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Abstract

The $\mathcal{T}-$ and S-transforms play an essential role in the theory of Hidadistribution. We will explain the idea behind the establishment of $\mathcal{T}-$ andS-transforms.

1 From $\delta$-function to $\mathcal{T}-$ and S-transforms
The $\mathcal{T}-$ and S-transforms play an essential role in the theory
of white nise analysis. In this section we will explain how and
why $\mathcal{T}-$ and S-transforms were introduced. The idea behind
is the factorization.

One of Hida’s original ideas of white noise theory is as
follows, although it is quite naive.

We might say that white noise $\dot{B}(t)$ is a random square
root of the $\delta$-function:

(random) $\sqrt{\delta_{t}}=\dot{B}(t)$ . (1.1)
Ther expression is, of course, formal, but reasonable in a

sense that

$E(\dot{B}(t)\dot{B}(s))=\delta(t-s)$ ,
and a correct interpretation will be given in Section 6.

It is noted that $\dot{B}(t)$ is atomic as an idealized elemental
random variable. While, Brownian motion $\{B(t), t\in R^{1}\}$ is
atomic as a stochastic process, where the causality is always
taken into account.

While, we note that a smeared variable like $\dot{B}(f)=\int f(u)\dot{B}(u)du$

is not atomic random variable in white noise space.
In the present report, in particular later sections, the $\mathcal{T}-$

transform and S-transform will play dominant roles in both
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explicitly and implicitly. There, we can see factorization prob-
lem for positive definite functions.

2 Factorization due to the Karhunen the-
ory

We refer to the literature [8].

For the moving average representation of a weakly station-
ary stochastic process $X(t)$ of the form:

$X(t)= \int_{-\infty}^{t}F(t-u)dZ(u)$ , (2.1)

where $Z(u)$ is a process with stationary orthogonal increments
such that $E(|dZ(u)|^{2})=du$ .

There the canonical kernel $F(t, u)$ (see [2]) is obtained by the
factorization of the covariance function

$\gamma(h)=E(X(t+h)X(t))$ (2.2)

in such a way that the following equality holds:

$\gamma(h)=\int^{t}F(t+h-u)F(t-u)du$ . (2.3)

The factorization is possible since $\gamma(h)$ has spectral repre-
sentation with spectral density $f(\lambda)$ such that

$\int\frac{\log f(\lambda)}{l+\lambda^{2}}d\lambda>-\infty$ (2.4)

since $X(t)$ is purely non-deterministic. Hence, the Hardy
class theory for analytic functions on half space can be ap-
plied. Now, we see that

$c(w)= \sqrt{2\pi i}\exp[-\frac{1}{2\pi_{i}}\int_{-\infty}^{\infty}\frac{\lambda-w}{1+\lambda w}\frac{\log f(\lambda)}{l+\lambda^{2}}d\lambda],$ $w\in C$

(2.5)
is defined, and it is known that the limit

$c( \lambda)=\lim_{\muarrow 0}-c(\lambda+i\mu),$ $\mu<0$ (2.6)

exists. The Fourier transform

$\hat{C}(u)=\frac{1}{2\pi i}\int_{-\infty}^{\infty}e^{iu\lambda}c(\lambda)d\lambda$ (2.7)

is in agreement with the canonical kernel $F$ up to a multi-
plicative constant of absolute value 1.
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Remark 1 This theory is applied to obtaining the canonical
representation of a Gaussian process only when the process is
stationary.

Remark 2. There is obtained the factorization $F$ (indeed,
the optimal kemel) of the covarianace function (2.3) explic-
itly. This method is purely analytic. We compare with that
in the next section for non-stationary case.

3 Canonical representation theory for Gaus-
sian processes

Factorization of the covariance function is one of the main
tools for the study of Gaussian processes.

