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Abstract

We introduce a weak operator associated with the weak values and give a gen-
eral framework of quantum operations to the weak operator in parallel with the
Kraus representation of the completely positive map for the density operator. The
decoherence effect is also investigated in terms of the weak measurement by a shift
of a probe wave function of continuous variable.

1 Introduction
The standard measurement, that is, the von Neumann measurement, is not time sym-
metric. However, we can construct the time symmetric quantum measurement by a post
selection [1]. Furthermore, introducing the weak measurement, the weak value advocated
by Aharonov and his collaborators [2, 3] can be experimentally accessible. This measure-
ment scheme gives us a new interpretation and view for the quantum world [4]. For an
observable $A$ , the weak value $\langle A\rangle_{w}$ is defined as

$\langle A\rangle_{w}=\frac{\langle f|U(t_{f},t)AU(t,t_{i})|i\rangle}{\langle f|U(t_{f},t_{i})|i\rangle}\in \mathbb{C}$ , (1)

where $|i\rangle$ and $\langle f|$ are pre-selected ket and post-selected bra state vectors, respectively.
Here, $U(t_{2}, t_{1})$ is an evolution operator from the time $t_{1}$ to $t_{2}$ . The weak value $\langle A\rangle_{w}$

actually depends on the pre- and post-selected states $|i\rangle$ and $\langle f|$ but we omit them for
notational simplicity in the case that we fix them. Otherwise, we write them explicitly as
$f\langle A\rangle_{i}^{w}$ instead for $\langle A\rangle_{w}$ . The denominator is assumed to be non-vanishing.

We define a weak operator $W(t)$ as

$W(t):=U(t, t_{i})|i\rangle\langle f|U(t_{f}, t)$ . (2)

To facilitate the formal development of the weak value, we introduce the ket state $|\psi(t)\rangle$

and the bra state $\langle\phi(t)|$ as

$|\psi(t)\rangle=U(t, t_{i})|i\rangle$

$\langle\phi(t)|=\langle f|U(t_{f}, t)$ , (3)

so that the expression for the weak operator simplffies to

$W(t)=|\psi(t)\rangle\langle\phi(t)|$ . (4)
$\overline{lThis}$proceeding is for the talk at RIMS Research Meeting “ Micro-Macro Duality in Quantum Anal-
ysis” held at RIMS, Kyoto university and is based on the work [6].
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By construction, the two states $|\psi(t)\rangle$ and $\langle\phi(t)|$ satisfy the Schr\"odinger equations with
the same Hamiltonian with the initial and final conditions $|\psi(t_{i})\rangle=|i\rangle$ and $\langle\phi(t_{f})|=\langle f|$ .
In a sense, $|\psi(t)\rangle$ evolves forward in time while $\langle\phi(t)|$ evolves backward in time. The time
reverse of the weak operator (4) is $W^{\uparrow}=|\phi(t)\rangle\langle\psi(t)|$ . Thus, we can say the weak operator
is based on the two-state vector formalism [5]. The weak operator gives the weak value
of the observable $A$ as

$\langle A\rangle_{w}=\frac{Tr(WA)}{]\}W}$ , (5)

in parallel with the expectation value of the observable $A$ by Tr $(\rho A)/$ Tr $\rho$ from Born’s
probabilistic interpretation.

Our aim is to find the most general map for the weak operator $W$ . The result terms
out to be of the form $\mathcal{E}(W)=\sum_{i}E_{i}WF_{i}^{\dagger}[6]$ .

2 Quantum Operations for Weak Operators
Let us now define a weak operator as Eq. (4). We discuss a state change by the weak
operator and define a map $X$ as

$X(|\alpha\rangle, |\beta\rangle):=(\mathcal{E}\otimes I)(|\alpha\rangle\langle\beta|)$ , (6)

for an arbitrary $|\alpha\rangle,$ $|\beta\rangle\in \mathcal{H}_{s}\otimes \mathcal{H}_{e}$ . We consider the following states;

$| \psi(t)\rangle_{s}=\sum_{k}\psi_{k}|\alpha_{k}\rangle_{s}$
,

$| \tilde{\psi}(t)\rangle_{e}=\sum_{k}\psi_{k}^{*}|\alpha_{k}\rangle_{e}$
,

$| \phi(t)\rangle_{s}=\sum_{k}\phi_{k}|\beta_{k}\rangle_{s}$
,

$| \tilde{\phi}(t)\rangle_{e}=\sum_{k}\phi_{k}^{*}|\beta_{k}\rangle_{e}$
, (7)

where $\{|\alpha_{k}\rangle_{s}\},$ $\{|\beta_{k}\rangle_{s}\},$ $\{|\alpha_{k}\rangle_{e}\}$ , and $\{|\beta_{k}\rangle_{e}\}$ are complete orthonormal sets of $\mathcal{H}_{s}$ and $\mathcal{H}_{e}$ .
Then, we obtain the following theorem on the state change of the weak operator.

