} \},\$$

called the strong commutant of A in H, where B(H) is the set of all bounded linear operators on \mathcal{H} with $D(B) = \mathcal{H}$.

We say that \mathcal{A} is *irreducible* if $\mathcal{A}' = \{cI | c \in \mathbb{C}\}$, where I is the identity on \mathcal{H} .

Proposition 3.1 For all $a \in \mathbb{R}$, the set $\{\overline{p}_{a,+}, p_{a,+}^*, q_{a,+}\}$ (Example 2.1) is irreducible.

To prove this proposition, we need a lemma.

Let $a \in \mathbb{R}$ be fixed. For each $t \geq 0$, we define a linear operator $U_a(t)$ on $L^2(\mathbb{R}^+_a)$ as follows: For each $f \in L^2(\mathbb{R}^+_a)$,

$$(U_a(t)f)(\lambda) := \begin{cases} f(\lambda - t) & \lambda > t + a \\ 0 & a < \lambda \le t + a \end{cases}$$
(3.1)

Then it is easy to see that $\{U_a(t)\}_{t>0}$ is a strongly continuous one-parameter semigroup of isometries on $L^2(\mathbb{R}^a_+)$.

Lemma 3.2 The generator of $\{U_a(t)\}_{t\geq 0}$ is $-i\overline{p}_{a,+}$:

$$\frac{dU_a(t)f}{dt} = -i\overline{p}_{a,+}U_a(t)f, \quad \forall f \in D(\overline{p}_{a,+}), t \in \mathbb{R},$$
(3.2)

where the derivative in t is taken in the strong sense.

Proof. Let *iA* be the generator of $\{U_a(t)\}_{t>0}$:

$$\frac{dU_a(t)f}{dt} = iAU_a(t)f, \quad \forall f \in D(A), t \in \mathbb{R}.$$

Then it follows from the isometry of $U_a(t)$ that A is a closed symmetric operator. It is easy to see that $-p_{a,+} \subset A$ and hence $-\overline{p}_{a,+} \subset A$. As already remarked in Example 2.1, $-\overline{p}_{a,+}$ is maximal symmetric. Hence $A = -\overline{p}_{a,+}$.

Proof of Proposition 3.1

Let $B \in \{\overline{p}_{a,+}, p_{a,+}^*, q_{a,+}\}'$. Then

$$B\overline{p}_{a,+} \subset \overline{p}_{a,+}B,\tag{3.3}$$

$$Bp_{a,+}^* \subset p_{a,+}^* B, \tag{3.4}$$

$$Bq_{a,+} \subset q_{a,+}B. \tag{3.5}$$

As in the case of bounded linear operators on $L^2(\mathbb{R})$ strongly commuting with q (the multiplication operator by the variable $x \in \mathbb{R}$) [3, Lemma 3.13], (3.5) implies that there exists an essentially bounded function F on \mathbb{R}^+_a such that $B = M_F$, the multiplication operator by F.

Let $f \in D(\overline{p}_{a,+})$ and $g(t) := BU_a(t)f$. Then, by Lemma 3.2, g is strongly differentiable in $t \ge 0$ and

$$\frac{dg(t)}{dt} = B(-i\overline{p}_{a,+})U_a(t)f = -i\overline{p}_{a,+}g(t),$$

where we have used (3.3). Note that g(0) = Bf. Hence, by the uniqueness of solutions of the initial value problem on differential equation (3.2), we have $g(t) = U_a(t)Bf$. Therefore it follows that $BU_a(t) = U_a(t)B$, $\forall t \geq 0$. Hence $FU_a(t)f = U_a(t)Ff$, $\forall f \in L^2(\mathbb{R}^+_a)$, which implies that

$$F(\lambda)f(\lambda - t) = F(\lambda - t)f(\lambda - t), \quad \lambda > t + a.$$

Hence $F(\lambda) = F(\lambda + t)$, a.e. $\lambda > 0, \forall t > 0$. This means that F is equivalent to a constant function. Hence $B = M_F = cI$ with some $c \in \mathbb{C}$.

Proposition 3.3 For all $b \in \mathbb{R}$, the set $\{\overline{p}_{b,-}, p_{b,-}^*, q_{b,-}\}$ (Example 2.2) is irreducible.