L\’evy’s exainple:

$X_{1}(t)$ $=$ $\int_{0}^{t}(2t-u)\dot{B}(u)du$ , (3.1)

$X_{2}(t)$ $=$ $\int_{0}^{t}(-3t+4u)\dot{B}(u)du$ . (3.2)

We claim that two processes are the same. In fact, the two
processes have the same covariance $3ts^{2}- \frac{2}{3}s^{3}$ for $t>s\geq 0$ .

Most important viewpont is that the representation (3.1)
of $X_{1}(t)$ is canonical, but (3.2) for $X_{2}(t)$ is not.

In general, a representation of $X(t)$ given by

$X(t)= \int^{t}F(t, u)\dot{B}(u)du$ (3.3)

is said to be canonical if the following equality for the condi-
tional expectation holds for every $t>s$ :

$E(X(t)| B_{s}(X))=\int^{s}F(t, u)\dot{B}(u)du$ . (3.4)

A criterion for the canonical property on the kernel $F(t, u)$ is
given in [2].

The canonical property of a representation was proposed
by P. Levy in 1955 at the third Berkeley Symposium on Math.
Statistic and Probability. General theory of existence was
given in [2] and later by H. Cram\’er in 1961. Useful applica-
tions of this theory are found in the theory of multiple Markov
property and in the study of L\’evy’s Brownina motion. They
are given also in [2].

The problem of getting the canonical kernel has close con-
nection with the factorization of the covariance function; in-
deed getting the optimal kernel among the possible factoriza-
tions. One of the idea of the factorization is the use of the
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theory of Reproducing Kernel Hilbert Space (RKHS). Here is
a short summary how to obtain RKHS from a positive definite
kernel.

Given a positive definite function $\Gamma(t, s),$ $t,$ $s\in T$ . Then,
there is a linear space $F_{1}$ spanned by $\Gamma(\cdot, t),$ $t\in T$ , where we
have a bilinear form (reproducing property)

$(f(\cdot), \Gamma(\cdot, s))=f(s)$ .

This equation defines a semi-norm $\Vert\cdot\Vert$ in $F_{1}$ . We consider
such a minimal space and define a factor space $F=F_{1}/\Vert\cdot\Vert$ .
Thus obtained $F$ is a Hilbert space where the reproducing
property holds. The kernel $\Gamma(t, s)$ is called the reproducing
kernel of F. In view of this $F$ is often written as $F(\Gamma)$ . We
have

$(\Gamma(\cdot, t), \Gamma(\cdot.s))=\Gamma(s, t)$ , (3.5)

where one can see a square root (in a sense) of the covariance
function $\Gamma$ or its factorization.

Thus $X(t)$ , corresponds to $\Gamma(\cdot, t)$ which is obtained by (3.5)
(the factorization of the covariance function), is obtained.
Then, we are led to have the canonical kernel, although we
do not come into details to this direction.

4 Nonlinear case; white noise

Let $\mu$ be the white noise measure introduced in the space
$E^{*}$ of generalized functions on $R^{1}$ . We consider the complex
Hilbert space $(L^{2})=L^{2}(E^{*}, \mu)$ involving nonlinear function-
als of the $\dot{B}(t)$ or of $x\in E^{*}(\mu)$ with finite variance. This
space is classical. It is generated by the $e^{ia\langle x,\xi\rangle},$ $\xi\in E,$ $a\in R^{1}$ .
Hence, $X(t)$ in (2.2) is replaced by $e^{i\langle x,\xi\rangle}$ , so that the covari-
ance is now

$C(\xi-\eta)=E(e^{i(x,\xi\rangle}e^{-i\langle x,\eta\rangle})$ , (4.1)

where $C(\xi)$ is the characteristic functional of white noise. It
is positive definite, so that we can form a RKHS $\mathcal{F}$ . The
reproducing kernel of $\mathcal{F}$ is $C(\xi-\eta)$ which is the characteristic
functional of white noise such that $C( \xi)=\exp[-\frac{1}{2}\Vert\xi\Vert^{2}]$ .

