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On the Woronowicz’s twisted product construction
of quantum groups,
with comments on related cubic Hecke algebra. *

JANUSZ WYSOCZANSKI !
Institute of Mathematics, Wroclaw University

pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland

Abstract

We study the construction of compact quantum groups, based on the method invented
by Woronowicz [SLW3], which uses a twisted determinant. As an example Woronowicz
considered the function Sy 3 o — inv(o), where inv(c) is the number of inversions in the
permutation o. Our twisted determinant is related to the function Sy 3 o +~ ¢(o). where
¢(o) is the number of cycles in a permutation o. For N = 3 it gave the quantum group
U,4(2). Here we show how the construction works if N = 4. We also describe the cubic
Hecke algebra, associated with the quantum group U,(2).

1 Introduction

In [SLW3] Woronowicz provided a general method for constructing compact matrix quantum
groups. The method depends on finding an NV-element array E = (E;,,__ i)Y =1 of complex
numbers, called twisted determinant, which is (left and right) non-degenerate. Theorem 1.4 of
[SLW3] says that if a C*-algebra A, is generated by N? elements uj, which satisfy the unitarity

condition:
N N
* *
E ujru"'k = 6jlc1 = E UjrUpy,
r=1 r=1

and the following twisted determinant condition:

N
E Ujiky - -+ Ujnkn Ekla---:kN = Ej1,~-~,jN1
k1,....kn=1
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and if the array F is non-degenerate, then (A, u) is a compact matrix quantum group, wherce
u = (u jk)j\”k: - Woronowicz described the following example. For i € (0, 1], he delined

Eyoiy = (—)™©@ if o= ( le fz 5 z"lvv ) € Sy
is a permutation (Sy denotes the set of permutations of {1,2,...,N}) and E;, ;. = 0 oth-
erwise. Here, for a permutation o € Sy, inv(o) is the number of inversions of o, which is the
munber of pairs (j, k) such that j < k and i; = 0(j) > o(k) = ix. Then as (A, u) one gets the
quantum group S,U(N), called the twisted SU(N) group.
In [W3] we considered another array E for N = 3, related to the number of cycles in a
permutation. It was defined for a parameter 0 < g < 1 as follows:

oy (—g)3eak) if {5k} = {1,2,3}
EG,j5,k) = { 0 otherwise .

Here c(4, 7, k) is the number of cycles of the permutation

1 2 3
i § ok

(which makes sense if and only if {3, j, k} = {1,2,3}). Then, following the Woronowicz's schemc,
we obtained a quantum group, which turned out to be U,(2), the quantum deformation of the
unitary 2 x 2 group. Moreover, the construction provided a description of it as a twisted product
ol it’s quantum subgroups
Ug(2) = SUL(2) %, U(1)
with the *-isomorphism o : A; ® A; — Ay ® A, given by
cl®v)=v®1, cl@a®v*)=1vFQa, o(c@v)=v""'®ec

The natural continuation of the construction given in [W3], was investigating the cascs
N > 4. However, as shall see below, after some tiresome computations it turned out that for
N = 4 (and thus also for all N > 4) the quantum group we obtain (via the Woronowicz’s
theorem) is classical abelian.

Regarding the quantum group U,(2), we shall present also a construction of a cubic Hecke
algebra. In [SLW3] Woronowicz showed that there are Hecke algebras associated with the
quantum groups SUy(N), for every N € N, N > 2. The Hecke algebra H,, described the
intertwining operators for the nt* tensor power of the fundamental representation of the group.
In this note we shall show similar construction for U,(2). The construction depends on defining
an operator o : C3 ® C3 — C3 ® C3, which satisfies the Yang-Baxter equation (3.1). The
operator is not self-adjoint (contrary to the SU,(N) cases), although its square is so (a® =
(a*)?). Nevertheless, it satisfies a generalization of the Hecke equation, namely (o — I)(a +
¢*I) = 0 (see (4.1)). Therefore the operators h; := I, @ a® I,_j_», defined for j =1,....n—2,
generate a cubic Hecke algebra (Theorem 4.3).

