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Abstract
There are some quantum algorithms to solve SAT problem. Ohya,

Masuda and Volovich showed the quantum algorithm with chaos amplifier
solving it in polynomial time. Ohya and Accardi proposed the quantum
algorithm using a stochastic limit.

In this paper, we show a new approach by using an entangled de-
gree. We calculate it with the merginal states of the result state to check
whether the SAT condition is held or not.

1 Introduction
Ohya, Masuda and Volovich proposed a quantum algorithm with chaos amplifier
for SAT problem[l, 2]. The computational complexity of it is in polynomial of
input data[7]. The part of calculation of objective function is written as a
product of unitary operators and there are no Black boxes, so called Oracles.
Since the probability to obtain the correct result is very small in some cases, we
apply a chaos amplifier to make it larger than 1/2. The whole process of the
quantum algorithm can be written in the form of generalized quantum Turing
machine which is a mathematical model of quantum computation defined in the
paper[8].

In this paper, we propose the new quantum algorithm which calculates an
entangled degree of the result state in order to check that it holds the conditions
of problem. Entanglement is the one of properties of quantum state that the
classical state does not have. To calculate an entangled degree, we can reduce
the computational complexity of quantum algorithm. We show the examples of
Deutch-Jozsa problem and SAT problem.

2 Outline of Quantum Algorithm
We first explain the usual quantum algorithm that is represented by unitary
operators. The computational complexity of them is defined by the number of
fundamental quantum gates in it, introduced below.
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For the mathematical expression of problem, we construct the quantum al-
gorithm for it following these steps.

1. Define the Hilbert space for computation.

2. Construct the initial state.

3. Construct the unitary operators to solve the problem.

4. Apply it for the initial density operator and obtain the result.

5. Measure the observable with the result state.

In the first step, we define the Hilbert space by the instance of the prob-
lem. This Hilbert space should be qubit space for correspondence to digital
computation that uses classical bits. Let $\mathcal{H}=\mathbb{C}^{2}$ be a Hilbert space spanned

by $|0\rangle=(\begin{array}{l}l0\end{array})$ and $|1\rangle=(\begin{array}{l}01\end{array})$ , a normalized vector $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ on $\mathcal{H}$

is called a qubit.
One can apply Hadamard transformation defined by

$H= \frac{1}{\sqrt{2}}(\begin{array}{ll}1 1l -l\end{array})$

to create a superposition. For $|0\rangle$ and $|1\rangle$ , it works as

$H|0 \rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

$H|1 \rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$ .

Here we introduce logical gates on qubit space, which are NOT gate, C-NOT
gate and CC-NOT gate. We call these gates fundamental gates. We can also
construct AND and OR gate by considering the product of fundamental gates
and some imprementations. NOT gate $U_{NOT}$ is defined on one qubit Hilbert
space as

$U_{NOT}=|1\rangle\langle 0|+|0\rangle\langle 1|$ .

C-NOT $U_{CN}$ gate and CC-NOT $U_{CCN}$ are given on two and three qubit Hilbert
space as

$U_{CN}=|0\rangle\langle 0|\otimes I+|1\rangle\langle 1|\otimes U_{NOT}$

$U_{CCN}=|0\rangle\langle 0|\otimes I\otimes I+|1\rangle\langle 1|\otimes|0\rangle\langle 0|\otimes I+|1\rangle\langle 1|\otimes|1\rangle\langle 1|\otimes U_{NOT}$,

respectively. The unitary operator to solve the problem is constructed by these
fundamental gates.
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3 SAT problem
The followings are discussed more precisely in the papers[l, 2, 4, 7]. Let
$X=\{x_{1}, \cdots, x_{n},\overline{x}_{1}, \cdots,\overline{x}_{n}\}$ be a set of literals and $t:Xarrow\{0,1\}$ a truth
assignment holding $t(x)=1-t(\overline{x})$ . Let $F(X)$ ne all subsets of literals and an
element of it is called a clause. Let $C=\{C_{1}, \cdots, C_{m}|C_{k}\in F(X)\}$ be a set of
clauses.

