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概要

ホワイトノイズ超汎関数空間 $(L^{2})^{-}$ について、各種の dual pair
により その特徴をみる。扱う対象は、 無限次元空間上の超関数の空間で
あるため、きわめて複雑な構造をもつが種々の部分空間の間の duality を
見ることによりその構造の一側面を伺うことができる。超汎関数空間の定
義は $(S)^{\alpha}$ を採用するのがスマートなように見えるが本報告では Sobolev
空間の性質を使いたいので、定義法の一つである $(L^{2})^{-}$ を利用する。そ
こでは Fock 空間を基礎にする具体的表現が役立つ。 このため、 超汎関
数の概念や $S$-変換,T-変換の意義の再認識が必要となる。特に、真に無
限次元の特性がよく現れる 2次超汎関数の果す重要な役割、また $(L^{2})^{-}$

が種々の双対性を内蔵することに注目したい。

1 Introduction

First, we have a quick review of the Fock space of
(ordinary) white noise functionals in classical stochas-
tic analysis:

$(L^{2})=\oplus_{0}^{\infty}H_{n}$ ,

where $(L^{2})$ is the complex Hilbert space involving square
integrable functionals of white noise, i.e. $L^{2}(E^{*}, \mu)$ ,
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where the measure $\mu$ is the probability distribution of
white noise $\dot{B}(t),$ $t\in R$ , that is the white noise mea-
sure defined on a space $E^{*}$ of generalized functions on
$R^{1},$ $E^{*}$ being the dual space of some nuclear space $E$ .

The subspace $H_{n}$ is the collection of homogeneous
chaos in the sense of N. Wiener or that of multiple
Wiener integrals in the sense of K. It\^o, which is of
degree $n$ .

It is well-known that the space $H_{n}$ is isomorphic to
$\hat{L}^{2}(R^{n})$ , the subspace of $L^{2}(R^{n})$ involving symmetric
functions, up to the constant $\sqrt{n!}$ :

$H_{n}\cong\hat{L}^{2}(R^{n})$ . (1.1)

Such an isomorphism can be realized by the so-called
S-transform defined by, for $\varphi(x)\in(L^{2})$ , and for $\xi\in E$ ,

$(S \varphi)(\xi)=C(\xi)\int\exp[<x,$ $\xi>]\varphi(x)d\mu(x)$ , $($ 1.2 $)$

where $C(\xi)$ is the characteristic functional of the white
noise measure,

$C( \xi)=\exp[-\frac{1}{2}\Vert\xi\Vert^{2}]$ .

We now pause to give some interpretation to the
S-transform. The expression of the transform looks
like an infinite dimensional analogue of the Laplace
transform, however it is quite different.

Originally the so-called T-transform was introduced
in order to construct a reproducing kemel Hilbert space
(RKHS) determined by characteristic functional $C(\xi)$ .
It is of the form, for $\varphi(x)\in(L^{2})$

$(T \varphi)(\xi)=\int\exp[\cdot i<\prime x_{:}\xi>]\varphi(x)d\mu(x)$ . $($ 1.3 $)$

The idea is similar to the case where the author tried
to have the factorization of the covariance function of
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a Gaussian process (see [2]) to establish the canoni-
cal representation theory for Gaussian processes. As
a generalization of this method to use a RKHS, and
with other reasons, this transform was used in the pa-
per (Hida-Ikeda, the 5th Berkeley Symp. Proc. 1966),
where nonlinear functions of white noise are discussed.
Then, with some additional ideas, RKHS method ap-
peared again to introduce generalized white noise func-
tionals in 1975 $($see $[$3$])$ .

We see that

$C( \xi-\eta)=\int_{E^{*}}e^{i<x,\xi-\eta>}d\mu(x)$ , (1.4)

The right hand side is written as
$\int_{E}$

。

$e^{i<x,\xi>}.$ $e^{-\iota<x_{1}\eta>}d\mu(x)$

in a factorization formula.