The paper is organized as follows. In Section 2 we give the computation showing the
generalization of our U,(2) construction, for N = 4. Then, in Section '3, we give the construction
of the operator a, and show that it satisfies thre Yang-Baxter equation. The last Section 4,
coutains the construction of the cubic Hecke algebra, associated with U,(2). 1n particular, we
show there that « satisfies the cubic equation.
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2 The construction associated with F

Let = {(i, 5,k 1) : {i,5,k, 1} C {1,2,3,4}}, let E : Ny — C be zero outside Sy C Ny,
1 2 2 4 if {1,7,k,1} = {1,2,3,4}, and, for

0 < g < 1, let the (non-zero) values of E (with the notation E((,4,k,1)) = Eyjx) be given by
the function

where the inclusion is given by (i, j, k, 1) —

8430 (=) .

Explicitely, it can be written in the following way:

Eipz =1 Erogs = q Ersos = —q Eisae =g Bun=¢ FEun=-q

Eosa=—q Enss=¢" Eupu=¢ FEuy=-¢ Eus=—¢ Euz =¢ ’ @2.1)
E3124 =¢* Enp= q3 Espa=—q Esppn=¢> Ezgna=¢q%> Eg=-—-¢* '
Laos=—¢ Euzn=¢" Epsz=¢" Egu=—-q9 Egn=-¢ Egn=¢

The function Sy 3 ¢ — 4 — ¢(0) = t(o) counts the number of transpositions in o. It follows
from [SLW3], Theorem 4.1, that this way we obtain a compact quantum group (A, u), where
A is the C*-algebra generated by 16 matrix elements {u;, : 1 < j,k < 4} of u, which satisfy

the unitarity condition:
4
Zu PUrk = 0] = Zujru:k (2.2)
r=1

and the twisted determinant condxtlon:

4

E UaiUgjUykUst Eijr = Eogys] (2.3)
i l=1

for cach {0, 3,7,6} C {1,2,3,4}. The matrix u = (uj)}4=, is the fundamental unitary
co-representation of the quantum group. In our case the co-representation u = (uy)i,., is
reducible by the following reason. The operator P = (E* ® I)(I ® E), which acts on C*,
intertwines the fundamental representation with itself: (P ® I'u = u(P ® I). Morcover. I’
has a diagonal matrix for the standard basis of C* : P = diag{ci,c2,cs,c4}, with ¢; =
Z EjapyEapyj, and therefore ¢; = ¢4 = —(5¢% + ¢®), ca = c3 = —(2¢® + 4¢®). Hence, for
(AN Kot

q # 0, —1,1, which shall be the case in the sequel, ¢; # ¢,, so P is not a multiple of the identity
operator /. The condition (P ® Iu = u(P ®I) is equivalent to ¢; - u;x = ¢ - u; for all natural
numbers 1 S ], k S 4. This yields Uj2 = U1 = 0,u13 = Uzp = O, Ugq = Ug2 = 0, Ugq = Uq3 = 0,
and therefore

upp 0 0 u a 0 0 b
_ 0 Ugo2 Uasz 0 _ 0 « Yy 0 .
u= 0 Uy U3z3 0 - 0 2z w O (2 ' 4)
ug 0 0 ugq c 0 0 d

This yields the decomposition of u decomposes into two irreducible subrepreseuntations

_(a b T Yy o E
u‘(c d)@(z w)' (2.5)
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Substitution in (2.3) of appropriate sequences (o, 8,7, 6) gives the following relations hetween
the generators of the C*-algebra A (the associated sequence is left of the relation):

(1423) I = (ad — gbc)(zw — ¢"lyz) (1) (4123) I = (da — g reb)(zw — ¢ 'yz) (2)
(1432) I = (ad — gbc)(wz — qzy)  (3) (4132) I = (da — g 'cb)(wz — qzy)  (4)
(2314) I = (zw — g 'yz)(ad — gbc) (5) (2341) I = (zw — 9 'yz)(da ~ ¢ lcb) (6)
(3214) I = (wz —qzy)(ad —gbc) (7) (3241) I= (wx — gzy)(da — q"'cb)  (8)