Proof. Let $B \in \{\overline{p}_{b,-}, p_{b,-}^*, q_{b,-}\}'$. Then, by (2.10), the operator $C := U_{ab}^{-1} B U_{ab}$ is in $\{\overline{p}_{a,+}, p_{a,+}^*, q_{a,+}\}'$. Hence, by Proposition 3.1, C = cI with some constant $c \in \mathbb{C}$. Thus B = cI.

4 Uniqueness Theorem

One can prove the following theorem:

Theorem 4.1 Let \mathcal{H} be separable and $(T, H) \in W_+(\mathcal{H})$ with $\varepsilon_0 := \inf \sigma(H)$. Suppose that $\{\overline{T}, T^*, H\}$ is irreducible. Then there exists a unitary operator $U : \mathcal{H} \to L^2(\mathbb{R}^+_{\varepsilon_0})$ such that

$$U\overline{T}U^{-1} = -\overline{p}_{\varepsilon_0,+}, \quad UHU^{-1} = q_{\varepsilon_0,+}. \tag{4.1}$$

In particular

$$\sigma(H) = [\varepsilon_0, \infty). \tag{4.2}$$

Remark 4.1 It is known that, for every weak Weyl representation $(T, H) \in W(\mathcal{H})$ (\mathcal{H} is not necessarily separable), H is purely absolutely continuous [14, 19].

We prove Theorem 4.1 in the next section. For the moment, we note a result which immediately follows from Theorem 4.1:

Theorem 4.2 Let \mathcal{H} be separable and $(T, H) \in W_{-}(\mathcal{H})$ with $b := \sup \sigma(H)$. Suppose that $\{\overline{T}, T^*, H\}$ is irreducible. Then there exists a unitary operator $V : \mathcal{H} \to L^2(\mathbb{R}_b^-)$ such that

$$V\overline{T}V^{-1} = -\overline{p}_{b,-}, \quad VHV^{-1} = q_{b,-}.$$

$$(4.3)$$

In particular

$$\sigma(H) = (-\infty, b]. \tag{4.4}$$

Proof. As remarked in Section 2, $(-T, -H) \in W_+(\mathcal{H})$ with $a := \inf \sigma(-H) = -b$ and $\sigma(-T) = \overline{\Pi}_+$. Hence, we can apply Theorem 4.1 to conclude that there exists a unitary operator $U : \mathcal{H} \to L^2(\mathbb{R}^+_a)$ such that

$$U\overline{T}U^{-1} = \overline{p}_{a,+}, \quad UHU^{-1} = -q_{a,+}.$$

By Example 2.2, we have

$$U_{ab}\overline{p}_{a,+}U_{ab}^{-1} = -\overline{p}_{b,-}, \quad U_{ab}q_{a,+}U_{ab}^{-1} = -q_{b,-},$$

where we have used that a+b=0. Hence, putting $V := U_{ab}U$, we obtain the desired result.

Remark 4.2 In view of Theorems 4.1 and 4.2, it would be interesting to know when $\sigma(T) = \overline{\Pi}_+$ (resp. $\overline{\Pi}_-$) for $(T, H) \in W(\mathcal{H})$ with H bounded below (resp. above). Concerning this problem, we have the following results [5]:

- (i) Let $(T, H) \in W(\mathcal{H})$ and H be bounded below. Suppose that, for some $\beta_0 > 0$, $\operatorname{Ran}(e^{-\beta_0 H}T)$ (the range of $e^{-\beta_0 H}T$) is dense in \mathcal{H} . Then $\sigma(T) = \overline{\Pi}_+$.
- (ii) Let $(T, H) \in W(\mathcal{H})$ and H be bounded above. Suppose that, for some $\beta_0 > 0$, $\operatorname{Ran}(e^{\beta_0 H}T)$ is dense in \mathcal{H} . Then $\sigma(T) = \overline{\Pi}_-$.

