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We investigate properties of the quantum vacuum fluctuations in a space with boundaries. We
here focus on the quantum fluctuations of the electromagnetic vacuum in a half-space bounded by
a perfectly reflecting flat mirror. We in particular study the measurement process of the vacuum
fluctuations through the quantum Brownian motion, i.e. the velocity dispersion of a charged probe
particle released in the vacuum. Two important new phenomena regarding the vacuum measurement
are reported here. One is the switching effect and the other is the smearing effect.

The first phenomenon to be investigated is the switching effect. Constructing a smooth switching
function by gluing together a plateau and the Lorentzian switching tails, it is shown that the
switching tails have a great influence on the measurement of the Brownian motion in the quantum
vacuum. Indeed the result with a smooth switching function and the one with a sudden switching
function are qualitatively quite different. It turns out that the anti-correlations between the main
measuring part and the switching tails plays an essential role in this switching effect.

The second phenomenon to be discussed is the smearing effect. We find out that the spread of the
probe particle significantly influences the measured velocity dispersion, and the latter so obtained
shows reasonable late-time behavior. In particular the asymptotic behavior of the z-component,

$\langle\Delta v_{l}^{2}\rangle$ , is $\langle\Delta v_{z}^{2}\rangle\sim 1^{-}/\tau^{2}$ as $\tauarrow\infty$ ( $\tau$ is the measuring time). It is interpreted that anti-correlations
of the fluctuations between the center-part and the tail-part of the wave-packet are essential elements
for yielding this behavior. The present results not only resolves the previously reported puzzle of
the peculiar late-time behavior $\langle\Delta v_{z}^{2}\rangle\sim 1/z^{2}$ for a point-particle probe $(z$ is the distance from the
mirror-boundary to the particle), but also can be quite significant for investigating various related
problems.

PACS numbers: 05.40.Jc, 03.70. $+k,$ $12.20$.Ds

I. INTRODUCTION

Quantum vacuum often plays a key role in various situ-
ations related to quantum physics. One of the significant
features of quantum vacuum is that, though it usually ap-
pears in the context of microscopic physics, the vacuum
itself is essentially a global concept and the spectral pro-
file of the vacuum sensitively reflects global conditions of
the corresponding field. Furthermore, the averaged net
quantity in the vacuum is basically zero, so that the sub-
tle effects reflecting global conditions become dominant
and detectable in some cases. The Casimir effect may be
the most well-known example illustrating these features
of quantum vacuum. In this sense, quantum vacuum
bridges the gap between the microscopic concept and the
macroscopic concept, and deeper understanding of quan-
tum physics may be acquired when we get more insights
on quantum vacuum.

One convenient way of studying vacuum fluctuations is
to analyze the quantum Brownian motion of a test par-
ticle released in the quantum vacuum in question. Then
the velocity dispersion of the probe particle is an appro-
priate quantity to investigate.

In this report, we study two new effects regarding the
measuring process of the vacuum fluctuations near a per-
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fectly reflecting mirror-boundary. They are the suntching
effect and the smearing effect. Detailed treatments are
found in Ref.’s [2] and [4].

Starting with the model discussed by Yu and Ford [1],
we shall first investigate the switching effect in the mea-
surement process by constructing a convenient switching
function of time, consisting of a main measuring plateau
with two Lorentzian tails. The switching process can
be regarded as a non-trivial, time-dependent interactions
between the probe particle and the vacuum fluctuations
and it sheds some light on hidden properties of the quan-
tum vacuum. We find out that the measurement of the
quantum vacuum fluctuations is, contrary to the usual
macroscopic measurements, drastically influenced by the
switching tails and that the anti-correlation between the
main measuring part and the switching tails is playing an
essential role in the process. Here the important factor
is the non-stationary interactions between the probe and
the violent fluctuations of the vacuum.