I

Let W = ad — gbc and V = zw — ¢ 'yz, then the above relation give VW = I = WV and
also W =da—q cb, V = wz — qzy. Hence these relations are pairwise equivalent: (1) < (5),
(2) & (6), (3) & (7) and (4) < (8). The operators V, W, being the inverse of each other, are
twisted determinants for the two matrix co-representations:

) : (2.6)

W=detq(‘c" Z),V:detq_l("f

Let us observe here that a change of order in the basis for ( . 5, ) gives us the matrix

g w

w oz . . . . . . .
( v oz ) which satisfies the same relations and for which the twisted determinant is

det, ( 1;/) ; ) =wr —qzy=V. (2.7)

Using the invertibility of W and V one can easily get the following relations:

(1123) ab=gba (9) (2214) cd=gqdc (10)
(4423) yr =qzy (11) (3314) wz = qzw (12)

In addition, the relations (2.2) can be written as:

I=aa"+bb* (13) I=cc*+dd* (14)
I'=a*a+c*c (15) I=0bb+d*d (16)
O0=a"b+c'd (17) 0=ca*+db* (18)

and
I'=xz*+yy* (19) I =2z22"+ww* (20)
I=xz+2*2 (21) I=y'y+ww (22)
O=z'y+2z'w (23) 0=zz*+wy* (24)

Multiplication of (16) from the left by a* and using (9) and then (17) gives the equation
d*W = a, or, equivalently, d = V*a*. On the other hand, multiplication (15) from the right by
d and using (10) and (17) gives d = a*W. These two combined ensure also that W*a = V.
Similarly, by multiplying (16) from the right by ¢ and using (10) and then (17) one gets
b*W = —qc, or equivalently, b* = —qcV. Then, multiplying (15) from the right by b and using
(9) and (17) one obtains b = —gc*W. These two yield also ¢V = W*c. Therefore we have

d=V*a=aW, b= —gV*c" = —gc*W; (2.8)
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z=w'V=W'w" 2z=—qy'V =—qW*y". (2.9)

There arc also other relations obtained from (2.3). They are listed in the following, with the
associated sequences (a37v4d) on the left-hand side:

(2143) I = z(ad — gbc)w — qy(ad — q"'bc)z  (25)
(2413) I ==z(da — g 'cb)w — ¢ 'y(da — qcb)z  (26)
(3142) I = w(ad — g 'bc)z — g 'z(ad — gbc)y (27)
(3412) I =w(da — qcb)x — gz(da — q~'cb)y  (28)

and
(1234) I = a(zw — qyz)d — gb(zw — qyz)c (29)
(4231) I =d(zw — qyz)a — q 'c(zw — qyz)b (30)
(1324) I = a(wz — g 'zy)d — gb(wz — g lzy)e  (31)
(4321) I =d(wz —q 'zy)a—qg lc(wz — ¢ l2y)b (32)

From now on we shall assume the following additional relation:
V =Ww* (2.10)

meaning that the twisted determinants are unitary operators. This yields that we arc dealing
with the quantum groups U,(2) (for the generators a, b, ¢,d) and another copy of U,(2) (for the
gencrators w,y, 2,x). This assumption is also necessary to allow the technical procedure used
in [W3]. :

Let us substitute (2.8) into the (1) - (32). In (1) - (8) we do the substitution in one of the
bracket and put V' or V* for the other. Thus for each equation we get two:

VaV*a* + ¢’°c*tc=1 (1'a) w'VwV*+yy*=1 (1’b)
ata+VceV*er =1 (2a) w*VwV* +yy* =1 (2'h) 2.11)

VaV*e* + ¢*ctc=1 (3a) ww* +¢*y*VyV* =1 (3'b) (2.
a*a+VeVict =1 (4a) ww* +@y*'VyV* =1 (4'd)

