On the Woronowicz's twisted product construction of quantum groups,

with comments on related cubic Hecke algebra. *

JANUSZ WYSOCZAŃSKI †
Institute of Mathematics, Wrocław University
pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

We study the construction of compact quantum groups, based on the method invented by Woronowicz [SLW3], which uses a twisted determinant. As an example Woronowicz considered the function $S_N \ni \sigma \mapsto \text{inv}(\sigma)$, where $\text{inv}(\sigma)$ is the number of inversions in the permutation σ . Our twisted determinant is related to the function $S_N \ni \sigma \mapsto c(\sigma)$, where $c(\sigma)$ is the number of cycles in a permutation σ . For N=3 it gave the quantum group $U_q(2)$. Here we show how the construction works if N=4. We also describe the cubic Hecke algebra, associated with the quantum group $U_q(2)$.

1 Introduction

In [SLW3] Woronowicz provided a general method for constructing compact matrix quantum groups. The method depends on finding an N^N -element array $E = (E_{i_1,\dots,i_N})_{i_1,\dots,i_N=1}^N$ of complex numbers, called *twisted determinant*, which is (left and right) non-degenerate. Theorem 1.4 of [SLW3] says that if a C^* -algebra \mathcal{A} , is generated by N^2 elements u_{jk} which satisfy the unitarity condition:

$$\sum_{r=1}^{N} u_{jr}^* u_{rk} = \delta_{jk} I = \sum_{r=1}^{N} u_{jr} u_{rk}^*$$

and the following twisted determinant condition:

$$\sum_{k_1,...,k_N=1}^N u_{j_1k_1} \dots u_{j_Nk_N} E_{k_1,...,k_N} = E_{j_1,...,j_N} I$$

^{*}Research partially supported by the European Commission Marie Curie Host Fellowship for the Transfer of Knowledge "Harmonic Analysis, Nonlinear Analysis and Probability" MTKD-CT-2004-013389, the Polish Ministry of Science's research grants 1P03A01330 and N N201 270735

[†]e-mail: jwys@math.uni.wroc.pl

and if the array E is non-degenerate, then (A, u) is a compact matrix quantum group, where $u = (u_{jk})_{j,k=1}^N$. Woronowicz described the following example. For $\mu \in (0,1]$, he defined

$$E_{i_1,\dots,i_N} = (-\mu)^{\operatorname{inv}(\sigma)} \quad \text{if} \quad \sigma = \begin{pmatrix} 1 & 2 & \dots & N \\ i_1 & i_2 & \dots & i_N \end{pmatrix} \in S_N$$

is a permutation $(S_N \text{ denotes the set of permutations of } \{1, 2, ..., N\})$ and $E_{i_1,...,i_N} = 0$ otherwise. Here, for a permutation $\sigma \in S_N$, $\operatorname{inv}(\sigma)$ is the number of inversions of σ , which is the number of pairs (j,k) such that j < k and $i_j = \sigma(j) > \sigma(k) = i_k$. Then as (\mathcal{A}, u) one gets the quantum group $S_{\mu}U(N)$, called the *twisted* SU(N) group.

In [W3] we considered another array E for N=3, related to the number of cycles in a permutation. It was defined for a parameter 0 < q < 1 as follows:

$$E(i, j, k) = \begin{cases} (-q)^{3-c(i, j, k)} & \text{if } \{i, j, k\} = \{1, 2, 3\} \\ 0 & \text{otherwise} \end{cases}$$
.

Here c(i, j, k) is the number of cycles of the permutation

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ i & j & k \end{array}\right)$$

(which makes sense if and only if $\{i, j, k\} = \{1, 2, 3\}$). Then, following the Woronowicz's scheme, we obtained a quantum group, which turned out to be $U_q(2)$, the quantum deformation of the unitary 2×2 group. Moreover, the construction provided a description of it as a twisted product of it's quantum subgroups

$$U_q(2) = SU_q(2) \ltimes_{\sigma} U(1)$$

with the *-isomorphism $\sigma: \mathcal{A}_1 \otimes \mathcal{A}_2 \to \mathcal{A}_2 \otimes \mathcal{A}_1$ given by

$$\sigma(1 \otimes v) = v \otimes 1$$
, $\sigma(a \otimes v^k) = v^k \otimes a$, $\sigma(c \otimes v^k) = v^{k-1} \otimes c$.

The natural continuation of the construction given in [W3], was investigating the cases $N \geq 4$. However, as shall see below, after some tiresome computations it turned out that for N=4 (and thus also for all $N\geq 4$) the quantum group we obtain (via the Woronowicz's theorem) is classical abelian.