Based on this formula, we consider functions of the
form $\sum a_{j}e^{-ix_{:}\tau|j}<>$ which will span the entire space
$(L^{2})$ . While, the left hand side $\sum_{j}a_{j}C(\xi-\eta_{j})$ forms a
dense subspace of the RKHS. Through this transform,

called T-transform, gives a representation of white noise
functionals. In addition, the T-transform plays a role
of factorization, see $[$ 15 $]$ .

Shortly after $($ around 1980) this T-transform, the
S-transform was introduced and develped by Kubo-
Takenaka, and further Potthoff-Streit continued devel-
opment extensively.

Now, S- and T-transform play basic role in white noise
analysis in many places and in various manner, e.g. to
get RKHS, to have factorization and others.

Remark We do not confuse our transforms with the
Bargmann-Segal type transforms or with the Gauss
transform. Indeed, essentially different.
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We want to take this opportunity to insist strongly
that generalized white noise functionals can “not” be
reduced to the classical functionals of Brownian motion
introduced before.

Generalized white noise functionals [3], [6].

There can be a restriction of this isomorphism by
introducing a stronger topology in such a way that

$\hat{K}^{(n+1)/2}(R^{n})\cong H_{n}^{(n)}$ , $($ 1.5 $)$

where we use the notation $\hat{If}^{m}(R^{n})$ to denote the sym-
metric Sobolev space over $R^{n}$ of degree $m$ .

Here again and after, the constant $\sqrt{n!}$ is omitted.

Then, we take the dual space of both side of this
isomorphism based on symmetric $\hat{L}^{2}(R^{n})$ and $H_{n}$ , re-
spectively. We can define $H_{n}^{(-n)}$ the space of general-
ized white noise functionals of degree $n$ by the following
isomorphism:

$\hat{K}^{-(n+1)/2}(R^{n})\cong H_{n}^{(-n)}$ . $($ 1.6 $)$

Finally, with a suitable choice of a positive increasing
sequence $c_{n}$ , we have the test functional space

$(L^{2})^{+}=\oplus c_{n}H_{n}^{(n)}$ $($ 1.7$)$

and its dual space

$(L^{2})^{-}=\oplus c_{n}^{-1}H_{n}^{(-n)}$ , $($ 1.8 $)$

which is called the space of generalized white noise

functionals.
In this note we shall discuss various kind of dualities

that exist among subspaces of $(L^{2})^{-}$ .

We have established in [6], Chpt. 2, the structure of
$H_{1}^{(-1)}$ , where we have given the identity to the white
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noise $\dot{B}(t)$ (or its sample function $x(t)$ with $x\in E^{*}$ ).
The space $H_{1}^{(-1)}$ is spanned by the $\dot{B}(t)$ ’s and each
$\dot{B}(t)$ is taken to be the variables of generalized white
noise functionals. This fact provides a basic method
in what we are going to discuss.

2 Duality in the space $H_{1}^{(-1)}$

Significant duality can be seen between two Gaus-
sian processes which are in pair living in $H_{1}^{(-1)}$ . There
is an interesting pair of multiple Markov Gaussian pro-
cesses. To fix the idea we shall consider an N-ple
Markov Gaussian process $X(t),$ $t\geq 0$ , in the restricted
sense, which can be dealt with rigorously in the space
$H_{1}^{(-1)}$ . It is determined by a differential equation given
by

$L_{t}X(t)=\dot{B}(t)$ , $($2.1 $)$

with initial data
$X(0)=0$ , (2.2)

where $L_{t}$ is an N-th $(N\geq 1)$ order ordinary differential
operator expressed in the form

$L_{t}= \sum_{k=0}^{N}a_{k}(t)D^{N-k}$ , $D= \frac{d}{dt}$ . (2.3)

We may assume $a_{k}(t)$ ’s are sufficiently smooth.

Such a process discussed by J.L. Doob (1944) and

in the paper [2] within the framework of general mul-
tiple Markov Gaussian process. As for the duality, the

paper [17] by Si Si et al has recently discussed in the

framework of white noise analysis.
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It is known $($see $[$2 $]$ Part II) that $X(t)$ has the canon-
ical representation expressed in the form

$X(t)= \int_{0}^{t}R(t,$ $u)\dot{B}(u)du$ , $($ 2.4 $)$

where the kernel $R(t,$ $u)$ is the Riemann function asso-
ciated with $L_{t}$ .