[Problem(SAT problem)] Are there any truth assignments to make $f(C)=1$
(satisffiable) ?

$f(C) \equiv\bigwedge_{i=1}^{m}_{x_{j}\in C_{i}}t(x_{j})$

SAT problem is one of NP-complete problems. In [4] we discussed the quan-
tum algorithm of the SAT problem. In [1, 2] it is shown that the chaotic quantum
algorithm can solve the SAT problem in polynomial time.

4 OMV SAT algorithm

The computational basis of this algorithm is on the Hilbert space $\mathcal{H}=(\mathbb{C}^{2})^{\otimes n+\mu+1}$

where $\mu$ is a number of dust qubits. Let

$|v_{in}\rangle\equiv|0^{n},$ $0^{\mu},$ $0\rangle$

be an initial state vector. A unitary operator $U_{C}$ : $\mathcal{H}arrow \mathcal{H}$ computes $t(C)$ for
truth assignment $e_{\iota}$ $(i=1, \cdots , 2^{n-1})$ as follows

$U_{C}|v_{in}\rangle=U_{C}|0^{n},$ $0^{\mu},$ $0\rangle$

$= \frac{1}{\sqrt{2^{n}}}\sum_{i=0}^{2^{n}-1}|e_{i},$ $d^{\mu},$ $t(C)\rangle$

$\equiv|v_{out}\rangle$

where $|d^{\mu}\rangle$ is dust qubits denoted by $\mu$ strings of binary symbols.

Theorem 1 $[7J$ The number $\mu$ of dust qubits for algorithm of SAT problem is

$\mu\leq 2nm$

Theorem 2 $[7JFor$ a set of clauses $C=\{C_{1}\ldots., C_{m}\}$ , we can construct the
unitary operator $Uc$ to calculate the truth value of $C$ as

$U_{C} \equiv\prod_{i=1}^{m-1}U_{AND}(i)\prod_{j=1}^{m}$UOR $(j)H(n)$

where
$H(k)=(H\cdot I)^{\otimes k}I^{\otimes N-k}$
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$U_{AND}$ and $U_{OR}$ is constructed by the product of fundamental gates. We
prove this by calculating the indices of qubit and the information of clauses.

The computational complexity of quantum computation depends on the
number of unitary operator in the quantum circuit. Let $U$ be the unitary oper-
ator, it is written as

$U=U_{n}U_{n-1}\cdots U_{1}$

where $U_{n},$
$\cdots,$

$U_{1}$ are fundamental gates. The computational complexity $T(U)$
is considered as $n$ .

We need to combine some fundamental gates such as $U_{NOT},$ $U_{C-N}$ and
$U_{C-C-N}$ to construct the quantum circuit in fact. $U_{AND}$ and $U_{OR}$ can be
written as a combination of fundamental gates. Here we obtain the computa-
tional complexity of SAT algorithm by the number of $U_{NOT},$ $U_{AND}$ and $U_{OR}$ .

Theorem 3 For a set of clauses $C=\{C_{1}, \ldots , C_{m}\}$ and literal $X=\{x_{1}, \ldots, x_{n},\overline{x}_{1_{!}}\ldots,\overline{x}_{n}\}$ .
$T(U_{C})$ is

$T(U_{C})=m-1+ \sum_{k-1}^{m}(|C_{k}|+2i_{k}’-1)$

$\leq 4mn-1$

4.1 Chaos Amplffier
Here we briefly review how chaos can play a constructive role in computation
(see [1, 2] for the details).

Consider the so called logistic map which is given by the equation

$x_{n+1}=ax_{n}(1-x_{n})\equiv g_{a}(x)$ , $x_{n}\in[0,1]$ .

The properties of the map depend on the parameter $a$ . If we take, for example,
$a=3.71$ , then the Lyapunov exponent is positive, the trajectory is very sensitive
to the initial value and one has the chaotic behavior [2]. It is important to notice
that if the initial value $x_{0}=0$ , then $x_{n}=0$ for all $n$ .