Regarding the quantum group $U_q(2)$, we shall present also a construction of a cubic Hecke algebra. In [SLW3] Woronowicz showed that there are Hecke algebras associated with the quantum groups $SU_q(N)$, for every $N \in \mathbb{N}$, $N \geq 2$. The Hecke algebra $H_{q,n}$ described the intertwining operators for the n^{th} tensor power of the fundamental representation of the group. In this note we shall show similar construction for $U_q(2)$. The construction depends on defining an operator $\alpha : \mathbb{C}^3 \otimes \mathbb{C}^3 \mapsto \mathbb{C}^3 \otimes \mathbb{C}^3$, which satisfies the Yang-Baxter equation (3.1). The operator is not self-adjoint (contrary to the $SU_q(N)$ cases), although its square is so $(\alpha^2 = (\alpha^*)^2)$. Nevertheless, it satisfies a generalization of the Hecke equation, namely $(\alpha^2 - I)(\alpha + q^2I) = 0$ (see (4.1)). Therefore the operators $h_j := I_j \otimes \alpha \otimes I_{n-j-2}$, defined for $j = 1, \ldots, n-2$, generate a cubic Hecke algebra (Theorem 4.3).

The paper is organized as follows. In Section 2 we give the computation showing the generalization of our $U_q(2)$ construction, for N=4. Then, in Section 3, we give the construction of the operator α , and show that it satisfies thre Yang-Baxter equation. The last Section 4, contains the construction of the cubic Hecke algebra, associated with $U_q(2)$. In particular, we show there that α satisfies the cubic equation.

2 The construction associated with E

Let $N_4 = \{(i,j,k,l) : \{i,j,k,l\} \subset \{1,2,3,4\}\}$, let $E: N_4 \mapsto \mathbb{C}$ be zero outside $S_4 \subset N_4$, where the inclusion is given by $(i,j,k,l) \mapsto \begin{pmatrix} 1 & 2 & 3 & 4 \\ i & j & k & l \end{pmatrix}$ if $\{i,j,k,l\} = \{1,2,3,4\}$, and, for 0 < q < 1, let the (non-zero) values of E (with the notation $E((i,j,k,l)) = E_{ijkl}$) be given by the function

$$S_4 \ni \sigma \mapsto (-q)^{4-c(\sigma)}$$
.

Explicitely, it can be written in the following way:

The function $S_4 \ni \sigma \mapsto 4 - c(\sigma) = t(\sigma)$ counts the number of transpositions in σ . It follows from [SLW3], Theorem 4.1, that this way we obtain a compact quantum group $(\mathcal{A}, \mathbf{u})$, where \mathcal{A} is the C^* -algebra generated by 16 matrix elements $\{u_{jk}: 1 \leq j, k \leq 4\}$ of \mathbf{u} , which satisfy the unitarity condition:

$$\sum_{r=1}^{4} u_{jr}^* u_{rk} = \delta_{jk} I = \sum_{r=1}^{4} u_{jr} u_{rk}^*$$
 (2.2)

and the twisted determinant condition:

$$\sum_{i,j,k,l=1}^{4} u_{\alpha i} u_{\beta j} u_{\gamma k} u_{\delta l} E_{ijkl} = E_{\alpha \beta \gamma \delta} I$$
(2.3)

for each $\{\alpha, \beta, \gamma, \delta\} \subset \{1, 2, 3, 4\}$. The matrix $\mathbf{u} = (u_{jk})_{j,k=1}^4$ is the fundamental unitary co-representation of the quantum group. In our case the co-representation $\mathbf{u} = (u_{kl})_{k,l=1}^4$ is reducible by the following reason. The operator $P = (E^* \otimes I)(I \otimes E)$, which acts on \mathbb{C}^4 , intertwines the fundamental representation with itself: $(P \otimes I)\mathbf{u} = \mathbf{u}(P \otimes I)$. Moreover, P has a diagonal matrix for the standard basis of \mathbb{C}^4 : $P = diag\{c_1, c_2, c_3, c_4\}$, with $c_j = \sum_{\alpha,\beta,\gamma} E_{j\alpha\beta\gamma} E_{\alpha\beta\gamma j}$, and therefore $c_1 = c_4 = -(5q^3 + q^5)$, $c_2 = c_3 = -(2q^3 + 4q^5)$. Hence, for

 $q \neq 0, -1, 1$, which shall be the case in the sequel, $c_1 \neq c_2$, so P is not a multiple of the identity operator I. The condition $(P \otimes I)\mathbf{u} = \mathbf{u}(P \otimes I)$ is equivalent to $c_j \cdot u_{jk} = c_k \cdot u_{jk}$ for all natural numbers $1 \leq j, k \leq 4$. This yields $u_{12} = u_{21} = 0, u_{13} = u_{31} = 0, u_{24} = u_{42} = 0, u_{34} = u_{43} = 0$, and therefore

$$\mathbf{u} = \begin{pmatrix} u_{11} & 0 & 0 & u_{14} \\ 0 & u_{22} & u_{23} & 0 \\ 0 & u_{32} & u_{33} & 0 \\ u_{41} & 0 & 0 & u_{44} \end{pmatrix} = \begin{pmatrix} a & 0 & 0 & b \\ 0 & x & y & 0 \\ 0 & z & w & 0 \\ c & 0 & 0 & d \end{pmatrix}. \tag{2.4}$$

This yields the decomposition of u decomposes into two irreducible subrepresentations

$$\mathbf{u} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \bigoplus \begin{pmatrix} x & y \\ z & w \end{pmatrix}. \tag{2.5}$$