We shall next investigate the smearing effect caused
by the quantum spread of the probe particle. In real-
ity a probe particle is also a quantum object and should
follow the quantum principle. As the first step in this
direction, then, we here treat a probe particle as a Gaus-
sian wave-packet. Then the spread of the probe particle
gives rise to the smearing of the time-correlation func-
tions. What we shall find out is that the late-time be-
havior of $\langle\Delta v_{z}^{2}\rangle$ tums out to be $\langle\Delta v_{z}^{2}\rangle\sim 1/\tau^{2}(\tau$ is the
measuring time) rather than the previously reported be-
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havior $[$ 1 $]$ {A $v_{z}^{2}\rangle\sim 1/z^{2}$ , as far as the spread of the probe
particle is taken into account. It shall be found out that
the point-particle case corresponds to a measure-zero set
in the whole set to be considered for a spread-probe
case. Thus provided that the probe-particle is treated
as spreading, the measurezero effect does not appear in
the final result. On the other hand, when one starts with
a point-particle probe from the out set (as so in Ref.[1]),
only the contribution which would otherwise be regarded
as measure-zero shows up, yielding the peculiar late-time
behavior of $\langle\Delta v_{z}^{2}\rangle$ . Since it is more natural to regard the
probe a spreading particle (due to quantum effect) in-
stead of a point-particle, one would see that the present
result is more feasible.

Though based on a simple model, our results can be
quite significant since there have been many arguments
so far based on the sudden-switching assumption and$/or$

the point-particle assumption.

II. MIRROR-BOUNDARY MODEL FOR
VACUUM FLUCTUATIONS

The model we investigate is based on the one discussed
in Ref.[1] and reanalyzed in Ref.[2].

Preparing a flat, infinitely spreading mirror of perfect
reflectivity placed on the xy-plane $(z=0)$ , the quantum
vacuum of the electromagnetic field is considered inside
the half-space $z>0$ . Let the quantum fluctuations of
the vacuum be probed by a classical charged particle with
mass $m$ and charge $e$ . When the particle velocity is much
smaller than $c$ , the particle couples only with the electric
field $\vec{E}(\vec{x}, t)$ , and the motion for the particle is described
by

$m \frac{d\vec{v}}{dt}=eB(x^{\prec}, t)$ (1)

Assuming that the position of the particle does not
change so much within the time-scale in question, Eq.
(1) along with the initial condition $\vec{v}(O)=\overline{v}_{0}$ is approxi-
mately solved to

where $\{E_{i}(\vec{x}_{;}t’)E_{i}(\vec{x}, t’’)\rangle_{R}(i=x, y, z)$ are the renormal-
ized two-point correlation functions $(R$” is for “renor-
malized”). Here we note $\langle E_{i}(\vec{x}, t)\rangle_{R}=0$ . Explicit expres-
sions for $\langle E_{i}(\vec{x}, t’)E_{i}(\vec{x})t’’)\rangle_{R}(i=x, y, z)$ are known[3] as

$\langle E_{z}(\vec{x}, t’)E_{z}(\vec{x}, t’’)\rangle_{R}=\frac{1}{\pi^{2}}\frac{1}{(T^{2}-(2z)^{2})^{2}}$ (5)

$\langle E_{x}(\vec{x}_{1}t’)E_{x}(\vec{x}, t’’)\rangle_{R}=\langle E_{y}(\vec{x}, t’)E_{y}(\vec{x}, t’’)\rangle_{R}$

$=- \frac{1}{\pi^{2}}\frac{T^{2}+4z^{2}}{(T^{2}-(2z)^{2})^{3}},$ $(6)$

where $T:=t‘-t^{;/}$ . (We set $c=\hslash=1$ hereafter through-
out the paper.)

Now we generalize the above original model into two
directions. One direction of generalization is to replace
Eq.(3) with a more natural switching function. We then
find out a switching effect [2] in the vacuum measuring
process. The other direction of generalization is to take
into account the quantum spread of the probe particle
and to investigate the smearing effect [4].