The state $|\psi\rangle$ of the previous subsection is transformed into the density
matrix of the form

$\overline{\rho}=q^{2}P_{1}+(1-q^{2})P_{0}$

where $P_{1}$ and $P_{0}$ are projectors to the state vectors $|1\rangle$ and $|0\rangle$ . One has to
notice that $P_{1}$ and $P_{0}$ generate an Abelian algebra which can be considered as
a classical system. The following theorems is proven in [1, 2, 3].

Theorem 4 For the logistic map $x_{n+1}=ax_{n}(1-x_{n})$ with $a\in[0.4]$ and $x_{0}\in$

$[0,1]$ , let $x_{0}$ be $\frac{1}{2^{n}}$ and a set $J$ be $\{0.1,2, \ldots , n\ldots. , 2n\}$ . If $a$ is 3.71. then there
entsts an integer $k$ in $J$ satisfying $x_{k}> \frac{1}{2}$ .

Theorem 5 Let $a$ and $n$ be the same in above theorem. If there exists $k$ in $J$

such that $x_{k}> \frac{1}{2}$ , then $k> \frac{\mathfrak{n}-1}{\log_{2}3.71-1}$ .
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Corollary 6 Let $|t(C)|$ be the cardinality of these assignments, if $x_{0} \equiv\frac{r}{2^{n}}$ with
$r=|t(C)|$ and there exists $k$ in $J$ such that $x_{k}> \frac{1}{2}$ , then there $e$ vtsts $k$ satisfying
the following inequality if $C$ is SAT.

$[ \frac{n-1-\log_{2}r}{\log_{2}3.71-1}]\leq k\leq[\frac{5}{4}(n-1)]$ .

From these theorems, for all $k$ , it holds

$Af_{k}\{\begin{array}{ll}=0 iff C is not SAT>0 iff C is SAT\end{array}$

where $AI_{k}=g_{a}^{k}(q^{2})$ .
OMV SAT algorithm is represented in the form of generalized quantum

Turing machine(GQTM) and the computational complexity is discussed in [2,
4, 8, 9].

5 Computational complexity of OMV SAT al-
gorithm

Let $T(\Lambda)$ be a computational complexity of $\Lambda$ . The following theorems are
proven in [7].

Theorem 7 Let $X’=X\cup\overline{X}=\{x_{1}, \cdots x_{n},\overline{x}_{1}, \cdots,\overline{x}_{n}\}$ be literals and $C=$

$\{C_{1}, \cdots , C_{m}\}$ a set of literals, the computational complestty $T(\Lambda_{C})$ is

$T( \Lambda_{C})=3\sum_{k=1}^{m}$ (card $(C_{k})-1$ ) $+ \sum_{\iota--1}^{m}2$card $(C_{k}\cap\{\overline{x}_{1}, \ldots , \vec{x}_{n}\})+m-1+n$

$\leq(8mn-2m-1)$

Theorem 8 For a set of clauses $C$ and $n$ Boolean variables, the computational
complexity of the $oMV$ SAT algorithm including the chaos amplifier, $T(\Lambda_{SAT})$

is obtained as follows
$T(\Lambda_{SAT})=T(\Lambda_{C})+T(\Lambda_{T})+T(\Lambda_{CA}^{k})=\mathcal{O}$ (poly $(n)$ ),

where poly $(n)$ denotes a polynomial of $n$ .

6 Entanglement degree

It is important to measure the degree of entanglement of entangled states. There
exist several such measures, for most of such measures it is difficult to compute.

Thus Belavkin and Ohya introduced another measure called the degree of en-
tanglement $D_{EN}[5]$ .