Substitution in (2.3) of appropriate sequences $(\alpha, \beta, \gamma, \delta)$ gives the following relations between the generators of the C^* -algebra $\mathcal A$ (the associated sequence is left of the relation):

$$(1423) \quad I = (ad - qbc)(xw - q^{-1}yz) \quad (1) \quad (4123) \quad I = (da - q^{-1}cb)(xw - q^{-1}yz) \quad (2)$$

$$(1432) \quad I = (ad - qbc)(wx - qzy) \qquad (3) \quad (4132) \quad I = (da - q^{-1}cb)(wx - qzy) \qquad (4)$$

$$(1432) \quad I = (ad - qbc)(wx - qzy) \qquad (3) \quad (4132) \quad I = (da - q^{-1}cb)(wx - qzy) \qquad (4)$$

$$(2314) \quad I = (xw - q^{-1}yz)(ad - qbc) \quad (5) \quad (2341) \quad I = (xw - q^{-1}yz)(da - q^{-1}cb) \quad (6)$$

$$(3214) \quad I = (wx - qzy)(ad - qbc) \quad (7) \quad (3241) \quad I = (xw - qzy)(ad - q^{-1}cb) \quad (8)$$

Let W = ad - qbc and $V = xw - q^{-1}yz$, then the above relation give VW = I = WV and also $W = da - q^{-1}cb$, V = wx - qzy. Hence these relations are pairwise equivalent: (1) \Leftrightarrow (5), $(2) \Leftrightarrow (6), (3) \Leftrightarrow (7)$ and $(4) \Leftrightarrow (8)$. The operators V, W, being the inverse of each other, are twisted determinants for the two matrix co-representations:

$$W = \det_{q} \begin{pmatrix} a & b \\ c & d \end{pmatrix}, V = \det_{q^{-1}} \begin{pmatrix} x & y \\ z & w \end{pmatrix}.$$
 (2.6)

Let us observe here that a change of order in the basis for $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ gives us the matrix $\begin{pmatrix} w & z \\ y & x \end{pmatrix}$ which satisfies the same relations and for which the twisted determinant is

$$\det_q \left(\begin{array}{cc} w & z \\ y & x \end{array} \right) = wx - qzy = V. \tag{2.7}$$

Using the invertibility of W and V one can easily get the following relations:

$$\begin{array}{llll} (1123) & ab = qba & (9) & (2214) & cd = qdc & (10) \\ (4423) & yx = qxy & (11) & (3314) & wz = qzw & (12) \end{array}$$

In addition, the relations (2.2) can be written as:

$$I = aa^* + bb^*$$
 (13) $I = cc^* + dd^*$ (14)

$$I = a^*a + c^*c$$
 (15) $I = b^*b + d^*d$ (16)

$$0 = a^*b + c^*d (17) 0 = ca^* + db^* (18)$$

and

$$I = xx^* + yy^*$$
 (19) $I = zz^* + ww^*$ (20)
 $I = x^*x + z^*z$ (21) $I = y^*y + w^*w$ (22)
 $0 = x^*y + z^*w$ (23) $0 = zx^* + wy^*$ (24)

$$I = x^*x + z^*z$$
 (21) $I = y^*y + w^*w$ (22)

$$0 = x^*y + z^*w \quad (23) \quad 0 = zx^* + wy^* \quad (24)$$

Multiplication of (16) from the left by a^* and using (9) and then (17) gives the equation $d^*W = a$, or, equivalently, $d = V^*a^*$. On the other hand, multiplication (15) from the right by d and using (10) and (17) gives $d = a^*W$. These two combined ensure also that $W^*a = aV$. Similarly, by multiplying (16) from the right by c and using (10) and then (17) one gets $b^*W = -qc$, or equivalently, $b^* = -qcV$. Then, multiplying (15) from the right by b and using (9) and (17) one obtains $b = -qc^*W$. These two yield also $cV = W^*c$. Therefore we have

$$d = V^*a^* = a^*W, \quad b = -qV^*c^* = -qc^*W;$$
 (2.8)

$$x = w^*V = W^*w^*, \quad z = -qy^*V = -qW^*y^*.$$
 (2.9)

There are also other relations obtained from (2.3). They are listed in the following, with the associated sequences $(\alpha\beta\gamma\delta)$ on the left-hand side:

(2143)
$$I = x(ad - qbc)w - qy(ad - q^{-1}bc)z$$
 (25)
(2413) $I = x(da - q^{-1}cb)w - q^{-1}y(da - qcb)z$ (26)
(3142) $I = w(ad - q^{-1}bc)x - q^{-1}z(ad - qbc)y$ (27)
(3412) $I = w(da - qcb)x - qz(da - q^{-1}cb)y$ (28)

and

$$\begin{array}{ll} (1234) & I = a(xw-qyz)d - qb(xw-qyz)c & (29) \\ (4231) & I = d(xw-qyz)a - q^{-1}c(xw-qyz)b & (30) \\ (1324) & I = a(wx-q^{-1}zy)d - qb(wx-q^{-1}zy)c & (31) \\ (4321) & I = d(wx-q^{-1}zy)a - q^{-1}c(wx-q^{-1}zy)b & (32) \end{array}$$

From now on we shall assume the following additional relation:

$$V = W^* \tag{2.10}$$

meaning that the twisted determinants are unitary operators. This yields that we are dealing with the quantum groups $U_q(2)$ (for the generators a, b, c, d) and another copy of $U_q(2)$ (for the generators w, y, z, x). This assumption is also necessary to allow the technical procedure used in [W3].