We see that (1'a) & (3'a), (2a) & (4'a), (1'b) & (2'b) and (3'd) < (4'b). For (9) — (12) w
obtain:
cVa* =qa*cV  (9) aVc* =gctaV  (10)
yw'V = quw*'Vy (11') wy*V =qy*Vw (12)

The relation (13) — (18) give:

(2.12)

aa* +@V*c*eV =1 (13') cc* +V*a*aV =1 (14
ata+ce=1 (15) aa*+qcc* =1 (16 (2.13)
aVe=qcVa (17) Vea* = qa*cV  (1¥8)

and for (19) — (24) we get:

ww+yy =1 (19) ww' +¢y'y=1 (20)
ww* +¢?yy* =1 (21) ww+yy=1 (22) (2.14)
wy = qyw (23') wy* = qytw (24')
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Let us first deal with the relations (2.14) involving w and y. Comparing (19') with (21') one
gets easily that y is normal: yy* = y*y. Comparing (3'b) with (20') gives

y'Vy=yyv (2.15)
and (1'b) with (19') yield ‘
w'Vw = wwV. (2.16)
Putting (24’) into (11') gives
' wryV = w*'Vy. (2.17)

Multiplying both sides of (2.16) this from the left by w provides ww*yV = ww*Vy. Similarly,
multiplying (2.14) from the right by y gives yy*Vy = yy*yV. Adding these two side by side
yields :

Vy =yV. (2.18)

In a similar manner one gets

Vw = wV. (2.19)

This requires putting (24') into (12') to get y*wV = y*Vw which is then multiplied from the
left. by g%y and added side by side to ww*Vw = ww*wV, which is obtained from (2.15). These
can be collected together as the following relations:

wrw+yty=1 ww* +¢*yy* =1

wy = qyw wy* = qytw (2.20)
vy =y'y ’
wV =Vw yV =Vy

w'V oy

The fundamental co-representation is thus w ) and the above relations define the

—qy*V
C~-algebra of Uy(2), and V is the (—g)~'-determinant. :

Let us now work with the relations for @ and c¢. From (4’) and (15’) one deduces that
Vet = ¢*cV. Then, multiplying (9’) from the right by a one gets cVaa* = gqa*cVa. The
left-hand side of this can be transformed as follows (using (15°)):

cVaa* =cV(l —c'c) =cV — (cVc*)e=cV — c*cVe.
For the right-hand side one can use (17’) and then (15°) to get:
ga*cVa=a"aVe= (1 —cc*)Ve=Vec—-c'cVe.

It follows from these two that ¢V = Ve, and also ¢*V = V¢*, since V is unitary. Using this
combined with (14’) and (15’) one obtains cc* = c*c, so c is normal. Then from (10°) follows
ac* = qc*a. Comparing (1’a) with (16’) one concludes aVa* = aa*V. Then, multiplication ol
(17°) by ¢* from the right gives aVec* = gcVac*. The left-hand side of this is aV — aa*Ve. The
right-hand side of this can be transformed, with the help of the above relations, into:

gcVac* = ¢*’cVcra = ¢’c*cVa = Va — aa*Va.



Hence one concludes aV = Va, and also a*V = Va*. Therefore the above relations may be

written as follows:

a*fa+c'c=1 aa*+ ¢%cc* =1
ac = qca ac* = qc*a
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r) ¢
CC* — C*C (“21)
aV =Va cV=Ve
For N = 4 we have more nontrivial relations between a,c,w,y given by (2.3) then in the

case N = 3, since, for example the sequence (1,1,2,2) gives a nontrivial relation here, and

gave trivial relation there. Let us write them as follows, indicating the associated sequence

(v, 3,7,0) on the left-hand side of it and successive numbering on the right-hand side of it. In
the first set of equations we put elements from the same C*-subalgebra outside, and the other

inside.