Theorem 1 Let the quantum operation $\mathcal{E}$ be given. For any weak opemtor $W=|\psi(t)\rangle_{s}\langle\phi(t)|$ ,
a change of the weak operator can be written as

$\mathcal{E}(|\psi(t)\rangle_{s}\langle\phi(t)|)=_{e}\langle\tilde{\psi}(t)|X(|\alpha\rangle, |\beta\rangle)|\tilde{\phi}(t)\rangle_{e}$, (8)

where $|\alpha\rangle,$ $|\beta\rangle\in \mathcal{H}_{s}\otimes \mathcal{H}_{e}$ are pure states.

This proof is given in the paper [6] and analogous to the density operator.
We take the polar decomposition of the positive operator $X$ $:=X(\alpha, \beta)$ to obtain

$X=\sqrt{\sigma(\alpha)}U$ , (9)

where $U$ is some unitary operator on $\mathcal{H}_{s}\otimes \mathcal{H}_{e}$ and $\sigma(\alpha)$ is defined in $\sigma(|\alpha\rangle):=(\mathcal{E}\otimes$

$I)(|\alpha\rangle\langle\alpha|)$ . This is because $XX^{\uparrow}=\sqrt{\sigma(\alpha)}UU^{\uparrow}\sqrt{\sigma(\alpha)}=\sigma(\alpha)$. From the positivity of $\sigma$ ,
we can rewrite $X$ as

$X= \sum_{m}\sqrt{s_{m}}|\hat{s}_{m}\rangle\langle\hat{s}_{m}|U=\sum_{m}|s_{m}\rangle\langle t_{m}|$
, (10)
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where $\langle t_{m}|=\langle\hat{s}_{m}|U$ . Similarly to the Kraus operator [7], we define the two operators, $E_{i}$

and $F_{i}^{\dagger}$ , as

$E_{m}|\psi(t)\rangle_{s}:=e\langle\tilde{\psi}(t)|s_{m}\rangle$ (11)
$s\langle\phi(t)|F_{m}^{\dagger};=\langle t_{m}|\tilde{\phi}(t)\rangle_{e}$ . (12)

Therefore, we obtain the change of the weak operator as

$\mathcal{E}(W)=\sum_{m}E_{m}WF_{m}^{\dagger}$ , (13)

using Theorem 1 and linearity. Note that, in general, $\mathcal{E}(W)\mathcal{E}(W\dagger)\neq \mathcal{E}(\rho)$ although
$\rho=WW\dagger$ . When the quantum operation $\mathcal{E}$ is a trace preserving map, we can express the
Kraus operators,

$E_{m}=_{e}\langle e_{m}|U|e_{i}\rangle_{e}$ ,
$F_{m}^{1}=_{e}\langle e_{f}|V|e_{m}\rangle_{e}$ , (14)

for some unitary operators $U$ and $V$ , which act on $\mathcal{H}_{s}\otimes \mathcal{H}_{e}$ . $|e_{i}\rangle$ and $|e_{f}\rangle$ are some
basis vectors and $|e_{m}\rangle$ is a complete set of basis vectors with $\sum_{m}|e_{m}\rangle\langle e_{m}|=1$ such that
$\sum_{m}E_{m}^{\uparrow}E_{m}=1$ and $\sum_{m}F_{m}^{1}F_{m}=1$ . We can compute

$\sum_{m}F_{m}\dagger E_{m}=\sum_{m}e\langle e_{f}|V|e_{m}\rangle_{e}\langle e_{m}|U|e_{i}\rangle_{6}$

$=_{e}\langle e_{f}|VU|e_{i}\rangle_{e}=_{e}\langle e_{f}|S|e_{i}\rangle_{e}$ , (15)

where $S=VU=U(t_{f}, t_{i})$ is the S-matrix.