Let us substitute (2.8) into the (1) - (32). In (1) - (8) we do the substitution in one of the bracket and put V or V^* for the other. Thus for each equation we get two:

$$VaV^*a^* + q^2c^*c = 1 \quad (1'a) \qquad w^*VwV^* + yy^* = 1 \quad (1'b)$$

$$a^*a + VcV^*c^* = 1 \quad (2'a) \qquad w^*VwV^* + yy^* = 1 \quad (2'b)$$

$$VaV^*a^* + q^2c^*c = 1 \quad (3'a) \quad ww^* + q^2y^*VyV^* = 1 \quad (3'b)$$

$$a^*a + VcV^*c^* = 1 \quad (4'a) \quad ww^* + q^2y^*VyV^* = 1 \quad (4'b)$$

$$(2.11)$$

We see that $(1'a) \Leftrightarrow (3'a)$, $(2'a) \Leftrightarrow (4'a)$, $(1'b) \Leftrightarrow (2'b)$ and $(3'b) \Leftrightarrow (4'b)$. For (9) - (12) we obtain:

$$cVa^* = qa^*cV$$
 (9') $aVc^* = qc^*aV$ (10')
 $yw^*V = qw^*Vy$ (11') $wy^*V = qy^*Vw$ (12') (2.12)

The relation (13) - (18) give:

$$aa^* + q^2V^*c^*cV = 1$$
 (13') $cc^* + V^*a^*aV = 1$ (14')
 $a^*a + c^*c = 1$ (15') $aa^* + q^2cc^* = 1$ (16')
 $aVc = qcVa$ (17') $Vca^* = qa^*cV$ (18')

and for (19) - (24) we get:

$$w^*w + yy^* = 1 \quad (19') \quad ww^* + q^2y^*y = 1 \quad (20')$$

$$ww^* + q^2yy^* = 1 \quad (21') \quad w^*w + y^*y = 1 \quad (22')$$

$$wy = qyw \quad (23') \quad wy^* = qy^*w \quad (24')$$

$$(2.14)$$

Let us first deal with the relations (2.14) involving w and y. Comparing (19') with (21') one gets easily that y is normal: $yy^* = y^*y$. Comparing (3'b) with (20') gives

$$y^*Vy = y^*yV \tag{2.15}$$

and (1'b) with (19') yield

$$w^*Vw = w^*wV. (2.16)$$

Putting (24') into (11') gives

$$w^*yV = w^*Vy. (2.17)$$

Multiplying both sides of (2.16) this from the left by w provides $ww^*yV = ww^*Vy$. Similarly, multiplying (2.14) from the right by y gives $yy^*Vy = yy^*yV$. Adding these two side by side yields

$$Vy = yV. (2.18)$$

In a similar manner one gets

$$Vw = wV. (2.19)$$

This requires putting (24') into (12') to get $y^*wV = y^*Vw$ which is then multiplied from the left by q^2y and added side by side to $ww^*Vw = ww^*wV$, which is obtained from (2.15). These can be collected together as the following relations:

$$w^*w + y^*y = 1$$
 $ww^* + q^2yy^* = 1$
 $wy = qyw$ $wy^* = qy^*w$
 $yy^* = y^*y$
 $wV = Vw$ $yV = Vy$ (2.20)

The fundamental co-representation is thus $\begin{pmatrix} w^*V & y \\ -qy^*V & w \end{pmatrix}$ and the above relations define the C^* -algebra of $U_q(2)$, and V is the $(-q)^{-1}$ -determinant.

Let us now work with the relations for a and c. From (4') and (15') one deduces that $cVc^* = c^*cV$. Then, multiplying (9') from the right by a one gets $cVaa^* = qa^*cVa$. The left-hand side of this can be transformed as follows (using (15')):

$$cVaa^* = cV(1 - c^*c) = cV - (cVc^*)c = cV - c^*cVc.$$

For the right-hand side one can use (17') and then (15') to get:

$$qa^*cVa = a^*aVc = (1 - cc^*)Vc = Vc - c^*cVc.$$

It follows from these two that cV = Vc, and also $c^*V = Vc^*$, since V is unitary. Using this combined with (14') and (15') one obtains $cc^* = c^*c$, so c is normal. Then from (10') follows $ac^* = qc^*a$. Comparing (1'a) with (16') one concludes $aVa^* = aa^*V$. Then, multiplication of (17') by c^* from the right gives $aVcc^* = qcVac^*$. The left-hand side of this is $aV - aa^*Va$. The right-hand side of this can be transformed, with the help of the above relations, into:

$$qcVac^* = q^2cVc^*a = q^2c^*cVa = Va - aa^*Va.$$

Hence one concludes aV = Va, and also $a^*V = Va^*$. Therefore the above relations may be written as follows:

$$a^*a + c^*c = 1 \quad aa^* + q^2cc^* = 1$$

$$ac = qca \qquad ac^* = qc^*a$$

$$cc^* = c^*c$$

$$aV = Va \qquad cV = Vc$$

$$(2.21)$$

For N=4 we have more nontrivial relations between a,c,w,y given by (2.3) then in the case N=3, since, for example the sequence (1,1,2,2) gives a nontrivial relation here, and gave trivial relation there. Let us write them as follows, indicating the associated sequence $(\alpha,\beta,\gamma,\delta)$ on the left-hand side of it and successive numbering on the right-hand side of it. In the first set of equations we put elements from the same C^* -subalgebra outside, and the other inside.

(1231)
$$a(xw - qyz)b = qb(xw - qyz)a$$
 (33)
(1321) $a(wx - \frac{1}{q}zy)b = qb(wx - \frac{1}{q}zy)a$ (34)
(4234) $c(xw - qyz)d = qd(xw - qyz)c$ (35)
(4324) $c(wx - \frac{1}{q}zy)d = qd(wx - \frac{1}{q}zy)c$ (36)
(2142) $x(ad - qbc)y = qy(ad - \frac{1}{q}bc)x$ (37)
(2412) $y(da - qcb)x = qx(da - \frac{1}{q}cb)y$ (38)
(3143) $z(ad - qbc)w = qw(ad - \frac{1}{q}bc)z$ (39)
(3413) $w(da - qcb)z = qz(da - \frac{1}{q}cb)w$ (40)
(1224) $axyd = qbxyc$, $ayxd = qbyxc$ (41)
(4221) $cxyb = qdxya$, $cyxb = qdyxa$ (42)
(1334) $azwd = qbzwc$, $awzd = qbwzc$ (43)
(4331) $czwb = qdzwa$, $cwzb = qdwza$ (44)
(2113) $yabz = 0 = ybaz$ (45)
(3112) $wabx = 0 = wbax$ (46)
(2443) $ydcz = 0 = ycdz$ (47)
(3442) $wdcx = 0 = wcdx$ (48)

In the second set of equations we have alternating sequences of elements from different C^* -subalgebras.

$$\begin{array}{lll} (1243) & axdw - qaydz - qbxcw + q^2bycz = I & (49) \\ (4213) & dxaw - qdyaz - \frac{1}{q}cxbw + cybz = I & (50) \\ (1342) & awdx - \frac{1}{q}azdy - qbwcx + bzcy = I & (51) \\ (4312) & dwax - \frac{1}{q}dzay - \frac{1}{q}cwbx + \frac{1}{q^2}czby = I & (52) \\ (2134) & xawd - qxbwc - qyazd + q^2ybzc = I & (53) \\ (3124) & waxd - qwbxc - \frac{1}{q}zayd + zbyc = I & (54) \\ (2431) & xdwa - \frac{1}{q}xcwb - qydza + yczb = I & (55) \\ (3421) & wdxa - \frac{1}{q}wcxb - \frac{1}{q}zdya + \frac{1}{q^2}zcyb = I & (56) \\ \end{array}$$

Computing

$$xw - qyz = V - (1 - q^{2})yy^{*}V$$

$$wx - \frac{1}{q}zy = V + (1 - q^{2})yy^{*}V$$

$$ad - \frac{1}{q}bc = V^{*} + (1 - q^{2})cc^{*}V^{*}$$

$$da - qcb = V^{*} - (1 - q^{2})cc^{*}V^{*}$$
(2.24)

and substituting these into (2.22) one obtains

$$ayy^*c^* = qc^*yy^*a \quad (33'), (34')$$

$$cyy^*a^* = qa^*yy^*c \quad (35'), (36')$$

$$w^*y = qycc^*w^* \quad (37'), (39')$$

$$ycc^*w^* = 0 \quad (38')$$

$$wcc^*y^* = 0 \quad (40')$$

$$aw^*ya^* + q^2c^*w^*yc = 0 \quad (41'), (43')$$

$$a^*w^*ya + cw^*yc^* = 0 \quad (42'), (44')$$

$$yac^*y^* = 0 \quad (45')$$

$$wac^*w^* = 0 \quad (46')$$

$$ya^*cy^* = 0 \quad (47')$$

$$wa^*cw^* = 0 \quad (48')$$

Unfortunately, (37') combined with (38') give

$$w^*y = 0$$

and it follows from (2.20) that y=0. To see this let us observe that $ww^*yy^*+q^2yy^*yy^*=yy^*$ implies $q^2(yy^*)^2=yy^*$, and hence, by induction, $q^{2n}(yy^*)^{n+1}=yy^*$ for any positive integer $n\in\mathbb{N}$. This yields that the spectral radius $r(yy^*)=\lim_n\|(yy^*)^n\|^{\frac{1}{n}}$ satisfies $r(yy^*)=q^{-2}>1$. However, it follows from the description of the irreducible representations of the relations (2.20) (see [W3]) that $\|y\|\leq 1$, so that $r(yy^*)\leq 1$. This is a contradiction, except y=0.

