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Abstract

As an affirmative answer to the Duke-Imamoglu conjecture, Ikeda
constructed a certain lifting of classical cusp forms on the special lin-
ear group SL2 towards Siegel cusp forms, namely cuspidal automorphic
forms on the symplectic group $Sp_{2n}$ of general even genus $2n$ . After-
wards he also proposed a certain conjecture concerning the periods
(Petersson norms squared) of such forms. In this paper, we would
like to explain a brief sketch of a proof of the conjecture. Details will
appear elsewhere.

1 Introduction
For each positive integer $n\in \mathbb{Z}$ , the symplectic modular group $Sp_{2n}(\mathbb{Z})$ of
genus $2n$ is defined to be

$Sp_{2n}(\mathbb{Z})=\{\gamma\in GL_{2n}(\mathbb{Z})|{}^{t}\gamma J\gamma=J,$ $J=(_{-1_{n}0_{n}^{n}}0_{n}1)\}$ .

For either an integer or a half-integer $\kappa\in\frac{1}{2}\mathbb{Z}$ , we denote the complex vector
space consisting of all Siegel cusp forms of weight $\kappa$ with respect to a suitable
congruence subgroup $\Gamma$ of Sp$2n(\mathbb{Z})$ by $S_{\kappa}(\Gamma)$ . Then for each $F,$ $G\in S_{\kappa}(\Gamma)$ ,
we define the Petersson scalar product $\langle F,$ $G\rangle$ by

$\langle F,$ $G \rangle:=[Sp_{2n}(\mathbb{Z}):\Gamma\cdot\{\pm 1_{2n}\}]^{-1}\int_{\Gamma\backslash \mathfrak{H}_{n}}F(Z)\overline{G(Z)}\det({\rm Im}(Z))^{\kappa}dZ^{*}$,
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where $Z=X+\sqrt{-1}Y\in\ovalbox{\tt\small REJECT}_{n}=\{Z\in$ Mat$n\cross n(\mathbb{C})|{}^{t}Z=Z,$ ${\rm Im}(Z)>0\}$ and
$dZ^{*}=\det Y^{-(n+1)}dXdY$ is a finite volume element on $Sp_{2n}(\mathbb{Z})\backslash \mathfrak{H}_{n}$ . As is
well-known, this defines a Hermitian scalar product on the space $S_{\kappa}(\Gamma)$ and
hence we can introduce the norm $\Vert F\Vert^{2}$ $:=\langle F,$ $F\rangle$ for each $F\in S_{\kappa}(\Gamma)$ . We
note that if $F$ is a Hecke eigenform, that is, a common eigenfunction of all
Hecke operators, then the Petersson norm squared $\Vert F\Vert^{2}$ plays an impor-
tant role within the framework of studying critical values of the standard
L-function $L(s,$ $F$, st $)$ attached to $F$ (cf. [1]).

On the other hand, for a couple of positive even integers $n$ and $k$ such that
$k>n+1$ , let $f\in S_{2k-n}(Sp_{2}(\mathbb{Z}))=S_{2k-n}($SL$2(\mathbb{Z}))$ be a normalized Hecke
eigenform. Then we can consider the lift of $f$ towards the space $S_{k}(Sp2n(\mathbb{Z}))$

as follows. Namely, Ikeda ([9]) showed that there exists a Hecke eigenform
$F_{f}\in S_{k}(Sp_{n}(\mathbb{Z}))$ such that

$L(s,$ $F_{f}$ , st $)= \zeta(s)\prod_{i=1}^{n}L(s+k-i, f)$ ,

where $\zeta(s)$ and $L(s, f)$ are the Riemann zeta function and the Hecke L-
function associated with $f$ , respectively. We note that the above lifting
coincides with the Saito-Kurokawa lifting in case $n=2$ , and the existence
of the lifting was firstly conjectured by Duke and Imamoglu in case $n>2$
(cf. [2]). More precisely, Ikeda explicitly constructed $F_{f}$ by Fourier expan-
sions of $f$ and a Hecke eigenform $g\in S_{k-n/2+1/2}(F_{0}^{(2)}(4))$ corresponding to $f$

under the Shimura correspondence, where $\Gamma_{0}^{(2)}(4)=\{\gamma\in SL_{2}(\mathbb{Z})|\gamma\equiv(0*)$

$(mod 4)\}$ . In this paper, we simply call $F_{f}$ the Ikeda lift of $f$ .
As will be explained precisely in the subsequent part, Ikeda also con-

jectured in [10] that the ratio $\Vert F_{f}\Vert^{2}/\Vert g\Vert^{2}$ should be expressed in terms of
special values of certain L-functions attached to $f$ . The purpose of this paper
is to explain a proof of the conjecture. We note that $F_{f}$ could not necessarily
be realized as a theta lift except for the case $n=2$ . Thus we cannot use a
general method for evaluating Petersson scalar products of theta lifts due to
Rallis (cf. [24]). The method we use is to give explicit formulae for several
kinds of Dirichlet series of Rankin-Selberg type attached to Siegel modular
forms and then to compare their residues.