5 Proof of Theorem 4.1

Lemma 5.1 Let S be a closed symmetric operator on \mathcal{H} such that $\sigma(S) = \overline{\Pi}_+$. Then there exists a unique strongly continuous one-parameter semi-group $\{Z(t)\}_{t\geq 0}$ whose generator is iS. Moreover, each Z(t) is an isometry:

$$Z(t)^* Z(t) = I, \quad \forall t \ge 0.$$
(5.1)

Proof. This fact is probably well known. But, for completeness, we give a proof. By the assumption $\sigma(S) = \overline{\Pi}_+$, we have $\sigma(iS) = \{z \in \mathbb{C} | \text{Re} z \leq 0\}$. Therefore the positive real axis $(0, \infty)$ is included in the resolvent set $\rho(iS)$ of iS. Since S is symmetric, it follows that

$$\|(iS - \lambda)^{-1}\| \le \frac{1}{\lambda}, \quad \lambda > 0.$$

Hence, by the Hille-Yosida theorem, iS generates a strongly continuous one-parameter semi-group $\{Z(t)\}_{t\geq 0}$ of contractions. For all $\psi \in D(iS) = D(S)$, $Z(t)\psi$ is in D(S) and strongly differentiable in $t \geq 0$ with

$$\frac{d}{dt}Z(t)\psi = iSZ(t)\psi = Z(t)iS\psi.$$

This equation and the symmetricity of S imply that $||Z(t)\psi||^2 = ||\psi||^2, \forall t \ge 0$. Hence (5.1) follows.

Lemma 5.2 Let $(T, H) \in W_+(\mathcal{H})$. Then there exists a unique strongly continuous one-parameter semi-group $\{U_T(t)\}_{t\geq 0}$ whose generator is $i\overline{T}$. Moreover, each $U_T(t)$ is an isometry and

$$U_T(t)e^{-isH} = e^{its}e^{-isH}U_T(t), \quad t \ge 0, s \in \mathbb{R}.$$
(5.2)

Proof. We can apply Lemma 5.1 to $S = \overline{T}$ to conclude that $i\overline{T}$ generates a strongly continuous one-parameter semi-group $\{U_T(t)\}_{t\geq 0}$ of isometries on \mathcal{H} . For all $\psi \in D(\overline{T})$ and all $t \geq 0$, $U_T(t)\psi$ is in $D(\overline{T})$ and strongly differentiable in $t \geq 0$ with

$$\frac{d}{dt}U_T(t)\psi = i\overline{T}U_T(t)\psi = U_T(t)i\overline{T}\psi.$$

Let $s \in \mathbb{R}$ be fixed and $V(t) := e^{its}e^{-isH}U_T(t)e^{isH}$. Then $\{V(t)\}_{t\geq 0}$ is a strongly continuous one-parameter semi-group of isometries. Let $\psi \in D(\overline{T})$. Then $e^{-isH}\psi \in D(\overline{T})$ and

$$\overline{T}e^{-isH}\psi = e^{-isH}\overline{T}\psi + se^{-isH}\psi.$$

Hence $V(t)\psi$ is in $D(\overline{T})$ and strongly differentiable in t with

$$\frac{d}{dt}V(t)\psi = i\overline{T}V(t)\psi$$

This implies that $V(t)\psi = U_T(t)\psi, \forall t \in \mathbb{R}$. Since $D(\overline{T})$ is dense, it follows that $V(t) = U_T(t), \forall t \in \mathbb{R}$, implying (5.2).

We recall a result of Bracci and Picasso [10]. Let $\{U(\alpha)\}_{\alpha\geq 0}$ and $\{V(\beta)\}_{\beta\in\mathbb{R}}$ be a strongly continuous one-parameter semi-group and a strongly continuous one-parameter unitary group on \mathcal{H} respectively, satisfying

$$U(\alpha)^* U(\alpha) = I, \quad \alpha \ge 0, \tag{5.3}$$

$$U(\alpha)V(\beta) = e^{i\alpha\beta}V(\beta)U(\alpha), \quad \alpha \ge 0, \beta \in \mathbb{R}.$$
(5.4)

Then, by the Stone theorem, there exists a unique self-adjoint operator P on \mathcal{H} such that

$$V(\beta) = e^{-i\beta P}, \quad \beta \in \mathbb{R}.$$
(5.5)

Lemma 5.3 [10] Let \mathcal{H} be separable and P is bounded below with $\nu := \inf \sigma(P)$. Suppose that $\{U(\alpha), U(\alpha)^*, V(\beta) | \alpha \ge 0, \beta \in \mathbb{R}\}$ is irreducible. Then, there exists a unitary operator $Y : \mathcal{H} \to L^2(\mathbb{R}^+_{\nu})$ such that

$$YV(\beta)Y^{-1} = e^{-i\beta q_{\nu,+}}, \beta \in \mathbb{R},$$
(5.6)

$$YU(\alpha)Y^{-1} = U_{\nu}(\alpha), \quad \alpha \ge 0.$$
(5.7)

We denote the generator of $\{U(\alpha)\}_{\alpha\geq 0}$ by iQ. It follows that Q is closed and symmetric.