3 Weak Measurement with Decoherence
So far we have formally discussed the quantum operations of the weak operators. In
this section, we would like to study the effect of environment in the course of the weak
measurement [2] and see how the shift of the probe position is affected by the environment.
As we shall see, the shift is related to the quantum operation of the weak operator $\mathcal{E}(W)$

(13) which we have investigated in the previous section.

3.1 Weak Measurement–Review
First, we recapitulate the idea of the weak measurement [2, 8]. Consider a target system
and a probe defined in the Hilbert space $\mathcal{H}_{s}\otimes \mathcal{H}_{p}$ . The interaction of the target system
and the probe is assumed to be weak and instantaneous,

$H_{int}(t)=g\delta(t-t_{0})(A\otimes P)$ , (16)

where an observable $A$ is defined in $\mathcal{H}_{s}$ , while $P$ is the momentum operator of the probe.
The time evolution operator becomes $e^{-ig(A\otimes P)}$ . Suppose the probe state is initially $\xi(q)$

in the coordinate representation with the probe position $q$ , which is a real-valued function.
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For the transition from the pre-selected state $|i\rangle$ to the post-selected state $|f\rangle$ , the probe
wave function becomes $\langle f|Ve^{-ig(A\otimes P)}U|i\rangle\xi(q)$ , which is in the weak coupling case,

$\langle f|Ve^{-ig(A\otimes P)}U|i\rangle\xi(q)$

$\approx(f|VU|i\rangle\xi(q-g\frac{\langle f|VAU|i\rangle}{\langle f|VU|i\rangle}).$ (17)

In the previous notation, the argument of the wave function is shifted by $g\langle f|VAU|i\rangle/\langle f|VU|i\rangle=$

$g\langle A\rangle_{w}$ so that the shift of the expectation value is the real part of the weak value,
$g\cdot{\rm Re}[\langle A\rangle_{w}]$ . The shift of the momentum distribution can be similarly calculated to
give $2g\cdot Var(p)\cdot{\rm Im}[\langle A\rangle_{w}]$ , where $Var(p)$ is the variance of the probe momentum before
the interaction. Putting together, we can measure the weak value $\langle A\rangle_{w}$ by observing
the shift of the expectation value of the probe both in the coordinate and momentum
representations. The shift of the probe position contains the future information up to the
post-selected state.

3.2 Weak Measurement and Environment

Let us consider a target system coupled with an environment and a general weak measure-
ment for the compound of the target system and the environment. We assume that there
is no interaction between the probe and the environment. This situation is illustrated in

Fig. 1. The Hamiltonian for the target system and the environment is given by

$H=H_{0}\otimes I_{e}+H_{1}$ , (18)

where $H_{0}$ acts on the target system $\mathcal{H}_{s}$ and the identity operator $I_{e}$ is for the environment
$\mathcal{H}_{e}$ , while $H_{1}$ acts on $\mathcal{H}_{s}\otimes \mathcal{H}_{e}$ . The evolution operators $U$ and $V$ can be expressed by
$U=U_{0}K(t_{0}, t_{i})$ and $V=K(t_{f}, t_{0})V_{0}$ , where $U_{0}$ and $V_{0}$ are the evolution operators forward
in time and backward in time, respectively, by the target Hamiltonian $H_{0}$ . $K$ ’s are the
evolution operators in the interaction picture,

$K(t, t_{i})=\mathcal{T}e^{-i\int_{\iota_{i}^{t}}dtU_{0}^{\dagger}H_{1}U_{0}}$ ,

$K(t_{f}, t)=\overline{\mathcal{T}}e^{-i\int_{t}^{t_{f}}dtV_{0}H_{1}V_{0}^{\dagger}}$ , (19)

where $\mathcal{T}$ and $\overline{\mathcal{T}}$ stand for the $timearrow ordering$ and anti time-ordering products.
Let the initial and final environmental states be $|e_{i}\rangle$ and $|e_{f}\rangle$ , respectively. The probe

state now becomes

$N \xi(q-g\frac{\langle f|\langle e_{f}|K(t_{f},t_{0})V_{0}AU_{0}K(t_{0},t_{i})|e_{i}\rangle|i\rangle}{N})$ , (20)

where $N=\langle f|\langle e_{f}|K(t_{f},$ $t_{0})V_{0}U_{0}K(t_{0}, t_{i})|e_{i}\rangle|i\rangle$ is the normalization factor. We define the
dual quantum operation as