Let $\theta$ be the entangled state with the marginal states $\rho$ and $\sigma$ .
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Definition 9 The degree of entanglement is defined by

$D_{EN}( \theta;\rho, \sigma)\equiv\frac{1}{2}(S(\rho)+S(\sigma)-I_{\theta}(\rho, \sigma))$

where $S(\rho)=-tr\rho\log\rho$ and

$I_{\theta}(\rho, \sigma)\equiv tr\theta(\log\theta-\log\rho\otimes\sigma)$

Definition 10 A state $\theta_{1}$ has stronger entanglement than $\theta_{2}$ iff
$D_{EN}(\theta_{1};\rho, \sigma)<D_{EN}(\theta_{2};\rho.\sigma)$

Theorem 11 For a pure state $\theta$ with the marginal state $\rho$ and $\sigma$ ,

1. $\theta$ is separable iff $D_{EN}(\theta;\rho, \sigma)=0$

2. $\theta$ is entangled iff $D_{EN}(\theta;\rho, \sigma)<0$

7 Quantum algorithm with entangled degree solv-
ing SAT problem

Let $n$ be a number of literals in SAT problem, $\mu$ a number of qubits to compute
$f(C)$ , and $\mathcal{H}=(\mathbb{C})^{\otimes n+\mu+1}$ a Hilbert space to solve SAT problem.

We prepare an initial $|\psi_{0}\rangle\in \mathcal{H}$ state as

$|\psi_{0}\rangle=|0_{t}^{n}0^{\mu},$ $0\rangle$

Applying the unitary operator $U_{C}$ which computes $f(C)$ for all truth assign-
ments, we have the final state as

$U_{C}| \psi_{0}\rangle=\frac{1}{\sqrt{2^{n}}}\sum_{t=0}^{2^{n}arrow 1}|e_{i},x_{i},$ $f_{e_{i}}(C)\rangle$

$=|\psi_{f}\rangle$

where $f_{e_{i}}(C)$ is a value of $f(C)$ for a truth assignment $e_{i}$ , and $x_{e_{i}}$ is the qubits
that is used for the computation of it.

If $C$ is SAT, there exists the truth assignment $e$ such that

$f_{e}(C)=1$

Let $r$ be a number of truth assignments making $f_{e}(C)=1$ . Here, we consider
the following density operator

$\sigma_{f}=|\psi_{f}\rangle\langle\psi_{f}|$

This is a pure state on the Hilbert space

$\mathcal{H}=(\mathbb{C})^{\otimes n+\mu+1}$

$=\mathcal{K}_{1}\otimes \mathcal{K}_{2}$
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where $\mathcal{K}_{1}$ and $\mathcal{K}_{2}$ are two Hilbert spaces whose dimensions are

$\dim \mathcal{K}_{1}=2^{\mu+\mu}$

$\dim \mathcal{K}_{2}=2$

We define two marginal states of $\sigma_{f}$ as

$\rho_{1}=tr_{\mathcal{K}_{2}}\sigma_{f}$

$\rho_{2}=$ tr $\mathcal{K}_{1}\sigma_{f}$

Then we compute Entanglement Degree $D_{EN}(\rho;\rho_{1}, \rho_{2})$ with these marginal
states. Since the final state $\sigma_{f}$ is a pure state, it becomes

$D_{EN}( \rho;\rho_{1}, \rho_{2})=-\frac{1}{2}(S(\rho_{1})+S(\rho_{2}))$

$=S(\rho_{1})=S(\rho_{2})$

Here, we exclude the dust qubits and we obtain

$\rho_{1}=(\begin{array}{ll}A_{r} 00 A_{2^{n}-r}\end{array})$

$\rho_{2}=(\begin{array}{ll}\frac{2^{n}-r}{2^{n}} 0O \frac{r}{2^{n}}\end{array})$

where
$A_{x}\in M(x)=(a_{i,j})$

$a_{i,j}= \frac{1}{2^{n}}$

$\rho_{1}$ is decomposed as

$\rho_{1}=\frac{1}{2^{n}}\sum_{0\leq i.j<r}|e_{i}\rangle\langle e_{j}|+\frac{1}{2^{n}}\sum_{r\leq k,l<2^{n}}|e_{k}\rangle\langle e_{l}|$