Observe now the formula (rephrasement of (4.1)).

$C( \xi-\eta)=\int e^{i\langle x,\xi\rangle}\overline{e^{i\langle x,\eta)}}d\mu(x)$ , (4.2)
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so that we have a general formula

$C( \xi-\sum a_{j}\eta_{j})=\int e^{i\langle x,\xi\rangle}\overline{\Pi_{j}e^{i\langle x,\eta_{J}\rangle}}d\mu(x)$ . (4.3)

The product which is the factor of the integrand extends toa general white noise functional, say $\varphi(x)$ . Then, the integral
turns into the following formula

$( \mathcal{T}\varphi)(\xi)=\int e^{i\langle x\xi\rangle}\varphi(x)d\mu(x)$ , (4.4)

which is the $\mathcal{T}$-transform of $\varphi(x)$ . Let it be denoted by $V_{\varphi}(\xi)$

or simply by $V(\xi)$ . It holds that

$(V(\cdot), C(\cdot-\xi))=V(\xi)$ , (4.5)
where, $(\cdot,$ $\cdot)$ is the inner product in the RKHS $\mathcal{F}$. In particular,
we have

$(C(\cdot-\xi), C(\cdot-\eta))=C(\eta-\xi)$ . (4.6)
Thus the characteristic functional is factorized by the $\mathcal{T}-$

transform with the help of the RKHS. If this transform is
restricted to $H_{n}$ , the space of the n-ple Wiener integrals, we
are given the integral representation up to $i^{n}C(\xi)$ , i.e.

$V( \xi)=i^{n}C(\xi)\int\cdots\int_{R^{n}}F(u_{1}, \cdots, u_{n})\xi(u_{1})\cdots\xi(u_{n})du^{n}$ ,

(4.7)
where $F$ is a symmetric $L^{2}(R^{n})$ function. It is convenient to
write $V(\xi)=i^{n}C(\xi)U(\xi)$ .

The S-transform is

$(S \varphi)(\xi)=C(\xi)\int e^{\langle x_{t}\xi\rangle}\varphi(x)d\mu(x)$ ,

by which we can immediately get $U(\xi)$ .

Theorem 3 The following facts hold.
i$)$ The $\mathcal{T}$-transform factorizes the $characte7\dot{v}stic$ functional

$C(\xi)$ of white noise.
ii) The system $\{C(\cdot-\xi)\}$ corresponds to the system $\{e^{ia\langle x.\xi\rangle}\}$

which is total in $(L^{2})$ .
iii) A generalization of the representation of a Gaussian pro-

cess is given by $(4\cdot 7)$ .

The proofs of i) and ii) have already be given, As for the
proof we need some interpretations which can be seen in [6].

Some more details will be reported in the forthcoming pa-
per.
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5 Observations

We now make an important remark on $\mathcal{T}-$ and S-transforms
regarding their meanings and roles, through various observa-
tions which are in order.

1 $)$ They define maps from the space of generalized white
noise functionals to the spaces with reproducing kernels. We
are given big advantages, since the image involves good func-
tionals of smooth function of $\xi$ . Those functionals are no
more random, and are easy to be analyzed, in general, by
appealing to the known theory of functional analysis.

Examples:
$\dot{B}(t)$ $arrow$ $\xi(t)=(\delta_{t}, \xi)$ ,

: $\dot{B}(t)^{n}$ : (renormalized $\dot{B}(t)^{2}$ ) $arrow$ $\xi(t)^{n}$ ,

$N \exp[c\int\dot{B}(t)^{2}dt]$ $arrow\exp[\frac{c}{1-2c}\Vert\xi\Vert^{2}],$ $c \neq\frac{1}{2}$ .

2 $)$ They help us to determine factorizations (of covariances
and others), which is the main tool of what we discuss in this
report.