We note that we can consider an application of the main result to a
problem concerning congruences between Ikeda lifts and some genuine Siegel
modular forms. This has been announced in [13, 16], and the details will be
discussed in [14].
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2 Main results
Throughout this section, we fix a pair of positive even integers $n,$ $k\in \mathbb{Z}$ such
that $k>n+1$ .

2.1 Construction of the Ikeda lift
Let $Sym_{n}^{*}(\mathbb{Z})_{+}$ be the set of all positive definite half-integral symmetric ma-
trices of size $n$ . For each $B\in Sym_{n}^{*}(\mathbb{Z})_{+}$ and a rational prime $p$ , we put

$b_{p}(B;s):=$ $\sum_{-,R1}e(tr(BR))p^{-s\cdot\mu_{p}(R)}$ ,

where $e(x)=\exp(2\pi\sqrt{-1}x)$ for $x\in \mathbb{C}$ , and $\mu_{p}(R)=[\mathbb{Z}_{p}^{n}R+\mathbb{Z}_{p}^{n} : \mathbb{Z}_{p}^{n}]$ . As
is known by Kitaoka ([18]), we have that there exists a unique polynomial
$F_{p}(B;X)\in \mathbb{Z}[X]$ such that

$b_{p}(B;s)=F_{p}(B;p^{-s}) \cross\frac{(1-p^{-s})\prod_{i=1}^{n/2}(1-p^{2i-2s})}{1-\chi_{B}(p)p^{n/2-s}}$ ,

where $\chi_{B}$ : $\mathbb{Z}arrow\{\pm 1,0\}$ denotes the Kronecker character corresponding to
the quadratic field extension $\mathbb{Q}(\sqrt{\mathfrak{D}_{B}})/\mathbb{Q}$ with $\mathfrak{D}_{B}$ $:=(-1)^{n/2}\det(2B)$ . In
addition, we can write $\mathfrak{D}_{B}=0_{B}f_{B}^{2}$ in terms of a fundamental discriminant $0_{B}$ ,

that is, the discriminant of $\mathbb{Q}(\sqrt{\mathfrak{D}_{B}})/\mathbb{Q}$ and $f_{B}=\sqrt{\mathfrak{D}_{B}}/0_{B}\in \mathbb{Z}$ . Then it is
also known that the Laurent polynomial $\tilde{F}_{p}(B;X)$ $:=X^{-ord_{p}(\int_{B})}F_{p}(B;p^{-(n+1)/2}X)$

is invariant under $X\mapsto X^{-1}$ (cf. [12]).
On the other hand, let

$f( \tau)=\sum_{m\geq 1}a_{f}(m)e(m\tau)\in S_{2k-n}(SL_{2}(\mathbb{Z}))$
$(\tau\in \mathfrak{H}_{1})$

be a Hecke eigenform normalized as $a_{f}(1)=1$ . Then we can associate $f$ with
a Hecke eigenform

$g( \tau)=(-1)^{k-n/2}m\equiv 01\sum_{m\geq 1},’(mod 4)^{c_{g}(m)e(m\tau)}$

$(\tau\in \mathfrak{H}_{1})$

in Kohnen’s plus space $S_{k-n/2+1/2}^{+}(\Gamma_{0}^{(2)}(4))$ of half-integral weight $k-n/2+$
$1/2$ , that is, a subspace of $S_{k-n/2+1/2}(\Gamma_{0}^{(2)}(4))$ characterized by the Shimura’s
Hecke-equivariant isomorphism

$S_{k-(n-1)/2}^{+}(\Gamma_{0}^{(2)}(4))arrow^{\simeq}S_{2k-n}(SL_{2}(\mathbb{Z}))$
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(cf. [20]). Then Ikeda’s lifting theorem is stated as follows:
Theorem I (cf. [9]). For each $B\in Sym_{n}^{*}(\mathbb{Z})_{+}$ , we put

$C_{F_{f}}(B):=c_{g}(|0_{B}|) f_{B}^{k-n/2-1/2}\prod_{p1f_{B}}\tilde{F}_{p}(B;\alpha_{p})$
,

where $\alpha_{p}+\alpha_{p}^{-1}=p^{-k+n/2+1/2}a_{f}(p)$ . Then

$F_{f}(Z)= \sum_{B\in Sym_{n}^{*}(\mathbb{Z})_{+}}C_{F_{f}}(B)e(tr(BZ))$
$(Z\in \mathfrak{H}_{n})$

belongs to the space $S_{k}(Sp_{2n}(\mathbb{Z}))$ , and forms a Hecke eigenform such that

$L(s,$ $F_{f}$ , st $)= \zeta(s)\prod_{i=1}^{n}L(s+k-i, f)$ .