It is noted that the expression $\dot{B}(t)$ is no more for-
mal, but it has correct meaning in the space $H_{1}^{(-1)}$ and
analysis concerning the equation (2.1) can be carried
on within that space.

We claim that $L_{t}$ is expressed in the Frobenius for-
mula in such a way that

$L_{t}= \frac{1}{v_{0}(t)}D\frac{1}{v_{1}(t)}D\cdots D\frac{1}{\iota_{N}(t)}$ . $($ 2.5 $)$

Set

$f_{i}(t)$ $=$ $v_{N}(t) \int_{0}^{t}v_{N-1}(t_{1})dt_{1}/o^{t_{1}}v_{N-2}(t_{2})dt_{2}\cdots$

$\int_{0}^{t_{iarrow 2}}v_{N-i+1}(t_{i-1})dt_{i-1}$ , $1\leq i\leq N$ . $(2.6)$

Now define the formal adjoint operator $L_{u}^{*}$ :

$L_{u}^{*}= \frac{1}{v_{N}(u)}D\frac{1}{v_{N-1}(u)}D\cdots D\frac{1}{lf0(u)}$ (2.7)

and set

$g_{i}(u)$ $=$ $(-1)^{N-i}v_{0}(u) \int_{0}^{u}v_{1}(u_{1})du_{1}\int_{0}^{u_{1}}v_{2}(u_{2})d^{l}u_{2}\cdots$

$\int_{0}^{u_{N-i-1}}v_{N-i}(u_{N-i})du_{N-i},$ $1\leq i\leq N$. (2.8)

Obviously we have

$L_{u}^{*}g_{i}(u)=0$ , $1\leq i\leq N$ .

It can be proved that the Riemann function $R(t, u)$

is expressed in the form of Goursat kernel of order $N$ :

$R(t,$ $lu)= \sum_{1}^{N}f_{i}(t)g_{i}(u)$ .
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We are now ready to state the duality of Gaussian
Markov processes in the restricted sense. Set

$R^{*}(t,$ $u)=R(u,$ $t)$ .

Note that a kernel function of canonical representation
of a Gaussian process is of Volterra type. However, in
the present case, $R(t,$ $u)$ can be defined on the entire
space $[0,$ $\infty)\cross[0,$ $\infty)$ . The same for $R^{*}(t,$ $u)$ .

We restrict the time parameter to the unit interval
$[0_{/}1]$ . Define

$X^{*}(t)= \int_{t}^{1}R^{*}(t,$ $u)\dot{B}(u)du$ . $($ 2.9 $)$

The following theorem comes from Si Si, Win Win
Htay and Accardi $[$ 17$]$ .

Theorem 1 The $X^{*}(t)$ is a backward N-ple Markov
Gaussian process in the restricted sense satisfying

$L_{t}^{*}X^{*}(t)=\dot{B}(t)$ ,

with the initial data

$X^{*}(1)=0$ .

By this result we $mav$ say that $X(t),$ $0\leq t\leq 1$ , and
$X^{*}(t),$ $1\geq t\geq 0$ , form a dual pair.

Remark Given an N-ple Markov Gaussian process
$X(t)$ in the restricted sense determined by $($ 2.1 $)$ and
(2.2). Then, the exact expressions of $v_{i}’ s,$ $f_{i}$ ’s and $g_{i}$ ’s
are not unique, but $N$ , the degree of Goursat kernel,

is uniquely determined.

We shall show that a dual pair can be formed under
somewhat weaker assumption than multiple Markov
property in the restricted sense. Our forthcoming pa-
per will report the result on this fact.
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3 Passage from finite dimensional anal-
ysis to infinite dimensional calculus

We shall be concerned with spaces of functionals of
white noise $\dot{B}(t)_{\dot{\text{ノ}}}t\in R^{1}$ .

[I] Finite dimensional approximations.