(1231) a(zw — qyz)b = gb(zw — qyz)a (33)
(1321) a(wz — ,2y)b = gb(wz — %zy)a (34)
(4234) c(zw — qyz)d = qd(zxw — qyz)c (35)
(4324) c(wz — tzy)d = qd(ww — %zy)c (36)
(2142) z(ad — gbc)y = qy(ad — tbec)r  (37)
(2412) y(da — qcb)z = qz(da — ;cb)y  (38)
(3143)  2(ad — gbc)w = qw(ad — ;bc)z  (39)
(3413) w(da — gcb)z = gz(da — %cb)w (40)
(1224)  azyd = gbzyc, ayzd = gbyzc  (41)
(4221) cxyb = qdzya, cyzb = qdyza (42)
(1334) azwd = gbzwe, awzd = gbwze  (43)
(4331) czwb = gdzwa, cwzb = qgdwza (44)

(2113) yabz = 0 = ybaz (45)
(3112) wabzr = 0 = wbazx (46)
(2443) ydez = 0 = yedz (47)
(3442) wder = 0 = wedr (48)

In the second set of equations

subalgcbras.
(1243)
(4213)
(1342)
(4312)
(2134)
(3124)
(2431)
(3421)

Computing

azdw — qaydz — gbzcw + g*bycz = I
draw — gdyaz ~ Lexbw + cybz = I
awdzr — ﬁazdy — gbwex + bzey =1

dwazr — Ldzay — tcwbz + ezby =1

zawd — gzbwe — qyazd + g*ybze = I
wazd — qubzc — - zayd + 2byc = 1
zdwa — tzcwb — gydza +yezb =1

wdra ~— twezb — czdya + peeyb=1

TW — qyz V—-01-¢)yyV

wr—Llzy = V+(1-¢yyV
ad — tbe V*4+ (1 - g¥ec*V*
da—qeb = V*—(1—¢*)ccV*

(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)

(2.22)

b

——

we have alternating sequences of elements from diflerent C*-
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and substituting these into (2.22) one obtains

ayy*c* = qc*yy*a (33'),(34)

cyy*a* = gqa*yy*c (35),(36)
w'y = gqyectw* (37),(39)
yec*qw* = 0 (38")
wee'yt = 0 (40')
aw*ya* + ¢*’c*wryc = 0 (41'), (43) (2.25)
a'wrya + cw*yct = 0 (42'), (44")
yac*y* = 0 (45)
wac*w* = 0 (46")
yatcy* = 0 (47)
wa*cw* = 0 (48")
Unfortunately, (37") combined with (38’) give
wy =0

and it follows from (2.20) that y = 0. To see this let us observe that ww*yy* + Cyytyyt = yy*
implies ¢*(yy*)? = yy*, and hence, by induction, ¢**(yy*)"*! = yy* for any positive integer
n &€ N. This yields that the spectral radius r(yy*) = liTILn ||(yy*)"||% satisfies r(yy*) = q¢ * > 1.
However, it follows from the description of the irreducible representations of the relations (2.20)
(see [W3]) that |ly]| < 1, so that r(yy*) < 1. This is a contradiction, except y = 0.

Then rw =V = wz and zz* = 1 = z*z, ww* = 1 = w*w, so that z,w arc unitary. Moreover

’ . wV 0
x = w*V, so that for the fundamental co-representation eventually we get 0w ) Ina

similar manner one gets that
a’'c=0
and hence ¢ = 0. Substitution of these to (2.23) gives
awa*w* =1 = a*w*aw.

If we set ¢ := aw and s := wa, then tt* = 1 = t*t, ss* = 1 = s*s and ts* = 1 = s*{. Thercfore
t = s, which gives aw = wa.

These computations show that the C*-algebra of the constructed quantum group is gener-
ated by three commuting unitaries a, w, V, so it is isomorphic to C(T)®@C(T)®C(T). Therelore,
the quantum group we consider is in fact the classical group U(1) x U(1) x U (1).