We do not consider Eisenstein series here. However, one can formally look
at the Ikeda lift as an analogy to the association between Siegel Eisenstein
series $E_{k}^{(2n)}$ of weight $k$ with respect to Sp$2n(\mathbb{Z})$ and Eisenstein series $E_{2k-n}^{(2)}$

of weight $2k-n$ with respect to SL2 $(\mathbb{Z})$ . Namely, we have

$L(s,$ $E_{k}^{(2n)}$ , st $)= \zeta(s)\prod_{i=1}^{n}L(s+k-i, E_{2k-n}^{(2)})$ .

2.2 Ikeda’s conjecture and the main theorem
In order to state Ikeda’s conjecture precisely, we introduce some notations
of L-functions as follows. For a given normalized Hecke eigenform $f\in$

$S_{2k-n}(SL_{2}(\mathbb{Z}))$ as in the previous section, we put

$\{\sim$

$\xi(s):=\Gamma_{\mathbb{C}}(s)\zeta(s)$ ,
$\Lambda(s, f):=\Gamma_{\mathbb{C}}(s)L(s, f)$ ,
$\tilde{\Lambda}(s,$ $f$ , ad $)$ $:=\Gamma_{\mathbb{C}}(s)\Gamma_{\mathbb{C}}(s+2k-n-1)L(s,$ $f$ , ad $)$ ,

where $\Gamma_{\mathbb{C}}(s);=2(2\pi)^{-s}\Gamma(s)$ and $L(s,$ $f$ , ad$)$ denotes the adjoint L-function
of $f$ defined by

$L(s,$ $f$ , ad$)= \prod_{p}\{(1-p^{-s})(1-\alpha_{p}^{2}p^{-s})(1-\alpha_{p}^{-2}p^{-s})\}^{-1}$

As is well-known, we have $\tilde{\xi}(2i)=|B_{2i}|/2i\in \mathbb{Q}^{x}$ for each positive $i\in \mathbb{Z}$ ,
where $B_{2i}$ is the $2i$-th Bernoulli number. It is also known that $\overline{\Lambda}(2i-$
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1, f) Ad) $/\Vert f\Vert^{2}$ is an algebraic number for each $1\leq i<k-n/2$ . In par-
ticular, we have $\tilde{\Lambda}$ (1, $f$ , Ad) $=2^{2k-n}\Vert f\Vert^{2}$ (cf. [26]). Then Ikeda proposed
the following:

Conjecture I (cf. [10]). Under the same situation as in Theorem $I$, there
eststs $\alpha(n, k)\in \mathbb{Z}$ such that

$\frac{\Vert F_{f}||^{2}}{||g\Vert^{2}}=2^{\alpha(n,k)}\Lambda(k, f)\tilde{\xi}(n)\prod_{i=1}^{n/2-1}\tilde{\xi}(2i)\tilde{\Lambda}(2i+1, f, ad)$ .

When $n=2$ , it has been already known by Kohnen and Skoruppa that the
above conjecture holds true (cf. [21], see also [23]). Then the main theorem
in this paper is stated as follows.

Theorem 2.1. Conjecture I holds true for any positive even $n$ .

In the subsequent sections, we will explain a proof of Theorem 2.1 by
using a three step-wise approach.

3 Rankin-Selberg method for the Fourier-Jacobi
expansion of the Ikeda lift

For the moment, let us review the theory of Fourier-Jacobi expansions of
Siegel modular forms of genus $2n\geq 4$ and its application towards the evalu-
ation of Petersson norm squared.

For each positive $k\in \mathbb{Z}$ , let $F\in S_{k}(Sp_{2n}(\mathbb{Z}))$ possess the Fourier expan-
sion

$F(Z)= \sum_{B\in Sym_{n}^{*}(\mathbb{Z})_{+}}C_{F}(B)e(tr(BZ))$
$(Z\in\ovalbox{\tt\small REJECT}_{n})$ .