We now come to discuss duality that holds among
the spaces of nonlinear functionals of white noise. In
fact, we shall consider the space of generalized func-
tionals of the $\dot{B}(t),$ $t\in R^{1}$ . To this end, we take the
finite dimensional approximation to Brownian motion
$B(t)$ (or approximation to white noise $\dot{B}(t)$ ) due to P.
L\’evy. Although there are many methods of approx-
imations to Brownian motion, we claim that $L\acute{e}vy^{?}s$

method is most essential and quite fitting for our pur-
pose to carry on, so to speak, essentially infinite di-
mensional stochastic calculus.

The relevance of this method is that i $)$ it uses suc-
cessive approximation method in such a way that the
approximation is getting finer and finer as the step pro-
ceeds, ii) each step the approximation is uniform in $t$

in a visualized manner, iii) it is easily applied to have
white noise functionals approximated (le passage du
fini \‘a l’infini), and iv) an approximation of white noise
is obtained simply by taking the time-derivative.

Actual method, we have demonstrated in many places,
e.g. in [6] Chapt. 2 with fig 2.1. We shall, therefore,
explain only the idea quickly.

Construction of a Brownian motion (white noise).

We now show how to construct a Brownian motion
$B(t),$ $t\in[0,1]$ . First, let a sequence $\{Y_{k}, k\geq 1, \}$ of
independent identically distributed standard Gaussian
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random variables be provided.
Define a sequence of stochastic processes $X_{n}(t),$ $t\in$

$[0,1],$ $n=1,2_{Y}\cdots$ , successively.

$X_{1}(t)=tY_{1}$ . (3.1)

Let $T_{n}$ be the set of binary numbers $k/2^{n-1},$ $k=$

$0,1,2,$ $\cdots,$
$2^{n-1}$ , and set $T_{0}= \bigcup_{n\geq 1}T_{n}$ . Assume that

$X_{j}(t)=X_{j}(t, \omega),$ $j\leq n$ , are defined. Then, $X_{n+1}(t)$

is defined in the following manner. At every binary
point $t\in T_{n+1}-T_{n}$ add new random variables $Y_{k}$ as
many as $2^{n}$ to $X_{n}(t)$ . On the t-set $T_{n+1}^{c}$ we have linear
interpolation to define $X_{n+1}(t)$ .

Then, we have

Theorem 2 i) The sequence $X_{n}(t),$ $n\geq 1$ , is consistent
in $n$ , and the uniform $L^{2}$-limit of the $X_{n}(t)$ exists. The
limit is a version of a Brownian motion $B(t)$ .

ii) The time derivative $X_{n}’(t)$ converges to a (version
of) white noise $\dot{B}(t)$ which is in $H_{1}^{(-1)}$ .

Realizations ofwhite noise functionals and func-
tional derivatives

By using the approximation (construction) of Brow-
nian motion, white noise functionals can be approxi-
mated. The S-transform (1.2) is applied to have U-
functionals $U(\xi)$ ,

We remind the Volterra form of a variation of the
S-transform $U(\xi)$ of white noise functional $\varphi$ :

$\delta U(\xi)=\int C_{\xi}^{\gamma/}(\xi_{:}t)\delta\xi(t)$ , $($3.2 $)$

where $\delta\xi(t)$ is a continuous analogue of the differen-
tial $du_{j}$ of $u(x_{1}, x_{2}, \cdots, x_{n})$ . The functional derivative
$U_{\xi}’(\xi, t)$ is called the Frechet derivative and denoted by
$\frac{\delta}{\delta\xi(t)}U$ .
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Define the partial derivative in $\dot{B}(t)$ by

$\partial_{t}=S^{-1}\frac{\delta}{\delta\xi(\backslash t)}$ . (3.3)

Formally speaking, $\partial_{t}$ may be considered as $\frac{\partial}{\partial B(T)}$ .

It is noted that this definition of the partial deriva-
tive is fitting to our vvhite noise calculus. Part of the
reason we shall see later. The adjoint is defined and is
exressed as $\partial_{t}^{*}$ .

$[$ II $]$ Infinite dimensional rotation group.

Take a suitable nuclear space $E$ and let $O(E)$ be the
collection of linear isomorphisms of $E$ which are or-
thogonal in $L^{2}(R^{1})$ . It is topologized by the compact-
open topology and we call it rotation group of $E$ , or
if $E$ is not specified, it is called infinite dimensional
rotation group.