Let us first note that, in general, velocity dispersions
are estimated by the integral of the form

$\mathcal{I}=/-\infty\infty dt’/-\infty\infty dt’’F(t’)F(t’’)\mathcal{K}(t’-t’’)$ (7)

where the function $F(t)$ is an appropriate switching func-
tion mimicking an actual measurement process; the in-
tegral kernel $\mathcal{K}$ is assumed to be an even function of
$T:=t’-t”$ with an appropriate asymptotic behavior as
$|T|arrow\infty$ . When we choose $F(t)$ appropriately, then we
can discuss the switching effect, while choosing a suitable
smeared kemel as $\mathcal{K}(T)$ , we can analyze the smearing ef-
fect. We shall briefly sketch these two investigations one
by one below. (See Ref.[2] and Ref.[4] for detailed treat-
ments. $)$

III. SWITCHING EFFECT

$\overline{v}(t)\simeq\vec{v}_{0}+\frac{e}{m}/0^{t_{\vec{E}(\vec{x},t’)dt’}}$ (2)

In the ”sudden-switching” case discussed in Ref.[1], the
measurement is a step-function-like process characterized
by abrupt switching on$/0ff$ without no switching tails. It
is described by a step-like switching function

$\Theta(t)=1$ $($ for $0\leq t\leq\tau)$

$=0$ (otherwise) (3)

In this case the velocity dispersions of the particle, $\langle$ A$v_{i^{2}}\rangle$

$(i=x, y, z)$ , are given by

$\langle\Delta v_{i^{2}}(\vec{x}, \tau)\rangle=\frac{e^{2}}{m^{2}}/0^{\tau_{dt’}}/0^{\tau_{dt’’\langle E_{i}(x,t’)E_{t}(\vec{x},t’’)\rangle_{R}}}\prec$ ,
(4)

We construct a ”Lorentz-plateau” function $F_{\tau\mu}(t)[2]$ ,
which is defined by

$F_{\tau\mu}(t)=1$ $($ for $|t|\leq\tau/2)$

$= \frac{\mu^{2}}{(|t|/\tau-1/2)^{2}+\mu^{2}}$ $($ for $|t|>\tau/2)$ (8)

where $\tau$ and $\mu$ are positive parameters. Its plateau part
corresponds to the stable measuring period, while two
Lorentzian tails corresponding to switching-tails. The
time-scale for the measuring-part is $\tau_{1}$ $:=\tau$ , while the
time-scale of the switching-tails is characterized by $\tau_{2}$ $:=$

$2 \int_{\tau/2}^{\infty}F_{\tau\mu}(t)dt=\pi\mu\tau$. The dimension-free parameter
$\mu=R\pi\tau_{1}$ is then the switching-duration parameter, de-
scribing the relative switching duration compared to the
main measuring time-scale.
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Plugging Eq.(8) and Eq.(5) into $F(t)$ and $\mathcal{K}$ in Eq.(7),
respectively, we get [2]

$\langle\Delta v_{z}^{2}\rangle=\frac{2e^{2}}{\pi^{2}m^{2}\tau^{2}}/o^{1}dx\frac{1-x}{(x^{2}-\sigma_{1^{2}})^{2}}$

$+ \frac{4e^{2}}{\mu^{2}\pi m^{2}\tau^{2}}/o^{\infty}d\chi\frac{1}{(\chi^{2}+4)(\chi^{2}-\sigma_{2^{2}})^{2}}$

$+ \frac{4e^{2}}{\mu^{2}\pi^{2}m^{2}\tau^{2}}/o^{\infty}d\chi x$

$\cross\{\frac{1}{(\chi^{2}-\sigma_{2^{2}})^{2}}-\frac{1}{\{(\chi+1/\mu)^{2}-\sigma_{2^{2}}\}^{2}}\}\mathcal{F}(\chi)$

$=:\langle\Delta v_{z}^{2}\rangle_{M}+\langle\Delta v_{z}^{2}\rangle_{S}+\langle\Delta v_{z^{2}}\rangle_{MS}$ (9)

where $\mathcal{F}(\chi)$ is given by

$\mathcal{F}(\chi)$ $:=(1- \frac{1}{\chi^{2}+4})\tan^{-1}\chi-\frac{1}{\chi(\chi^{2}+4)}\ln(1+\chi^{2})$

(10)
Here we have introduced dimensionless parameters,

$\sigma_{1}:=2z/\tau$ $\sigma_{2}:=\sigma_{1}/\mu$ $\chi:=x/\mu$ (11)

Here the suffixes $M$” and $S$” are for “measuring” and
“switching”, respectively. The term $\langle\Delta v_{z}^{2}\rangle_{M}$ comes from
the two-point correlation solely within the measuring
part $(|t|<\tau/2)$ and coincides with the one obtained in
Ref.[1] for the sudden-switching case. The term $\langle\Delta v_{z}^{2}\rangle_{S}$

originates from switching tails, while the term $\langle\Delta v_{z}^{2}\rangle_{MS}$

from the correlation between the measuring part and the
switching tail.