$\mathcal{E}^{*}(A)$ $:=\langle e_{f}|K(t_{f}, t_{0})V_{0}AU_{0}K(t_{0}, t_{i})|e_{i}\rangle$

$= \sum_{m}V_{0}F_{m}\dagger AE_{m}U_{0}$
, (21)
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Figure 1: A weak measurement model with the environment. The environment affects
the target system as a noise but does not affect the probe. The weak measurement for
the target system and the probe brings about the shift of the probe position at $t_{0}$ . The
amount of the shift depends that the environmental state is controllable.

where

$F_{m}^{\dagger}$ $:=V_{0^{\dagger}}\langle e_{f}|K(t_{f}, t_{0})|e_{m}\rangle V_{0}$ ,
$E_{m}$ $:=U_{0}\langle e_{m}|K(t_{0}, t_{i})|e_{i}\rangle U_{0}^{\dagger}$ (22)

are the Kraus operators. Here, we have inserted the completeness relation $\sum_{m}|e_{m}\rangle\langle e_{m}|=$

$1$ with $|e_{m}\rangle$ being not necessarily orthogonal. The meaning of the basis $|e_{i}\rangle$ and $|e_{f}\rangle$ is
now clear as remarked before. Thus, we obtain the wave function of the probe as

$\xi(q-g\frac{\langle f|V_{0}\mathcal{E}^{*}(A)|i\rangle}{N})$

$= \xi(q-g\frac{Tk[\mathcal{E}(W)A]}{R[\mathcal{E}(W)]})=\xi(q-g\langle A\rangle_{\mathcal{E}(W)})$ , (23)

with $N=\langle f|\mathcal{E}^{*}(I)|i\rangle$ up to the overall normalization factor. This is the main result of
this subsection. The shift of the expectation value of the position operator on the probe
is

$\delta q=g\cdot{\rm Re}[\langle A\rangle_{\mathcal{E}(W)}]$ . (24)
From an analogous discussion, we obtain the shift of the expectation value of the momen-
tum operator on the probe as

$\delta p=2g\cdot Var(p)\cdot{\rm Im}[\langle A\rangle_{\mathcal{E}(W)}]$ . (25)

Thus, we have shown that the weak value given by the probe shift is affected by the
environment during the weak measurement.

4 Summary and Discussions
We have introduced the weak operator $W(2)$ to formally describe the weak value ad-
vocated by Aharonov and his collaborates. The general framework is given to describe
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effects of quantum operation $\mathcal{E}(W)(13)$ to the weak operator $W$ in parallel with the Kraus
representation of the completely positive map for the density operator $\rho$ . We have shown
the effect of the environment during the weak measurement as the shift of the expecta-

tion value of the probe observables in both cases of the controllable and uncontrollable
environmental states,

Extending our proposed definition of the weak operators, we may consider a superpo-
sition of weak operators,

$W:= \sum_{i,f}\alpha_{if}U(t, t_{i})|i\rangle\langle f|U(t_{f}, t)$
, (26)

in analogy to the mixed state which is a convex linear combination of pure states. Actually,
$\mathcal{E}(W)(13)$ has the form (26). Although this indicates a time-like correlations, the physical
implication is not yet clear. This operator may be related to the concept of the multi-time
states [9]. In fact, it is shown how the weak value corresponding to the weak operator (26)

can be constructed via a protocol by introducing auxiliary states which are space-likely

entangled with the target states.

References
[1] Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Phys. Rev. 134, B1410 (1964).

[2] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60 (1988) 1351.

[3] Y. Aharonov and D. Rohrlich, Quantum Paradoxes (Wiley-VCH, Weibheim, 2005).

[4] Y. Aharonov and E. Y. Gruss, arXiv:quant-ph/0507269.

[5] Y. Aharonov and L. Vaidman, Phys. Rev. A 41 (1990) 11.

[6] Y. Shikano and A. Hosoya, arXiv:0812.4502.

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Info7mation

(Cambridge University Press, Cambridge, 2000).

[8] R. Jozsa, Phys. Rev. A 76 (2007) 044103.

[9] Y. Aharonov, S. Popescu, J. Tollaksen, and L. Vaidman, arXiv:0712.0320.

262