Let $g^{*}$ be the adjoint of $g\in O(E)$ , Each $g^{*}$ is a $\mu$

measure preserving transformation acting on $E^{*}$ .

Thus, our white noise analysis has an aspect of the
harmonic analysis arising from the infinite dimensional
rotation group. The harmonic analysis can, in some
parts, approximated by finite dimensional analysis. But,
to be very important, there are lots of significant re-
sults that are essentiallv infinite dimensional: in fact,
those results can not be well approximated by finite
dimensional concepts.

We show an example, that is the Laplacian (indeed,
the L\’evy Laplacian $)$ $\triangle_{L}$ :

$\triangle_{L}=\int\partial_{t}^{2}(dt)^{2}$ , $($ 3.4$)$

We shall see some interpretation later in this report.
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4Quadratic functionals of white noise

We are now ready to discuss nonlinear functions (ac-
tually functionals) of the $\dot{B}(t)$ . We claim that among
others the subspace $H_{2}^{(-2)}$ consisting of quadratic gen-
eralized white noise functionals is particularly impor-
tant. There is the isomorphism

$H_{2}^{(-2)}\cong\hat{K}^{arrow 3/2}(R^{2})$ .

As was established by (1.5). More explicitly, for $\varphi\in$

$H_{2}^{(-2)}$ we find a function $F(u, v)$ in the space $\hat{K}^{-3/2}(R^{2})$

to have the representation

$\varphi(\dot{B})=\int F(u, v):\dot{B}(u)\dot{B}(v):dudv$ , (4.1)

where the notation $:\cdot$ : means the Wick product, i.e.

renormalized product. (See e.g. [6].) We shall classify

those quadratic functionals according to the analytic

properties of the kernel. The idea is in line with $le$

passage $du$ fini \‘a l’infini proposed by P. L\’evy.

We shall, therefore, start with a qudratic form in

the elementary theory of linear algebra. A quadratic

form $Q(x),$ $x\in R^{n}$ , is expressed as

$Q(x)= \sum_{j,k^{\wedge}}a_{j,k}x_{j}x_{k}$
,

It is significant to decompose the $Q(x)$ into two sub-
forms $Q_{1}(x)$ and $Q_{2}(x)$ :

$Q(x)=Q_{1}(x)+Q_{2}(x)$ ,

where

$Q_{1}(x)= \sum_{j}a_{j}x_{j}^{2}$
, and $Q_{2}(x)= \sum_{j\neq k}a_{j,k}x_{j}x_{k}$

. (4.2)

According to the method to have le passage \‘a l’infini,

we can consider how and why the above two terms
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should be discriminated when we take the limits of
them as $narrow\infty$ . . Note that the $x_{j}$ ’s are equally
weighted variables regardless they are coordinates of
finite or infinite dimensional vectors. Here, we shall
make some quite elementary observations.

i $)$ Suppose $x_{i^{j}}s$ are mutually independent random
variables and are subject to the standard Gaussian dis-
tribution $N(O,$ $1)$ . If both are infinite sum, then for
$Q_{1}(x)$ to be convergent the coefficients $a_{j}$ ’s should be
of trace class, but for $Q_{2}(x)$ it is sufficient that the co-
efficients $a_{j,k}$ are square summable. In short, the way
of convergence is strictly differeiit.

ii) As for analytic properties, any partial sum of
$Q_{2}(x)$ is harmonic, while each partial sum of $Q_{1}(x)$ is
not always so.

iii) Start with a Brownian motion $B(t),$ $t\in[0,1]$ .
Consider an approximation to white noise $\dot{B}(t),$ $t\in$

$[0,1]$ by taking $\frac{\Delta_{j}B(\prime t)}{\triangle_{j}}$ in place of $x_{j}$ (see Theorem 2,
ii) $)$ . Let $|\triangle_{j}|$ tend to $0$ . Then, each term of $Q_{1}$ needs
a trick of renormalization in order to converge to a
member of $H_{2}^{(-2)}$ , while the trick is unnecessary for
$Q_{2}$ .

iv) The renormalized limit of $Q_{1}$ satisfies certain
invariance. The collection of such limits accepts an
irreducible continuous representation of the group $G$

the collection of the 2 $x2$ matrices of the form

$(\begin{array}{ll}a b0 1\end{array})$

where $a\neq 0,$ $b\in R^{1}$ .