Here we just mention that computing the singular inte-
grals such as those in Eq.(9) requires some regularization
method [2] and that we have here resorted to the gener-
alized principal-value method [5].

One thing to be noted is the term $\langle\Delta v_{z}^{2}\rangle_{MS}$ which is
estimated as

$\langle\Delta v_{z}^{2}\rangle_{MS}=O(1)\cdot\frac{2e^{2}}{\mu^{2}\pi m^{2}\tau^{2}}\cross/0^{1/\mu}\frac{1}{(\chi^{2}-\sigma_{2^{2}})^{2}}d\chi$

$\approx-O(1)\cdot\frac{2\mu e^{2}}{3\pi m^{2}\tau^{2}}$

$\sim-O(\mu\sigma_{1}^{2})(\Delta v_{z^{2}}\rangle_{M}$ (12)

The origin of this anti-correlation effect resides in the
correlation between the measuring part and the switch-
ing tail. In this way, it is seen that the interplay between
the measuring part and the switching tail is a key to un-
derstand the measurement process of quantum vacuum.

In terms of the three parameters $\tau_{1},$ $\tau_{2}$ and $z$ , one can
classify the late-time behavior of $\{\Delta v_{z}^{2}\rangle$ into the follow-
ing four types. (We naturally assume $\tau_{1}\gg 2z$ for these
late-time behaviors.)

(i) When $\tau_{2}\ll 2z\ll\tau_{1},$ $\langle\Delta v_{z}^{2}\rangle\approx\langle\Delta v_{z^{2}}\rangle_{M}$ .

(ii) When $\tau_{2}\approx 2z\ll\tau_{1}$ , $\langle\Delta v_{z}^{2}\rangle\approx\frac{3}{2}\langle\Delta v_{z}^{2}\rangle_{M}$ .

(iii) When $2z\ll\tau_{1}\ll\tau_{2}$ and $2\tau_{1}=O((\tau\neq z)^{2})$ ,

$\langle\Delta v_{z}^{2}\rangle\approx\langle\Delta v_{z}^{2}\rangle_{S}$ .

(iv) When $2z\ll\tau_{1}\ll\tau_{2}$ and $2 \tau_{1}\gg\frac{\tau}{(2}z\forall 2$ ,

$\langle\Delta v_{z^{2}}\rangle\approx-O(\tau_{1}2(\frac{2z}{\tau_{1}})^{2})\cdot\langle\Delta v_{z^{2}}\rangle_{M}$

$\sim-O(1)\cdot\overline{3}^{arrow m\pi\tau}2e_{\nabla}^{2}\approx_{1}$.

When the time-scale $\tau_{2}$ of the switching tails is much
shorter than the time-scale $2z$ , the velocity dispersion
$\langle\Delta v_{z}^{2}\rangle$ reduces to the result of the sudden switching case
given in Ref.[1] (the case $(i)$ ). As the time-scale $\tau_{2}$ in-
creases up to around the time scale $2z$ , however, $\langle$A$v_{z^{2}}\rangle$

becomes around 3/2 times of $\langle\Delta v_{z}^{2}\rangle_{M}$ (the case (ii)).
It means that the contribution from the switching tails,
$\langle\Delta v_{z}^{2}\rangle_{S}$ , is almost of the same order as the contribution
$hom$ the measuring part, $\langle\Delta v_{z}^{2}\rangle_{M}$ . Hence the condition
for the switching to be regarded as the ”sudden switch-
ing” is $\tau_{2}\ll 2z$ , i.e. the switching time-scale is much
smaller than the scale characterizing the system configu-
ration.