$= \frac{r}{2^{n}}|\varphi_{r}\rangle\langle\varphi_{r}|+\frac{2^{n}-r}{2^{n}}|\varphi_{2^{1}-r}\rangle\langle\varphi_{2^{ll}-r}|$

where
$| \varphi_{r}\rangle=\frac{1}{\sqrt{r}}\sum_{0\leq i<r}|e_{i}\rangle$

$| \varphi_{2^{n}-r}\rangle=\frac{1}{\sqrt{2^{n}-r}}\sum_{r\leq k<2^{n}}|e_{k}\rangle$

Then we calculate $S(\rho_{1})$ and $S(\rho 2\grave{)}$ as

$S( \rho_{1})=S(\rho_{2})=-\frac{2^{n}-r}{2^{n}}\log\frac{2^{n}-r}{2^{n}}-\frac{r}{2^{n}}\log\frac{r}{2^{n}}$
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We obtain

$D_{EN}(\rho;\rho_{1}, \rho_{2})\{\begin{array}{l}=0 r=0<0 0<r<2^{n}=0 r=2^{n}\end{array}$

In the cases of $r=0$ and $r=2^{n},$ $D_{EN}(\rho;\rho_{1}, \rho_{2})$ is equal to $0$ , this means
that the final state is a separable state. In fact, one can see

$\sigma_{f}=\{\begin{array}{l}|\eta\rangle\langle\eta|\otimes|0\rangle\langle 0| r=0|\eta\rangle\langle\eta|\otimes|1\rangle\langle 1| r=2^{n}\end{array}$

where

$| \eta\rangle=\frac{1}{\sqrt{2^{n}}}\sum_{i=0}^{2^{n}-1}|e_{i}\rangle$

If $D_{EN}(\rho;\rho_{1_{i}}\rho_{2})<0$ , we can say that is SAT immediately.
Moreover, even if $D_{EN}(\rho;\rho_{1}, \rho_{2})=0$ , we can check satisfiability easily by

the following algorithm:

1. Compute for one truth assignment $(e.g. x_{1}=0, x_{2}=0, \cdots, x_{n}=0)$

2. If $f(C)=0$ then $C$ is not SAT

3. If $f(C)=1$ then $C$ is SAT

In the case of $D_{EN}(\rho;\rho_{1}, \rho_{2})=0$ , there are only two possibilities that are
$r=0$ or $r=2^{n}$ . Hence, we can check satisfiability by computing $f(C)$ for one
assignment. Therefore, we can represent the flow of quantum algorithm as the
following:

1. Define the Hilbert space for computation.

2. Construct the initial state and define its marginal states.

3. Construct the unitary operators to solve the problem.

4. Apply it for the initial density operator and obtain the result.

5. Calculate an entanglement degree with the marginal states of
the result state.

7.1 Example(D-J problem)
In this section we show the quantum algorithm with entangled degree for Deutch-
Jozsa problem.

Let $N$ be a positive integer, $h:\{0, \cdots, 2N-1\}arrow\{0,1\}$ a function holding
one of the following conditions:

A card $\{x|h(x)=0\}=0$ or card $\{x|h(x)=1\}=0$ ( $h(x)$ is a constant)

$B$ card $\{x|h(x)=0\}=card\{x|h(x)=1\}$ ( $h$ is a balanced function)
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[problem] Decide which condition $h$ holds.
$h$ is also given by a unitary operator $U_{h}$ explained below. A quantum algo-

rithm of this problem is described the following unitary operators $U_{h}WU_{h}$ on
the Hilbert space $(\mathbb{C}^{2})^{\otimes 1+[\log 2N]}$

$U_{h}|x,$ $y\rangle=|x,$ $y+h(x)mod 2\rangle$

$W|x,$ $y\rangle=(-1)^{y}|x,$ $y\rangle$

For an initial state vector

$| \psi_{in}\rangle=\frac{1}{\sqrt{2N}}\sum_{x=0}^{2N-1}|x,$ $0)$

apply $U_{h}WU_{h}$ . Then we have

$U_{h}WU_{h}| \psi_{in})=U_{h}W\frac{1}{\sqrt{2N}}\sum_{x=0}^{2N-1}|x,$ $h(x)\rangle$