Lemma 5.4 Under the assumption of Lemma 5.3,

$$YPY^{-1} = q_{\nu,+}, (5.8)$$

$$YQY^{-1} = -\bar{p}_{\nu,+}.$$
 (5.9)

In particular

$$\sigma(P) = [\nu, \infty). \tag{5.10}$$

Proof. Lemma 5.3 and (5.6) imply (5.8). Similarly (5.9) follows from Lemma 5.3, (5.7) and Lemma 3.2.

Lemma 5.5 Let $(T, H) \in W(\mathcal{H})$ with $\sigma(T) = \overline{\Pi}_+$. Suppose that $\{\overline{T}, T^*, H\}$ is irreducible. Then $\{U_T(t), U_T(t)^*, e^{-isH} | t \ge 0, s \in \mathbb{R}\}$ is irreducible.

Proof. Let $B \in \mathsf{B}(\mathcal{H})$ be such that

$$BU_T(t) = U_T(t)B, (5.11)$$

$$BU_T(t)^* = U_T(t)^* B, (5.12)$$

$$Be^{-isH} = e^{-isH}B, \forall t \ge 0, \forall s \in \mathbb{R}.$$
(5.13)

Let $\psi \in D(\overline{T})$. Then, by (5.11), we have $BU_T(t)\psi = U_T(t)B\psi, \forall t \geq 0$. By Lemma 5.2, the left hand side is strongly differentiable in t with $d(BU_T(t)\psi)/dt = iB\overline{T}U_T(t)\psi$. Hence so does the right hand side and we obtain that $B\psi \in D(\overline{T})$ and $B\overline{T}\psi = \overline{T}B\psi$. Therefore $B\overline{T} \subset \overline{T}B$. Note that (5.12) implies that $U_T(t)B^* = B^*U_T(t)$. Hence it follows that $B^*\overline{T} \subset \overline{T}B^*$, which implies that $BT^* \subset T^*B$, where we have used the following general facts: for every densely defined closable linear operator A on \mathcal{H} and all $C \in B(\mathcal{H})$, $(CA)^* = A^*C^*, (AC)^* \supset C^*A^*, (\bar{A})^* = A^*$. Similarly (5.13) implies that $BH \subset HB$. Hence $B \in \{\overline{T}, T^*, H\}'$. Therefore B = cIfor some $c \in \mathbb{C}$.

Proof of Theorem 4.1

By Lemmas 5.2 and 5.5, we can apply Lemma 5.3 to the case where $V(\beta) = e^{-i\beta H}, \beta \in \mathbb{R}$ and $U(\alpha) = U_T(\alpha), \alpha \geq 0$. Then the desired results follow from Lemmas 5.3 and 5.4.

Remark 5.1 Recently Bracci and Picasso [11] have obtained an interesting result on the reducibility of the von Neumann algebra generated by $\{U(\alpha), U(\alpha)^*, V(\beta) | \alpha \ge 0, \beta \in \mathbb{R}\}$ obeying (5.3) and (5.4). By employing the result, one can generalize Theorem 4.1 to the case where $\{\overline{T}, T^*, H\}$ is not necessarily irreducible.

6 Application to Construction of a Weyl representation

In the previous paper [8], a general structure was found to construct a Weyl representation from a weak Weyl representation. Here we recall it.

Theorem 6.1 [8, Corollary 2.6] Let (T, H) be a weak Weyl representation on a Hilbert space \mathcal{H} with T closed. Then the operator

$$L := \log|H| \tag{6.1}$$

is well-defined, self-adjoint and the operator

$$D := \frac{1}{2}(TH + \overline{HT}) \tag{6.2}$$

is a symmetric operator. Moreover, if D is essentially self-adjoint, then (\overline{D}, L) is a Weyl representation of the CCR and $\sigma(|H|) = [0, \infty)$.