Next, as the switching time $\tau_{2}$ increases the velocity
dispersion decreases, reducing to the Lorentzian switch-
ing case [2] at around $\tau_{2}\sim O((\tau\lrcorner)^{2})\tau_{1}$ (the case (iii)).
This occurs mainly due to the cancellation of the M-term
by the negative contribution kom the MS-term, which is
actually the correlation between the switching part and
the main measuring part.

Finally, the case (iv) shows the possible total negative
dispersion when the switching time is really large.

It should be noted that there is an essential differ-
ence between the measurement in the quantum vacuum
and the usual macroscopic measurement. In the usual
measurement process, the object to be measured is more
or less macroscopic so that the contributions from the
switching tails are negligible compared to the main mea-
sured quantity. In the vacuum case, however, the ex-
pectation values of quantities are basically zero so that
the contributions from the switching tails become the
dominant part of the measurement. Thus we should not
naively treat the vacuum measurement in the same man-
ner as the usual measurement. There have been many
naive arguments regarding the measurement in quantum
vacuum without sufficient care on this point. Thus it is
important to reanalyze these arguments taking into ac-
count the switching effect found here.

IV. SMEARING EFFECT DUE TO THE
SPREAD OF THE PROBE PARTICLE

Let us now study the smearing effect due to the quan-
tum nature of the probe particle. In reality the probe
particle is also a quantum object and it cannot escape
from the uncertainty principle. The quantum spread of
the probe particle, thus, should cause the smearing effect
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in the measurement process of the vacuum fluctuations.
Though it might be most desirable, treating the whole
system (the field, the mirror and the probe particle) as a
fully quantum system is not very practical. Here in this
paper, then, we describe the spread of the probe by a
Gaussian wave-packet. Now a typical smearing function
is given by a function of the form

$g(s-t)= \frac{1}{\sqrt{2\pi}b}\exp(-\frac{1}{2b^{2}}(s-t)^{2})$ (13)

which is the Gaussian distribution of $s$ around the peak
$t$ with width $b$ .

We introduce several variables and parameters for later
convenience: Let $\tau$ be a time-scale characterizing the
main measuring process as in the previous section. Fur-
thermore, we introduce

$T:=t’-t”,$ $S;=s’-s”$
$\nu:=(S-T)/\tau,$ $\beta:=\sqrt{2}b/\tau$

$\sigma:=2z/\tau$ (14)

It is now straightforward to show that the smeared
kemel becomes

$\hat{\mathcal{K}}(T, \beta)=/-\infty\infty ds’/-\infty\infty ds’’g(s’-t’)g(s’’-t’’)\mathcal{K}(S)$

$=\mathcal{G}_{\nu}(\beta)[\mathcal{K}(T+\tau\nu)]$ (15)

where $\mathcal{G}_{\nu}(\beta)[\cdot]$
” in the last line indicates the Gaussian

integral-transformation with respect to $\nu$ with the root-
mean-square $\beta$ ; it is defined as

$\mathcal{G}_{\nu}(\beta)[f(\nu)]:=\frac{1}{\sqrt{2\pi}\beta}/-\infty\infty d\nu e^{2\beta}f(\nu)-\mapsto^{2}$ (16)

for any function $f(\nu)$ . We note that $\frac{1}{\sqrt 2\pi\beta}e^{-\mapsto_{2\beta}^{2}}arrow\delta(\nu)$

as $\betaarrow 0$ , so that

$\lim_{\betaarrow 0}\mathcal{G}_{\nu}(\beta)[f(\nu)]=f(0)$ (17)

Thus $\hat{\mathcal{K}}(T, \beta)arrow \mathcal{K}(T)$ as $\betaarrow 0$ , recovering the original
kernel for the point-particle limit. In view of Eq.(7), then,
what we need to investigate is

$\hat{\mathcal{I}}=/-\infty\infty dt’/-\infty\infty dt’’F(t’)F(t’’)\hat{\mathcal{K}}(T, \beta)$ (18)

Due to linearity of the integral-transformation $\mathcal{G}_{\nu}(\beta)[\cdot]$ ,
one can also represent $\hat{\mathcal{I}}$ as

$\hat{\mathcal{I}}=\mathcal{G}_{\nu}(\beta)[\mathcal{I}(\nu)]$ (19)

where

$\mathcal{I}(\nu)=/-\infty\infty dt’/-\infty\infty dt’’F(t’)F(t’’)\mathcal{K}(T+\tau\nu)$ (20)

Equations (19) along with (20) serve as general formulas
for Gaussian smearing needed in our analysis.