Then by decomposing each point $Z\in \mathfrak{H}_{n}$ into the form

$(\begin{array}{ll}\tau^{/} zt_{Z} \tau\end{array})$ $((\tau, z)\in \mathfrak{H}_{n-1}\cross \mathbb{C}^{n-1}, \tau’\in \mathfrak{H}_{1})$ ,

we obtain the Fourier-Jacobi expansion

$F( (\begin{array}{ll}\tau^{/} zt_{Z} \tau\end{array}))=\sum_{m=1}^{\infty}\phi_{m}(\tau, z)e(m\tau’)$,
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where

$\phi_{m}(\tau, z):=\sum_{(T,r)\in Sym_{n-1(\mathbb{Z})\cross \mathbb{Z}^{n-1}}^{*}}C_{F}((\begin{array}{ll}m r/2{}^{t}r/2 T\end{array})t$ .

$4mT-trr>0$

We note that for each $m$ , the function $\phi_{m}$ belongs to the complex vector space
$J_{k,m}^{cusp}(Sp_{2n-2}(\mathbb{Z})^{J})$ consisting of all holomorphic Jacobi cusp forms of weight
$k$ and index $m$ with respect to the Jacobi modular group $Sp_{2n-2}(\mathbb{Z})^{J}$ $:=$

$Sp_{2n-2}(\mathbb{Z})\ltimes(\mathbb{Z}^{2n-2}\cross \mathbb{Z})$ of genus $2n-2$ (cf. [28]). Then we define the
Dirichlet series $D(s, F)$ attached to $F$ by

$D(s, F):= \zeta(2s-2k+2n)\sum_{m=1}^{\infty}\Vert\phi_{m}\Vert^{2}m^{-s}$ ,

where $\Vert\phi_{m}\Vert^{2}$ denotes the Petersson norm squared of $\phi_{m}\in J_{k_{1}m}^{cusp}(Sp_{2n-2}(\mathbb{Z})^{J})$

introduced to be

$\Vert\phi_{m}\Vert^{2}:=\int_{Sp_{2n-2(\mathbb{Z})^{J}\backslash \mathfrak{H}_{n-1\cross \mathbb{C}^{n-1}}}}|\phi_{m}(\tau, z)|^{2}\det({\rm Im}(\tau))^{k}$

$\cross\exp(-4\pi m{\rm Im}(z){\rm Im}(\tau)^{t}{\rm Im}(z))d\tau^{*}dz$ .

We easily see that the Dirichlet series $D(s, F)$ converges absolutely for ${\rm Re}(s)>$

$k$ . Moreover, Yamazaki showed the following:

Theorem II (cf. [27], see also [22]). The function
$D^{*}(s, F):=\pi^{k-n-1}(2\pi)^{1-2s}\Gamma(s)D(s, F)$

has a meromorphic conticuation to the whole s-plane, and has simple poles
at $s=k,$ $k-n$ with the residue $\Vert F\Vert^{2}$ . Furthermore, it satisfies the functional
equation

$D^{*}(2k-n-s, F)=D^{*}(s, F)$ .

Then, as the first main ingredient of the proof of Theorem 2.1, we have
the following:

Theorem 3.1 (cf. [15]). Let $n,$ $k$ be as in \S 2. If $f\in S_{2karrow n}(SL_{2}(\mathbb{Z}))$ is a
normalized Hecke eigenform, then

$D(s, F_{f})=\Vert\phi_{f,1}\Vert^{2}\zeta(s-k+1)\zeta(s-k+n)L(s, f)$ ,

where $\phi_{f,1}$ denotes the first coefficient of the Fourier-Jacobi expansion of $F_{f}$ .
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Moreover, by comparing residues at $s=k$ on both sides, we also obtain

Corollary 3.1. Under the same situation as above, we have

$\frac{||F_{f}\Vert^{2}}{\Vert\phi_{f,1}||^{2}}=2^{-k+n-1}\Lambda(k, f)\tilde{\xi}(n)$. (1)

When $n=2$ , the above two results have been obtained by Kohnen and
Skoruppa ([21]).

4 The Eichler-Zagier-Ibukiyama isomorphism
Based on the result in the previous section, let us review in this section that
there exists a natural correspondence between holomorphic Jacobi forms of
integral weight and index 1 and Siegel modular forms of half-integral weight,
and explain the coincidence of Petersson norms squared up to scalar.