Then xw = V = wx and $xx^* = 1 = x^*x$, $ww^* = 1 = w^*w$, so that x, w are unitary. Moreover $x = w^*V$, so that for the fundamental co-representation eventually we get $\begin{pmatrix} w^*V & 0 \\ 0 & w \end{pmatrix}$. In a similar manner one gets that

$$a^*c = 0$$

and hence c = 0. Substitution of these to (2.23) gives

$$awa^*w^* = 1 = a^*w^*aw.$$

If we set t := aw and s := wa, then $tt^* = 1 = t^*t$, $ss^* = 1 = s^*s$ and $ts^* = 1 = s^*t$. Therefore t = s, which gives aw = wa.

These computations show that the C^* -algebra of the constructed quantum group is generated by three commuting unitaries a, w, V, so it is isomorphic to $C(\mathbb{T}) \otimes C(\mathbb{T}) \otimes C(\mathbb{T})$. Therefore, the quantum group we consider is in fact the classical group $U(1) \times U(1) \times U(1)$.

3 The Yang-Baxter operator associated with $U_q(2)$

In the next two Sections we are going to show a construction of a cubic Hecke algebra associated with the quantum group $U_q(2)$. In [W3] we gave a construction of the quantum group $U_q(2)$, in which the crucial role is played by the function counting the number of cycles in permutations from the symmetric group S_3 . Namely, by considering the function $S_3 \ni \sigma \mapsto (-q)^{3-c(\sigma)}$, where $c(\sigma)$ is the number of cycles and q > 0, we constructed the following array:

$$\begin{array}{ll} E_{1,2,3}=1 & E_{1,3,2}=E_{2,1,3}=E_{3,2,1}=-q \\ E_{2,3,1}=E_{3,1,2}=q^2 & E_{i,j,k}=0 \text{ if } \{i,j,k,\} \subsetneqq \{1,2,3\} \end{array}$$

This array defines an operator ρ on $\mathbb{C}^3 \otimes \mathbb{C}^3$ by

$$\rho: \mathbb{C}^3 \otimes \mathbb{C}^3 \ni (a,b) \mapsto \sum_{i,j,k=1}^3 E_{i,j,k} E_{k,a,b}(i,j) \in \mathbb{C}^3 \otimes \mathbb{C}^3, \tag{3.26}$$

where (a, b) denotes in short the standard basis element $\varepsilon_a \otimes \varepsilon_b$. In particular $\varepsilon_1 = (1, 0, 0)$, $\varepsilon_2 = (0, 1, 0)$ and $\varepsilon_3 = (0, 0, 1)$.

The definition of E implies that (3.26) simplifies to

$$\rho(a,b) = E_{a,b,k} E_{k,a,b}(a,b) + E_{b,a,k} E_{k,a,b}(b,a), \quad \text{where} \quad \{a,b,k\} = \{1,2,3\}$$
(3.27)

for $a \neq b$ and a, b = 1, 2, 3. If a = b then we get $\rho(a, a) = 0$. The formulas can be written explicitly as follows.

$$\begin{array}{llll} \rho(1,2) &=& E_{1,2,3}E_{3,1,2}(1,2) + E_{2,1,3}E_{3,1,2}(2,1) &=& q^2(1,2) + q^3(2,1) \\ \rho(2,1) &=& E_{2,1,3}E_{3,2,1}(2,1) + E_{1,2,3}E_{3,2,1}(1,2) &=& q^2(2,1) + q(1,2) \\ \rho(1,3) &=& E_{1,3,2}E_{2,1,3}(1,3) + E_{3,1,2}E_{2,1,3}(3,1) &=& q^2(1,3) + q^3(3,1) \\ \rho(3,1) &=& E_{3,1,2}E_{2,3,1}(3,1) + E_{1,3,2}E_{2,3,1}(1,3) &=& q^4(3,1) + q^3(1,3) \\ \rho(2,3) &=& E_{2,3,1}E_{1,2,3}(2,3) + E_{3,2,1}E_{1,2,3}(3,2) &=& q^2(2,3) + q(3,2) \\ \rho(3,2) &=& E_{3,2,1}E_{1,3,2}(3,2) + E_{2,3,1}E_{1,3,2}(2,3) &=& q^2(3,2) + q^3(2,3) \end{array}$$

Therefore, the operator $\alpha := I_2 - \frac{1}{q^2}\rho$ acts as: $\alpha(a,a) = (a,a)$ for a = 1,2,3 and

$$\alpha(1,2) = -q(2,1)
\alpha(1,3) = -q(3,1)
\alpha(3,2) = -q(2,3)
\alpha(2,1) = -q^{-1}(1,2)
\alpha(2,3) = -q^{-1}(3,2)
\alpha(3,1) = (1-q^{2})(3,1) - q(1,3)$$
(3.28)

This operator is not self-adjoint, but $\alpha^2 = (\alpha^2)^*$ is so, since

$$\begin{array}{rcl} \alpha^2(1,2) &=& (2,1) \\ \alpha^2(2,1) &=& (2,1) \\ \alpha^2(2,3) &=& (3,2) \\ \alpha^2(3,2) &=& (2,3) \\ \alpha^2(1,3) &=& q^2(1,3) - q(1-q^2)(3,1) \\ \alpha^2(3,1) &=& (1-q^2+q^4)(3,1) - q(1-q^2)(1,3) \end{array} \tag{3.29}$$

The first important property of α is that it is a Yang-Baxter operator.