Let us note that $\mathcal{I}(\nu)$ is an even function of $\nu$ as far as
the kemel $\mathcal{K}(T)$ is an even-function of $T$ , irrespective of
the form of $F(t)$ . Note also that, as $\betaarrow 0,\hat{\mathcal{I}}$ reduces to
$\mathcal{I}(\nu=0)$ , the original integral without smearing $(Eq.(7))$ .

From now on, we focus on the “measuring part” which
corresponds to the first term $\langle\triangle v_{z}^{2}\rangle_{M}$ in Eq.(9) (recall
that the suffix $M$” is for “measuring part”),

$\hat{\mathcal{I}}_{M}:=\mathcal{G}_{\nu}(\beta)[\mathcal{I}_{M}(\nu)]$ (21)

with

$\mathcal{I}_{M}(\nu)=2\tau^{2}/o^{1_{d\xi}}(1-\xi)\{\mathcal{K}(\tau(\xi+\nu))\}_{S(\nu)}$ . (22)

Here we have introduced a symmetrization symbol $\{$ $\}_{S}$

defined as

$\{f(u)\}_{S(u)}:=\frac{1}{2}(f(u)+f(-u))$ (23)

for any function $f(u)$ .
The integral $\hat{\mathcal{I}}_{M}$ is what should be compared with the

result of the original analysis of Ref. [1].
Now, plugging Eq.(5) into $\mathcal{K}$ in Eq.(22), one can com-

pute the velocity dispersion in the z-direction. The result
is [4]

$\langle\Delta v_{z}^{2}\rangle_{M}=\frac{4e^{2}}{\pi^{2}m^{2}\tau^{2}\sigma^{2}}x$

$\cross \mathcal{G}_{\nu}(\beta)[\mathcal{Z}(\sigma, 1+\nu)-\mathcal{Z}(\sigma, \nu)]$ (24)

where

$\mathcal{Z}(\sigma, \nu)=\frac{|\nu|}{16\sigma}\ln(\frac{|\nu|+\sigma}{|\nu|-\sigma})^{2}$ (25)

which is an even-function of $\sigma$ $:\simeq 2z/\tau$ . Here the gen-
eralized principal-value method [5] for singular integrals
has been applied to reach the above result.

We can show that the formal $\sigma$-expansion of the factor
$\mathcal{G}_{\nu}(\beta)[\mathcal{Z}(\sigma, 1+\nu)-\mathcal{Z}(\sigma, \nu)]$ in Eq.(24) does not contain
a constant term but starts with the $O(\sigma^{2})$-term [4]. Here
we only illustrate this fact by resorting to the formal
expansion of $\mathcal{Z}(\sigma, \nu)$ in a power series of $\sigma$ ,

$\mathcal{Z}(\sigma, \nu)=\frac{1}{4}+\frac{1}{12}\frac{\sigma^{2}}{|\nu|^{2}}+O(\sigma^{4})$ (26)

Then we observe that a particular combination $\mathcal{Z}(\sigma,$ $1+$

v$)$ $-\mathcal{Z}(\sigma, \nu)$ cancels the common constant term $\frac{1}{4}$ in
$\mathcal{Z}(\sigma, 1+\nu)$ and $\mathcal{Z}(\sigma, \nu)$ and that its $\sigma$-expansion starts
with the $O(\sigma^{2})$-term.