3 $)$ They play a role of determining the integral representa-
tions of white noise functionals. With the help of the Sobolev
spaces we have been led to introduce spaces of generalized
white noise functionals. For instance, take the sub-space
$H_{n}^{(-n)}$ of the space of Hida distributions. It is an extension of
$H_{n}$ . For some more details on $H_{n}^{(-n)}$ , we refer to [6] Chapt.
2. We have established

$H_{n}^{(-n)}\cong K^{-(n+1)/2}(R^{n})$(symmetric),

where the notation $K^{m}(R^{n})$ denotes the Sobolev space over
$R^{n}$ of order $m$ .

Note It is very important to recognize the real meaning of
the $\mathcal{T}-$ and S-transforms including the facts mentioned above.
Needless to say, the topology equipped with RKHS, the image
of the $\mathcal{T}-$ or S-transform, is most convenient for our calculus
(see [3]). They should never be thought of (simply) as similar
transforms to the classical ones. Essentially different from
them.
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6 Random square root of the Dirac delta
function

In this section we give a naive verification that we have pro-
posed in Section 1.

Let us state a proposed and formal assertion.
Proposition 4 The delta function $\delta(t)$ is positive definite.
This statement may be proved if we were allowed to use a
formal calculus using $\pm\infty$ and formulas like

$\delta(0)$ $=$ $\infty$ (6.1)
$\infty+a$ $=$ $\infty$ (6.2)

$a\infty$ $=$ $\infty,$ $(a>0)$ (6.3)
and so on. Then, we can say $\delta$ is positive definite and have a
reproducing kernel Hilbert space RKHS $F(\delta)$ . Our final con-
clusion then follows easily.

We are now ready to give a rigorous interpretation on what
we wish to claim.

Explanation by using RKHS.

We start with the $\delta$-function $\delta_{t}(\cdot)=\delta(\cdot-t)$ . It is a gener-
alized function in $K^{-1}(R^{1})$ and its Fourier transform is $\frac{e^{it\lambda}}{\sqrt{2\pi}}$ .
Define a mapping $\Pi$ ;

$\Pi;\delta_{t}$ $arrow$
$e^{it\lambda}$ .

The mapping $\Pi$ defines a bijection between two systems:
$\Pi;\triangle=\{\delta_{t}, t\in R^{1}\}$ $arrow$ $\Lambda=\{e^{it\lambda}, t\in R^{1}\}$ .

The $K^{-1}(R^{1})$ -norm is introduced to $\Delta$ , so is topologized $\Lambda$ .
Their closures are denoted by the same symbols, respectively.
And they are isomorphic to each other. The inner product of
$e^{it\lambda}$ and $e^{is\lambda}$ is

$\int\frac{e^{i(t-s)\lambda}}{\pi(1+\lambda^{2})}d\lambda=e^{-|t-s|}$ , (6.4)

which is positive definite. Hence, we can form a RKHS $F_{\delta}$

with reproducing kernel $e^{-|t-s|}$ . We can establish a mapping
through $\Pi$ ;

$\delta(\cdot-t)$ $arrow$ $e^{-|\cdot-t|}$ (6.5)
The inner product

$\langle e^{-|\cdot-t|}e^{-1}\}-S|\rangle=e^{-|t-s|}$
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implies
$\langle\delta(\cdot-t),$ $\delta(\cdot-s)\rangle_{\triangle}=\delta(t-s)$ . (6.6)

Remind the mapping $S( \dot{B}(t))=\xi(t)=\int\delta_{t}(u)\xi(u)du$ . And
hence $\dot{B}(t)$ corresponds to $\delta(t-u)$ . Now the right hand side
of (6.6) is just the delta function and the left hand side is
viewed as the (inner) product of $\dot{B}(t)$ and $\dot{B}(s)$ .

Theorem 5 In view of the equation $(\theta.6)$ the random square
root of the delta function is a white noise.
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