We now come to the expression of generalized quadratic
functionals of white noise, having our approximation
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applied. We have representations of quadratic func-
tionals $\varphi(\dot{B})\in H_{2}^{(-2)}$ . It is expressed in the form (4.1)
with the kernel $F$ in $\hat{K}^{-3/2}(R^{2})$ .

Applying the S-transform, we have the U-functional
expressed in the form

$U( \xi)=\int\int F(u, v)\xi(u)\xi(v)dudv$ ,

which is a quadratic form of $\xi$ .

We now recall the entire functionals of the second
order due to P. Levy. He focuses his attention on the
normal form, which is expressible as

$U( \xi)=\int g(t)\xi(t)^{2}dt+\int\int f(u, v)\xi(u)\xi(\cdot v)dudv$.

(4.3)

We assume suitable conditions posed on $f$ and $g$ . In-
deed, the sub-space of $H_{2}^{(-2)}$ involving normal func-
tionals has special meaning as is illustrated below.

The generalized function $F$ , which is in the Sobolev
space, should now be chosen such that singularity, if

exists, is involved only on the diagonal $u=v$ . Namely,

we may understand that $g(u)$ is considered as $g( \frac{u+v}{2})\delta(u-$

$v)$ , so that $F$ has been decomposed into a singular part

$g$ and an ordinary function $f$ .

We are now in a position to realize the observations
made in i), ii), iii) and iv) just above.

If permitted to say rather formally, the quadratic

form $Q(x)$ , which is divided into $Q_{1}(x)$ and $Q_{2}(x)$ (see

(4.2) $)$ , goes to the Levy’s formula for normal function-

als as the dimension of the vector $x$ tends to infinity.

It is worth to be mentioned that $Q_{1}$ is magnified when
$n$ tends to $\infty$ .

Write the equation (4.3) as a sum $U(\xi)=Q_{1}(\xi)+$
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$Q_{2}(\xi)$ . We understand that $Q_{1}( \xi)=\int g(t)\xi(t)^{2}dt$ is in
the domain of the Laplacian $\Delta_{L}$ given by $($3.4 $)$ . The
same for $Q_{2}(\xi)$ . A difference is that for ordinary $f\iota inc-$

tion $f$ , the functional $Q_{2}( \xi)=\int\int f(u,$ $v)\xi(u)\xi(v)dudv$ ,
is harmonic.

A question arises naturally. Why is a $H_{2}^{(-2)}$ -functional
having off-diagonal singularities of the kemel $F(u,$ $v)$

not so important ? The answer is just simple; it is not
in the domain of the Laplacian.

Remark. It is natural to ask what is the role of
quadratic functional that has singularity is off diag-
onal. For example

$\varphi(\dot{B})=\int g(u)\dot{B}(\alpha(u))\dot{B}(\beta(u))du$,

where $C=(\alpha(u), \beta(u)),$ $u\in R^{1})$ is a $C^{\infty}$ curve that
defines a bijection between $R^{1}$ to the curve $C$ .

It is easy to see that the second order functional
derivative does not exist, so that it is not in the domain
of the Laplacian.

With the properties of the Sobolev space of order
$-3/2$ $($this is a crucial choice$)$ we can now prove

Theorem 3. If an $H_{2}^{(-3,/2)}$-functional is in the domain
of the L\’evy Laplacian, then it is a normal functional
in the sense of P. L\’evy.

Proof. Note that off diagonal singularity is not ac-
cepted.

Define a subspace $L_{2}^{*}$ of $H_{2}^{(-2)}$ by

$L_{2}^{*}= \{\int h(u)$ : $\dot{B}(u)^{2}$ : $du;h\in K^{-1}(R^{1})\}$ .