Thus we can set

$\mathcal{Z}(\sigma, 1+\nu)-\mathcal{Z}(\sigma, \nu)=\mathcal{A}(\nu)\sigma^{2}+O(\sigma^{4})$

with
$\mathcal{A}(\nu):=\lim_{\sigmaarrow 0}\frac{1}{\sigma^{2}}(\mathcal{Z}(\sigma, 1+\nu)-\mathcal{Z}(\sigma, \nu))$ (27)
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Looking at Eq.(16), only the integral-region $|\nu|\sim<\beta$ is
important while it is reasonable to assume $\beta\ll 1$ . Within
this effective integral-region of $\nu(\sim<\beta\ll 1)$ , thus, it holds
$\mathcal{Z}(\sigma, 1+\nu)-\mathcal{Z}(\sigma, \nu)>0$, so that $A(\nu)>0$ .

Then we reach

$\langle\triangle v_{z}^{2}\rangle_{M}/\frac{4e^{2}}{\pi^{2}m^{2}\tau^{2}\sigma^{2}}=\mathcal{G}_{\nu}(\beta)[\mathcal{A}(\nu)\sigma^{2}+O(\sigma^{4})]$

$=A(\beta)\sigma^{2}+O(\sigma^{4})$ (28)

where $A(\beta)$ $:=\mathcal{G}_{\nu}(\beta)[\mathcal{A}(\nu)]$ .
Thus we conclude

$\langle\Delta v_{z}^{2}\rangle_{M}\approx\frac{4e^{2}\mathcal{A}(\beta)}{\pi^{2}m^{2}\tau^{2}}+O((z/\tau)^{2})$ (29)

Taking into account the quantum spread of the probe par-
ticle, thus, the observed velocity $d\iota spersion\langle\Delta v_{z}^{2}\rangle_{M}$ be-
haves as $1/\tau^{2}$ in the late-time limit. This behavior is con-
sistent with other caaes, e.g. the case with the Lorentzian
switching [2],

We can now pinpoint the origin of a peculiar behav-
ior $\langle\Delta v_{z}^{2}\rangle_{M}\sim 1/z^{2}$ reported in Ref.[1]. There the probe
particle has been assumed to be a point particle, corre-
sponding to setting $\beta=0$ from the outset. It is equiva-
lent to taking the limit $\betaarrow 0$ in Eq.(24) with a fixed $\sigma$ .
Noting Eq.(17) along with $\mathcal{Z}(\sigma, 0)=0$ , then, we see that

$\lim_{\betaarrow 0}\langle\Delta v_{z}^{2}\rangle_{M}=\frac{4e^{2}}{\pi^{2}m^{2}\tau^{2}\sigma^{2}}Z(\sigma, 1)$

$= \frac{e^{2}}{4\pi^{2}m^{2}\tau^{2}\sigma^{3}}\ln(\frac{1+\sigma}{1-\sigma})^{2}$ (30)

Going back to the original variables, this result reads

$\langle\Delta v_{z}^{2}\rangle$ $= \frac{e^{2_{\mathcal{T}}}}{32\pi^{2}m^{2}z^{3}}\ln(\frac{\tau+2z}{\tau-2z})^{2}$

$\approx$ $\frac{e^{2}}{4\pi^{2}m^{2}z^{2}}+O((z/\tau)^{2})$ (31)

exactly recovering the result shown in Ref. [1].
When one treats the probe as a point-particle, then,

the factor $\mathcal{Z}(\sigma, \nu)$ in Eq.(24) does not exist from the
very beginning, and only the factor $\mathcal{Z}(\sigma, 1+\nu)$ shows
up. Then there is no cancellation of the constant term $\frac{1}{4}$

(see Eq(26)) which would have been caused by the com-
bination of $\mathcal{Z}(\sigma, 1+\nu)-\mathcal{Z}(\sigma, \nu)$ , so that the constant
term originating from $\mathcal{Z}(\sigma, 1+\nu)$ yields the peculiar be-
havior of $\langle\Delta v_{z}^{2}\rangle\sim 1/z^{2}$ in the late-time limit. Consid-
ering Eqs.(16) and (17), we see that this phenomenon
corresponds to a measure-zero set $(\nu=0)$ in the whole
infinite $\nu$-integral region, so that it does not aris $e$ once
the spread of the probe parti$cle$ is taken into account.