3 The Yang-Baxter operator associated with U,(2)

In the next two Sections we are going to show a construction of a cubic Hecke algebra associated
with the quantum group U,(2). In [W3] we gave a construction of the quantum group U,(2). in
which the crucial role is played by the function counting the number of cycles in permutations
from the symmetric group S3. Namely, by considering the function S; 3 o — (—q)* ' where
(o) is the number of cycles and ¢ > 0, we constructed the following array:

Eip3=1 Ei3o=Fy13=F32,=—q
E2,3,1 = E3,1,2 = q2 Ei,j,k = 0 if {2’ 7 kv} g {1)21 3}



132

This array defines an operator p on C* ® C3 by

3
p: CP@C* 3 (a,b) = Y EijrErap(ij) € CCCP (3.26)

1,5,k=1

where (a,b) denotes in short the standard basis element &, ® €. In particular &; = (1,0,0),
g2 = (0,1,0) and €3 = (0,0, 1).
‘The definition of E implies that (3.26) simplifies to

p(a,b) = EqpkBrap(a,b) + EbokErap(b,a), where {a,b,k}={1,2,3} (3.27)

for a # b and a,b = 1,2,3. If a = b then we get p(a,a) = 0. The formulas can be written
explicitely as follows.

p(1,2) = Ej23F312(1,2) + E213E312(2,1) = ¢%(1,2) +¢*(2,1)
p(2, 1) = E2,173E3,2,1(2, 1) -+ E172,3E372y1(1, 2) = q2(2, 1) -+ (](1, 2)
p(1,3) = Ei32F213(1,3)+ E312E213(3,1) = ¢*(1,3) +¢°(3,1)
/)(3, 1) = E3,1’2E2,3yl(3, 1) + E1,3,2E2,3‘1(1, 3) - q4(3, 1) -+ q3(1, 3)
p(2,3) = Ep31F123(2,3)+ E321F123(3,2) = ¢%(2,3)+q(3,2)
n(3,2) = Es21F132(3,2) + E231E132(2,3) = ¢%(3,2) +¢%(2,3)

1
Therefore, the operator a := I — a-z-p acts as: a(a,a) = (a,a) for a =1,2,3 and

a(1, 2) = _Q(zv 1)

Ol(l, 3) = _Q(Sa 1)

(1(3, 2) = _Q(27 3) ;
a21) = ~q '(1,2) (328
a(273) = _q—l(?’v 2)

a(3,1) = (1-¢°)(3,1)—q(1,3)

This operator is not self-adjoint, but a? = (a?)* is so, since

o?(1,2) = (2,1)
2(21) = (21)

2(2,3) = (3,2) ¢
W(3.2) — (2.3 (3.29)
012(1,3) = q2(1a3) _Q(l "qz)(Bvl)

02(33 1) = (1 - q2 + q4)(37 1) - Q(l - q2)(]’ 3)

The first important property of a is that it is a Yang-Baxter operator.
Proposition 3.1 The operator a satisfies the Yang-Bazter equation

@@ D{I®a)a®])=I®a)(a® )& a) (3.30)
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Proof: Let L = (a®I)(I®a)(a®I) be the left-hand side and P = (I®a)(a®1)(I ®a) be the
right-hand side of (3.30). We have to show that L(a, b, c) = P(a, b, ¢) for every a,b,c € {1,2,3}
(with the notation: (a,b,c) = €, ® €5 ® €,). This requires checking 27 cases. It is clear
thet L(a,a,a) = (a,a,a) = P(a,a,a) for any a = 1,2,3. The direct calculation provides the
following formulas for the other cases.