Proposition 3.1 The operator α satisfies the Yang-Baxter equation

$$(\alpha \otimes I)(I \otimes \alpha)(\alpha \otimes I) = (I \otimes \alpha)(\alpha \otimes I)(I \otimes \alpha). \tag{3.30}$$

Proof: Let $L = (\alpha \otimes I)(I \otimes \alpha)(\alpha \otimes I)$ be the left-hand side and $P = (I \otimes \alpha)(\alpha \otimes I)(I \otimes \alpha)$ be the right-hand side of (3.30). We have to show that L(a,b,c) = P(a,b,c) for every $a,b,c \in \{1,2,3\}$ (with the notation: $(a,b,c) = \varepsilon_a \otimes \varepsilon_b \otimes \varepsilon_c$). This requires checking 27 cases. It is clear that L(a,a,a) = (a,a,a) = P(a,a,a) for any a = 1,2,3. The direct calculation provides the following formulas for the other cases.

$$L(3,2,3) = (3,2,3) = P(3,2,3)$$

$$L(2,3,2) = (2,3,2) = P(2,3,2)$$

$$L(1,2,1) = (1,2,1) = P(1,2,1)$$

$$L(2,1,2) = (2,1,2) = P(2,1,2)$$

$$L(1,2,3) = -q(3,2,1) = P(1,2,3)$$

$$L(1,3,2) = -q^3(2,3,1) = P(1,3,2)$$

$$L(2,1,3) = -q^{-1}(3,1,2) = P(3,1,2)$$

$$L(3,3,2) = q^2(2,3,3) = P(3,3,2)$$

$$L(2,2,3) = q^2(3,2,2) = P(2,2,3)$$

$$L(3,2,2) = q^2(2,2,3) = P(3,2,2)$$

$$L(1,1,3) = q^2(3,1,1) = P(1,1,3)$$

$$L(1,3,3) = q^2(3,1,1) = P(1,1,3)$$

$$L(1,2,2) = q^2(2,1,1) = P(1,2,2)$$

$$L(2,3,3) = q^{-2}(3,3,2) = P(2,3,3)$$

$$L(2,1,1) = q^{-2}(1,1,2) = P(2,1,1)$$

$$L(2,2,1) = q^{-2}(1,2,2) = P(2,2,1)$$

$$L(3,2,1) = (1-q^2)(3,2,1) - q(1,2,3) = P(3,2,1)$$

$$L(3,1,2) = q^2(1-q^2)(2,3,1) - q^3(2,1,3) = P(3,1,2)$$

$$L(2,3,1) = q^{-2}(1-q^2)(3,1,2) - q^{-1}(1,3,2) = P(2,3,1)$$

$$L(1,3,1) = -q(1-q^2)(3,1,1) + q^2(1,3,1) = P(1,3,1)$$

$$L(3,1,3) = -q(1-q^2)(3,3,1) + q^2(3,1,3) = P(3,1,3)$$
(3.32)

$$L(3,1,1) = (1-q^2)(3,1,1) - q(1-q^2)(1,3,1) + q^2(1,1,3) = P(3,1,1) L(3,3,1) = (1-q^2)(3,3,1) - q(1-q^2)(3,1,3) + q^2(1,3,3) = P(3,3,1)$$
 (3.33)

From these formulas the Proposition follows.

4 The cubic Hecke algebra associated with $U_q(2)$

The second important property of the operator α is that, even though it is not a Hecke operator, it does satisfy a cubic equation, and thus it generates a *cubic Hecke algebra*. This notion has been introduced by Funar in [F], where the cubic equation $\alpha^3 - I = 0$ was considered.

Proposition 4.1 The operator α satisfies the cubic equation:

$$(\alpha^2 - I)(\alpha + q^2 I) = 0. (4.34)$$

Proof: From the formulas (3.28), defining α it follows that it acts on the following subspaces by simple matricial formulas.

- 1. On the span of (1,2),(2,1) as $\beta := \begin{pmatrix} 0 & \frac{-1}{q} \\ -q & 0 \end{pmatrix}$
- 2. On the span of (2,3),(3,2) as $\beta^* := \begin{pmatrix} 0 & -q \\ \frac{-1}{q} & 0 \end{pmatrix}$
- 3. On the span of (1,3), (3,1) as $\gamma := \begin{pmatrix} 0 & -q \\ -q & 1-q^2 \end{pmatrix}$
- 4. As identity on every (a, a) with a = 1, 2, 3.