To apply this theorem, we need a lemma.

Lemma 6.2 [6] Let $a \in \mathbb{R}$ and

$$d_a := -\frac{1}{2}(p_{a,+}q_{a,+} + \overline{q_{a,+}p_{a,+}})$$
(6.3)

acting in $L^2(\mathbb{R}^+_a)$. Then d_a is essentially self-adjoint if and only if a = 0.

Theorem 6.3 Let \mathcal{H} be separable and $(T, H) \in W_+(\mathcal{H})$ with $\inf \sigma(H) = 0$ and T closed. Suppose that $\{T, T^*, H\}$ is irreducible. Let L and D be as in (6.1) and (6.2) respectively. Then D is essentially self-adjoint and (\overline{D}, L) is a Weyl representation of the CCR.

Proof. Let \hat{d}_0 be the operator d_0 with $p_{0,+}$ replaced by $\overline{p}_{0,+}$. Then, by Theorem 4.1, D is unitarily equivalent to \hat{d}_0 . We have $d_0 \subset \hat{d}_0$. By Lemma 6.2, d_0 is essentially self-adjoint. Hence \hat{d}_0 is essentially self-adjoint. Therefore it follows that D is essentially self-adjoint. The second half of the theorem follows from Theorem 6.1.

References

- [1] Y. Aharonov and D. Bohm, Time in the quantum theory and the uncertainty relation for time and energy, *Phys. Rev.* **122** (1961), 1649–1658.
- [2] A. Arai, Generalized weak Weyl relation and decay of quantum dynamics, *Rev. Math. Phys.* 17 (2005), 1071–1109.
- [3] A. Arai, Mathematical Principles of Quantum Phenomena (in Japanese) (Asakura-Shoten, Tokyo, 2006)
- [4] A. Arai, Spectrum of time operators, Lett. Math. Phys. 80 (2007), 211-221.
- [5] A. Arai, Some aspects of time operators, in *Quantum Bio-Informatics* (Editors: L. Accardi, W. Freudenberg, M. Ohya, World Scientific, Sigapore, 2008), 26–35.
- [6] A. Arai, On the uniqueness of weak Weyl representations of the canonical commutation relation, *Lett. Math. Phys.* 85 (2008), 15–25. In this paper there are some mathematical errors. A corrected version of the paper is at Website http://hdl.handle.net/2115/38135 in Hokkaido University Collection of Scholarly and Academic Papers (HUSCAP).

- [7] A. Arai, Necessary and sufficient conditions for a Hamiltonian with discrete eigenvalues to have time operators, *Lett. Math. Phys.* 87 (2009), 67–80.
- [8] A. Arai and Y. Matsuzawa, Construction of a Weyl representation from a weak Weyl representation of the canonical commutation relation, *Lett. Math. Phys.* 83 (2008), 201–211.
- [9] A. Arai and Y. Matsuzawa, Time operators of a Hamiltonian with purely discrete spectrum, *Rev. Math. Phys.* **20** (2008), 951–978.
- [10] L. Bracci and L. E. Picasso, On the Weyl algebras for systems with semibounded and bounded configuration space, J. Math. Phys. 47 (2006), 112102.
- [11] L. Bracci and L. E. Picasso, On the reducibility of the Weyl algebras for a semibounded space, preprint, 2009.
- [12] E. A. Galapon, Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians, Proc. R. Soc. Lond. A 458 (2002), 2671–2689.
- [13] F. Hiroshima, S. Kuribayashi and Y. Matsuzawa, Strong time operators associated with generalized Hamiltonians, *Lett. Math. Phys.* 87 (2009), 115–123.
- [14] M. Miyamoto, A generalized Weyl relation approach to the time operator and its connection to the survival probability, J. Math. Phys. 42 (2001), 1038–1052.
- [15] J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. (1931) 104, 570–578.
- [16] C. P. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics (Springer, Berlin · Heidelberg, 1967).
- [17] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis (Academic Press, New York, 1972).
- [18] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness (Academic Press, New York, 1975).
- [19] K. Schmüdgen, On the Heisenberg commutation relation. I, J. Funct. Anal. 50 (1983), 8–49.
- [20] K. Schmüdgen, On the Heisenberg commutation relation. II, Publ. RIMS, Kyoto Univ. 19 (1983), 601–671.