L(3,2,3) = (3,2,3) = P(3,2,3)
L(2,3,2) = (2,3,2) = P(2,3,2)
L(1,2,1) = (1,2,1) = P(1,2,1)
L(2,1,2) = (2,1,2) = P(2,1,2)
L(172»3) = "Q(3,2’1) = P(1v273)
L(11312) = ‘—q3(2’3)1) P(173)2)
L(2,1,3) = —¢71(3,1,2) = P(3,1,2)
L(31372) = q2(2a3a3) = P(3a312)
L(2,2,3) =  ¢3(3,2,2) = P(2,2,3) (3.31)
L(3,2,2) = ¢%2,2,3) = P(322)
L(1,1,3) =  ¢¥3,1,1) = P(1,1,3)
L(1,3,3) = ¢3,3,1) = P(1,3,3)
L(1,1,2) = ¢(2,1,1) = P(1,1,2)
L(1,2,2) =  ¢%2,2,1) = P(1,2,2)
L(2,3,3) = q2(3,32) = P(2,33)
L(2,1,1) = ¢7%(1,1,2) = P(2,1,1)
L(2,2,1) = ¢2122) = P@221)
L3,21) =  (1-)3,21) — q1,23) = P@32,1)
L(3’1v2) = q2(1_q2)(2’3,1) - q3(21173) = P(37172)
L2,3,1) = ¢2(1-)(3,12) — ¢(1.3,2) = P23.1) (3.32)
L(1v3v1) = “Q(l"'qz)(&l’l) + q2(1a3v1) = P(la?”l)
L(3,1,3) = —q(1-4¢°)(3,3,1) + ¢*3,1,3) = P(3,1,3)
L(3,1,1) = (1-¢°(3,1,1) — ¢1-¢%)(1,3,1) + ¢*(1,1,3) = P(3,1,1) (3.33)
L(3a3?1) = (1_(]2)(3,3,1) - q(l-qz)(3a173) + q2(1v333) = P(373a1) -
From these formulas the Proposition follows. 0

4 The cubic Hecke algebra associated with U,(2)

The second important property of the operator « is that, even though it is not a Hecke operator,
it does satisfy a cubic equation, and thus it generates a cubic Hecke algebra. This notion has
been introduced by Funar in [F], where the cubic equation o® — I = 0 was considered.

Proposition 4.1 The operator o satisfies the cubic equation:

(@ — (e + ¢*T) = 0. (4.34)
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Proof: From the formulas (3.28), defining « it follows that it acts on the following subspaces
by simple matricial formulas.

-:_l_
1. On the span of (1,2),(2,1) as 8 := ( _2 q() )

2. On the span of (2,3),(3,2) as 3" := ( __(1) —4 )

- 0
3. On the span of (1,3),(3,1) as y:= ( _2 1 —Tlg )

4. As identity on every (a,a) with a = 1,2, 3.
It is strightforward to see that 32 — I = 0 = (8*)? — I. On the other hand, since
V2= ¢° —q(1 - ¢°)
—q1-¢*) 1-¢*+q* )’

we obtain

or-na+en=@-n (2 ) (L ) =(00)

Therefore both § and +y satisfy the equation (4.34), so the a docs. a
Let us define the elements
h,j = Ij®a®ln_j_2 fOI' ]= ].,...,’I'L—2, (435)

where I denotes the identity map on (CV)®*. Then by Propositions 3.1 and 4.1 the clements
hi...., h, generate a cubic Hecke algebra, associated with the quantum group U,(2).

Definition 4.2 The algebra H,.(2) generated by the elements h;, j = 1,2,...,n defined by
(4.35) will be called the cubic Hecke algebra associated with the quantum group U,(2).

The basic properties of this algebra are summarized in the following.

Theorem 4.3 The generators {h; : 1< j < n} of Hyn(2) satisfy:

hjhj+1hj = hj+1hjhj+1 fOT ] = 1, NN (e 1, v
hihk = hih for 15— k| > 2, (4.36)
((hj)Z— 1) (h]+q2) = 0 fOT ] = 1,...,71,.

The role of the Hecke algebra in the study of SU,(N) was that it was the intertwining
algebra. of the tensor powers of the fundamental co-representation. In W3] the irreducible co-
representations of Uy(2) have been described, but it is not clear if the description is complete.
So, it is still to be checked whether H,,(2) plays the same role as in SU,(N).
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