Then, we have

Fact 1) Take the group $G$ given in iv) of this section.
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An irreducible continuous representation of the group
$G$ is given on the space $L_{2}^{*}$ in such a way that for $g\in G$ :

$g:uarrow au+b$

$U_{g}\varphi(\dot{B})=\varphi(a\dot{B}+b)\sqrt{|a|}$.
Proof. Suppose $\varphi$ is expressed in the form

$\varphi(\dot{B})=\int h(u)$ : $\dot{B}(u)^{2}$ : $du$ , $g\in K^{-1}(R^{1})$ .

Then

$U_{g} \varphi(\dot{B})=\int h(\frac{u-b}{a})|a|^{-1/2}:\dot{B}(u)^{2}:du$ .

The kernel function is an image of a $K^{-1}(R^{1})$-continuous
mapping of $h$ by $g$ . Irreducibility is implied from the

unitary representation of the group $G$ on $L^{2}(R^{1})$ .

Fact 2) While a representation of $G$ on $S^{-1}Q_{2}$ under

the same idea is not irreducible.

Remark When we apply the trick “ the passage from

finite to infinite“ to the quadratic form $Q_{1}(x)$ , it is nec-
essary to have it magnified, in addition to subtracting

constant, while nothing is necessary for $Q_{2}(x)$ .

5 Duality in the space of quadratic gen-

eralized functionals

We can establish an identity of the renormalized
square : $\dot{B}(t)^{2}$ : of white noise, as we did in the case of
$\dot{B}(t)$ in $H_{1}^{(-1)}$ (see \S 2.6 in [6]).

Having done this, we can now use the subspace $L_{2}^{*}$

spanned by quadratic normal functionals of the $\dot{B}(t)’ s$ ,
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prepared in the last section.That is the collection of
$\varphi(\dot{B})=\int g(u):\dot{B}(u)^{2}:du$ .

It should be reminded that the function $g$ above
may be regarded as the restriction of a function $f$ in
$K^{-3/2}(R^{2})$ down to the diagonal line of $R^{2}$ , as was
mentioned in the last section. There the trace theorem
for Sobolev space is applied.

Our aim is to explain the following theorem that
comkes from the Si Si’s papers [11] and others.

Theorem 4 There exists a subspace $L_{2}$ of $H_{2}^{(2)}$ such
that $L_{2}^{*}$ is the dual space of $L_{2}$ , where the topologies
of $L_{2}$ comes from that of $H_{2}^{(2)}$ .

Proof. Elementary computations can prove the the-
orem. But, in reality, there can we see some detailed
structure of quadratic generalized white noise function-
als. Step by step computations are now in order.

The Fourier transform of $g( \frac{u+v}{2})$ is

$\frac{1}{2\pi}\int\int e^{i(\lambda_{1}u+\lambda_{2}v)}g(\frac{u+v}{2})\delta(u-v)dudv=\sqrt{2\pi}\hat{g}(\lambda_{1}+\lambda_{2})$ ,

where $\hat{g}$ is the Fourier transform of $g$ of one variable.
By the definition of the Sobolev space of order 3/2 over
$R^{2}$

$\frac{1}{2\pi}\int\int\frac{|\hat{g}(\lambda_{1}+\lambda_{2})|^{2}}{(1+\lambda_{1}^{2}+\lambda_{2}^{2})^{3/2}}d\lambda_{1}d\lambda_{2}$

is finite. This fact implies that $2^{-1/2}g( \frac{u}{\sqrt{2}})$ belongs to
the Sobolev space $K^{1}(R^{1})$ , in addition its norm is equal
to the $K^{-3/2}(R^{2})$-norm of $g( \frac{u+v}{2})\delta(u-v)$ up to an $\iota\iota ni-$

versal constant.

Numerical values are as follows. Let $\Vert\cdot\Vert_{n,m}$ be the
Sobolev norm of order $m$ over $R^{n}$ . Then, we can actu-
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ally show the following equality

$\Vert g\Vert_{2,3/2}^{2}=\frac{c}{2\pi}\Vert g’\Vert_{1,1}^{2}$ ,

where $c= \int(1+x^{2})^{-3/2}dx$ and $g’(u)=2^{-1/2}g( \frac{u}{\sqrt{2}})$ .

Finally, we come to the stage of determinations of
the space $L_{2}$ and $L_{2}^{*}$ . Remind (see e.g. [6]).