We also note that the combination $\mathcal{Z}(\sigma, 1+\nu)-\mathcal{Z}(\sigma, \nu)$

is quite similar to the anti-correlation effect [2] dis-
cussed in the previous section. Indeed one can compare
$\mathcal{Z}(\sigma, 1+\nu)-\mathcal{Z}(\sigma, \nu)$ with the term $\langle\Delta v_{z}^{2}\rangle_{MS}$ in Eq.(9)
(see also Eq(12)). Here the spatial separation between

the center-part and the Gaussian tails of the probe par-
ticle is, when translated into the temporal separation in
the two-point functions, is playing the similar role to the
relation between the main measuring part and the switch-
ing tails in the switching function. Thus we find that the
anti-correlation effect caused by the spread of the probe
is essential in the measuring process of vacuum fluctua-
tions.

V. SUMMARY AND DISCUSSIONS

In this paper, we have studied the switching effect and
the smearing effect in the vacuum measurement.

Setting up a model of the electromagnetic vacuum in a
half-space with an infinite, fiat mirror-boundary of per-
fect reflectivity, we have analyzed the measurement pro-
cess of the vacuum fluctuations through the velocity dis-
persion of a probe particle.

We have first introduced a suitable switching function
and have investigated the switching effect in the mea-
surement process. We have found out that the anti-
correlation between the main measuring part and the
switching tails yields an non-trivial effect in the vacuum
environment. This is partially because the vacuum is es-
sentially a zero-sum environment; the contributions from
the switching tails are then dominant and cannot be neg-
ligible. Combined with the non-trivial non-local interac-
tion between the main measuring part and the switching
tails, this fact makes the switching effect quite significant
in the vacuum physics.

We have next treated the probe particle as a Gaus-
sian wave-packet and have studied the smearing effect in
the measurement process of the vacuum fluctuations. We
have found out that the spread of the probe particle sig-
nificantly influences the measured velocity dispersion; in
particular the z-component, $\langle\Delta v_{z}^{2}\rangle$ , asymptotically be-
haves as $\langle\triangle v_{z}^{2}\rangle\sim 1/\tau^{2}$ as $\tauarrow\infty$ , which is consistent
with other results with different models [2]. This obser-
vation resolves the reported puzzle of the peculiar late-
time behavior $\langle\Delta v_{z}^{2}\rangle\sim 1/z^{2}$ for a point-particle probe
model [1]. It is now clear that the spread of the probe
particle is an essential ingredient to understand the ob-
served vacuum fluctuations. We have also noted that
the formula Eq.(24) has a similar structure to the anti-
$cor7\epsilon lation$ effect arisen from the interplay between the
main measuring part and the switching tails (the term
$\langle\Delta v_{z}^{2}\rangle_{MS}$ in Eq(9) $)$ . Indeed, the spatial separation be-
tween the center-part and the Gaussian tails of the probe
particle is, when rephrased in terms of the temporal $se\triangleright$

aration in the two-point functions of time, has an affinity
to the relation between the main measuring part and the
switching tails in the switching function. We can thus
interpret Eq.(24) as the anti-correlation effect caused by
the spread of the probe.

Finally, let us briefly discuss the common mechanism
underlying both the switching effect and the smearing
effect investigated in this paper. In the measurement
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process, two different time-scales are essentially involved.
One is a very short time-scale, say $\tau_{vac}$ , charactering the
violently fluctuating vacuum and the other is a much
longer time-scale, say $\tau_{probe}$ , characterizing the size of
the probe. Let us imagine taking the time-average during
the time-interval $\tau_{probe}$ of a rapidly oscillating function
with the period $\tau_{vac}$ . Then one expects that strong can-
cellations occur in the normal case $\tau_{vac}\ll\tau_{probe}$ (anti-
correlation), while no effective cancellation occurs in the
case $\tau_{vac}\sim\tau_{probe}$ (strong correlation). The former situa-
tion can be compared with the smooth switching case and

the spread probe case, while the latter situation to the
sudden switching case and the case of the point-particle
probe investigated in Ref.[1].

Since the spectral profile of the vacuum can show up
only through interactions with some kind of a probe (in a
broad sense), the effects revealed in this paper are quite
significant from not only the theoretical viewpoint but
also the viewpoint of applications. It is desirable to in-
vestigate related problems along the line studied here.
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