$=U_{h} \frac{1}{\sqrt{2N}}\sum_{x=0}^{2N-1}(-1)^{h(x)}|x,$ $h(x)\rangle$

$= \frac{1}{\sqrt{2N}}\sum_{x=0}^{2N-1}(-1)^{h(x)}|x,$ $0\rangle$

$\equiv|\psi_{out}\rangle$

Therefore, we measure the observable $M$ with $|\psi_{out}\rangle$ :

$Af=\langle\psi_{out}|P|\psi_{out}\rangle$

$= \frac{1}{2N}|\sum_{x=0}^{2N-1}(-1)^{h(x)}|^{2}$

where $P=|\psi_{in}\rangle\langle\psi_{in}|$ . According the result of this measurement, we can judge
:

$M=1\Leftrightarrow h$ holds A
$M=0\Leftrightarrow h$ holds $B$

Here, we rewrite this algorithm by our new quantum algorithm as

1. Apply $U_{h}$ to the initial state.

2. Compute $D_{EN}$ of the result of (1) with certain marginal states.

3. Judge the character of $h$ by the information of (2)
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Applying $U_{h}$ to the initial state, we have

$U_{h}| \psi_{in}\rangle=\frac{1}{\sqrt{2N}}\sum_{x=0}^{2N-1}|x,$ $h(x)\rangle$

$=|\psi_{out}’\rangle$ $(\neq|\psi_{out}\rangle)$

Here we define two Hilbert spaces

$\mathcal{K}_{1}=(\mathbb{C}^{2})^{\otimes[1og2N]}$

$\mathcal{K}_{2}=\mathbb{C}^{2}$

and two marginal states

$\rho_{1}=tr_{\mathcal{K}_{2}}|\psi_{out}’\rangle\langle\psi_{out}’|$

$\rho_{2}=tr_{\mathcal{K}_{1}}|\psi_{out}’\rangle\langle\psi_{out}’|$

After the calculation of $D_{EN}$ $(|\psi_{out}’\rangle\langle\psi_{out}’| ; \rho_{1}, \rho_{2})_{t}$ we obtain

$D_{EN}(|\psi_{out}’\rangle\langle\psi_{out}’|;\rho_{1}, \rho_{2})\{\begin{array}{l}=0 h holds A<0 h holds B\end{array}$

If $h$ holds $A$ , then $|\psi_{out}’\rangle\langle\psi_{out}’|$ is separable state on $\mathcal{K}_{1}\otimes \mathcal{K}_{2}$ . In fact,

$|\psi_{out}’\rangle$ $= \frac{1}{\sqrt{2N}}\sum_{x=0}^{2N-1}|x,$ $0$ or 1 for all $x\rangle$ .

Therefore, the computational complexities of above algorithms become as
the following table:

where $T(U)$ is a computational complexity of unitary operator $U,$ $T(M)$ is of
measurement $M$ , and $T(D_{EN})$ is of calculation of $D_{EN}$ .

8 Conclusion
We found the third quantum algorithm to solve SAT problem:

1. OMV SAT algorithm: Unitary operations and amplification processes
(e.g. chaos amplifier).

2. GQTM : Transition function and transition channels. $arrow$ computational
complexity of quantum algorithm.
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3. Quantum circuit and calculation of entanglement degree.

The computational complexity $T_{S_{-}4T}$ of OMV SAT algorithm is

$T_{SAT}=\mathcal{O}$ (poly $(n)$ )

with halting probability
$p= \frac{1}{2}$

However, the computational complexity of the new quantum algorithm $T$ is

$T=T(U_{C})+T(D_{EN})$

where $T(U_{C})$ is the computational complexity of unitary operator $U_{C}$ calculat-
ing $f_{C}$ and $T(D_{EN})$ is that of calculation of entanglement degree.

The entanglement degree is obtained with probability 1, then the halting
probability of this algorithm is 1 (c.f. OMV SAT algorithm).

Now we have to construct a physical model which achieves this algorithm.
And we apply this to the other problems.
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