It is strightforward to see that $\beta^2 - I = 0 = (\beta^*)^2 - I$. On the other hand, since

$$\gamma^2 = \begin{pmatrix} q^2 & -q(1-q^2) \\ -q(1-q^2) & 1-q^2+q^4 \end{pmatrix},$$

we obtain

$$(\gamma^2 - I)(\gamma + q^2 I) = (q^2 - 1) \begin{pmatrix} 1 & q \\ q & q^2 \end{pmatrix} \begin{pmatrix} q^2 & -q \\ -q & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Therefore both β and γ satisfy the equation (4.34), so the α does.

Let us define the elements

$$h_j := I_j \otimes \alpha \otimes I_{n-j-2} \quad \text{for} \quad j = 1, \dots, n-2,$$
 (4.35)

where I_k denotes the identity map on $(\mathbb{C}^N)^{\otimes k}$. Then by Propositions 3.1 and 4.1 the elements h_1, \ldots, h_n generate a cubic Hecke algebra, associated with the quantum group $U_q(2)$.

Definition 4.2 The algebra $\mathcal{H}_{q,n}(2)$ generated by the elements h_j , j = 1, 2, ..., n defined by (4.35) will be called the **cubic Hecke algebra** associated with the quantum group $U_q(2)$.

The basic properties of this algebra are summarized in the following.

Theorem 4.3 The generators $\{h_j : 1 \le j \le n\}$ of $H_{q,n}(2)$ satisfy:

$$h_{j}h_{j+1}h_{j} = h_{j+1}h_{j}h_{j+1} \quad for \quad j = 1, \dots, n-1, h_{j}h_{k} = h_{k}h_{j} \quad for \quad |j-k| \ge 2, ((h_{j})^{2} - 1)(h_{j} + q^{2}) = 0 \quad for \quad j = 1, \dots, n.$$

$$(4.36)$$

The role of the Hecke algebra in the study of $SU_q(N)$ was that it was the intertwining algebra of the tensor powers of the fundamental co-representation. In [W3] the irreducible co-representations of $U_q(2)$ have been described, but it is not clear if the description is complete. So, it is still to be checked whether $\mathcal{H}_{q,n}(2)$ plays the same role as in $SU_q(N)$.

References

- [F] L. Funar On the quotients of cubic Hecke algebras, Comm.Math.Phys. 173 (1995), 513-558.
- [K] H. T. KOELINK, On *-representations of the Hopf *-algebra associated with the quantum group $U_q(n)$, Compositio Math. 77 (1991), 199-231.
- [M-HR] F. MÜLLER-HOISSEN, C. REUTEN Bicovariant differential calculi on $GL_{p,q}(2)$ and quantum subgroups, J. Phys. A **26** (1993), 2955 2975.
- [PoM] P. Podleś, E. Müller, Introduction to quantum groups, Rev. Math. Phys. 10 (1998), no. 4, 511-551.
- [PoW] P. Podleś, S.L. Woronowicz Quantum deformation of Lorentz group, Comm. Math. Phys. 130 (1990), 381–431.
- [PuW] W. Pusz, S. L. Wordonowicz, Representations of quantum Lorentz group on Gelfand spaces, Rev. Math. Phys. Vol. 12, No. 12 (2000), 1551 1625.
- [Ta] M. TAKEUCHI, A two-parameter quantization of GL(n), Proc. Japan Acad. Ser. A Math. Sci 66 no. 5 (1990), 112 114.
- [SLW1] S.L. WORONOWICZ, Twisted SU(2) group. An example of non-commutative differential calculus, Publ. RIMS, Kyoto Univ. 23 (1987), 117–181.
- [SLW2] S.L. WORONOWICZ, Compact Matrix Pseudogroups, Comm. Math. Phys. 111 (1987), 613-665
- [SLW3] S.L. WORONOWICZ, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 35–76.
- [SLW4] S.L. WORONOWICZ, Compact quantum groups, Symétries quantiques (Les Houches, Session LXIV), (1995), 845 884; in "Quantum symmetries" (A. Connes, K. Gawędzki, J. Zinn-Justin, Eds.) (1998) North-Holland, Amsterdam.
- [SLW5] S.L. WORONOWICZ, From multiplicative unitaries to quantum groups, Internat. J. Math. 7 (1996), 127 149.
- [W1] J. WYSOCZAŃSKI, A construction of compact matrix quantum groups and description of the related C*-algebras, Infinite dimensional analysis and quantum probability theory (Japanese) (Kyoto, 2000). Su-rikaisekikenkyu-sho Ko-kyu-roku No. 1227 (2001), 209-217.
- [W2] J. WYSOCZAŃSKI, Unitary representations for twisted product of matrix quantum groups, Trends in infinite-dimensional analysis and quantum probability (Japanese) (Kyoto, 2001). Su-rikaisekikenkyu-sho Ko-kyu-roku No. 1278 (2002), 188-193.
- [W3] J. WYSOCZAŃSKI, Twisted product structure and representation theory of the quantum group $U_q(2)$, Reports on Math. Phys. **54** No.3 (2004), 327–347.