$H_{2}^{(2)}= \{\varphi(\dot{B})=\int\int f(u,v):\dot{B}(u)\dot{B}(v):dudv,$ $f\in\hat{K}^{3/2}(R^{2})\}$ ,

and introduce an equivalence relation $\sim$ in $H_{2}^{(2)}$ defined
by

$\int\int f_{1}(u, v):\dot{B}(u)\dot{B}(v):dudv\sim\int\int f_{2}(u, v):\dot{B}(u)\dot{B}(v):dudv$

if and only if $f_{1}(u, u)=f_{2}(\cdot u, u)$ .

Set
$H_{2}^{(2)}/\sim\equiv L_{2}$ .

Note. Since $f_{i}.,$ $i=1,2$ is in $K^{3/2}$ , the relation to the

diagonal $u=t$) is a continuous function. Hence, the

equivalence relation is defined without any ambiguity.

We now see, what we have computed so far can
prove that there is the dual pairing between $L_{2}$ and
$L_{2}^{*}$ . This fact proves the theorem.

This is somewhat a rephrasement, in a formal tone,

of Theorem 4. Suppose that $f\in\hat{K}^{3/2}(R^{2})$ and that
$g((u+v)/2)\delta(u-v)\in\hat{K}^{-3/2}(R^{2})$ or $g\in K^{1}(R^{1})$ . Then,

formal computation shows

$\langle\int g(u):\dot{B}(u)^{2}:du,$
$\int\int f(u, v):\dot{B}(u)\dot{B}(v):dudv\rangle$

$=2 \int g(u)f(u, u)du$ .

This equality is derived from

$E[(: \dot{B}(t)^{2}:)^{2}]=2\frac{1}{(dt)^{2}}$ .
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Remark The relationship between $\int:\dot{B}(t)^{2}$ : $dt$ and
the L\’evy Laplacian has been discussed in [11].

6 White noise functionals of higher de-
gree

To fix the idea, we shall discuss dualities in $H_{3}^{(-3)}$ .
Let $\varphi$ be homogeneous functional of degree 3. Its ker-
nel function $F(u_{1}, u_{2}, u_{3})$ is found in the Sobolev space
$\hat{K}^{-2}(R^{3})$ . The S-transform $U(\xi)=(S\varphi)(\xi)$ can be
expressed in the form

$U( \xi)=\int\int\int F(u_{1}, u_{2}, u_{3})\xi(u_{1})\xi(u_{2})\xi(u_{3})du^{3}$ .

Our method with the idea le passage du fini \‘a l’infinit
leads us to consider the class of normal functionals,
namely we are interested in the following forms of de-
gree three.

Type [2,1]

$\int\int g(u, v)\xi(u)^{2}\xi(v)dudv$ .

To have a standard expression, we need to make the
kernel $g$ symmetric,

Type [3,0]
$\int h(u)\xi(u)^{3}du$ .

We can define subspaces $L_{2.1}^{*}$ and $L_{3,0}^{*}$ of $H_{3}^{(-3)}$ spanned
by generalized functionals of the types (2.1) and (3,0),
respectively. Then, we have

Theorem 5 There exist factor spaces $L_{2,1}$ and $L_{3,0}$ of
subspaces of $H_{3}$ such that $(L_{2,1}, L_{2,1}^{*})$ and $(L_{3,0}, L_{3,0}^{*})$

are dual pairs, respectively.
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Proof can be given by siight modifications of that of
the last Theorem.

Now it is clear how to form dualities in the class

of entire homogeneous functionals of each degree, by

using singularities on the diagonals. The system of

dual pairs is one of the characteristics of the space
$(L^{2})^{-}$ of generalized white noise functionals.

7 Concluding remarks

We have observed significance of quadratic forms of

random elements, through the dualities. From some
other viewpoints the same subjects are discussed in

[15]. As for the quadratic forms of operators, creation

and annihilation operators in white noise analysis have

been discussed to some extent in our earlier notes [9].

We can now give further interpretation, in particular

to the L\’evy Laplacian $\triangle_{L}$ , where the meaning of $(dt)^{2}$

seems quite natural.
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