We put $\Gamma_{0}^{(2n-2)}(4)$ $:=\{\gamma\in Sp_{2n-2}(\mathbb{Z})|\gamma\equiv(0_{n-1^{*}}^{**})(mod 4)\}$ . Then
for each $k\in \mathbb{Z}$ , we introduce the generalized Kohnen’s plus space by

$S_{k-1/2}^{+}(\Gamma_{0}^{(2n-2)}(4))$

$;=\{F(Z)\in S_{k-1/2}(\Gamma_{0}^{(2n-2)}(4))C_{F}(A)=0un1essA\equiv(-1)^{k+1}{}^{t}rr(mod 4Sym_{n-1}^{*}(\mathbb{Z}))forsomer\in \mathbb{Z}^{n-1}\}\cdot$

As is mentioned before, for each positive even $k\in \mathbb{Z}$ , we have

$S_{k-1/2}^{+}(\Gamma_{0}^{(2)}(4))arrow^{\simeq}S_{2k-2}(SL_{2}(\mathbb{Z}))$ .

Moreover, Eichler and Zagier ([3]) showed that there exists an isomorphism

$J_{k,1}^{cusp}(SL_{2}(\mathbb{Z})^{J})arrow^{\simeq}S_{k-1/2}^{+}(\Gamma_{0}^{(1)}(4))$ ,

which is compatible with actions of all Hecke operators up to $p=2$ . As a
generalization of the isomorphism, Ibukiyama showed the following:

Theorem III (cf. [4]). If $n\geq 2_{\dot{1}}$ then for each positive even $k\in \mathbb{Z}$ , there
exists an isomorphism

$\sigma:J_{k,1}^{cusp}(Sp_{2n-2}(\mathbb{Z})^{J})arrow^{\simeq}S_{k-1/2}^{+}(\Gamma_{0}^{(2n-2)}(4))$ ,

which is compatible with actions of Hecke operators up to $p=2$ .
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In addition, Eichler and Zagier ([3]) also showed that the isomorphism $\sigma$ is
compatible with Petersson norms squared. As its generalization to higher
genus, we obtain the following:

Theorem 4.1. Under the same assumtion as in Theorem III, for each $\phi\in$

$J_{k,1}^{cusp}(Sp_{2n-2}(\mathbb{Z})^{J})$ , we have

$\Vert\phi\Vert^{2}=2^{2(k-1)(n-1)-1}\Vert\sigma(\phi)\Vert^{2}$ . (2)

Proof. The proof proceeds in a similar way to that of Theorem 5.4 in [3]. $\square$

Thus by combining Corollary 3.1 and Theorem 4.1, we can show Theorem
2.1 in case $n=2$ . Indeed, for a given normalized Hecke eigenform $f\in$

$S_{2k-2}$ (SL2 ( $\mathbb{Z})$ ), we denote by $g\in S_{k-1/2}^{+}(\Gamma_{0}^{(2)}(4))$ and $\phi_{f,1}\in J_{k,1}^{cusp}(SL_{2}(\mathbb{Z})^{J})$ a
Hecke eigenform corresponding to $f$ under Shimura’s isomorphism and the
first coefficient of the Fourier-Jacobi expansion of the Saito-Kurokawa lift
$F_{f}\in S_{k}(Sp_{2n}(\mathbb{Z}))$ of $f$ , respectively. Then we have $\sigma(\phi_{f,1})=g$ , and hence
by combining the equations (1) and (2), we obtain

$\frac{\Vert F_{f}||^{2}}{||g\Vert^{2}}=\frac{||F_{f}\Vert^{2}}{\Vert\phi_{f,1}||^{2}}\cdot\frac{\Vert\phi_{f,1}\Vert^{2}}{\Vert g||^{2}}=2^{k-2}\Lambda(k, f)\tilde{\xi}(2)$ ,

and this proves the assertion. $\square$

5 Rankin-Selberg method for Siegel modular
forms of half-integral weight

In this section, we derive an explicit formulae for certain Dirichlet series
attached to Siegel modular forms of half-integral weight and apply it to
evaluate Petersson norms squared of such forms.

For each positive even $k\in \mathbb{Z}$ , we consider

$F(Z)= \sum_{A\in Sym_{n-1}^{*}(\mathbb{Z})_{+}}C_{F}(A)e(tr(AZ))\in S_{k-- 1/2}(\Gamma_{0}^{(2n-2)}(4))$
.

Then we define the Dirichlet series $R(s, F)$ attached to $F$ by

$R(s, F):= \sum_{A\in Sym_{n-1(\mathbb{Z})_{+}/SL_{n-1(\mathbb{Z})}}^{*}}\frac{|C_{F}(A)|^{2}}{e(A)\det A^{s}}$ ,
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where $e(A)=\#\{X\in SL_{n-1}(\mathbb{Z})|{}^{t}XAX=A\}$ . This kind of Dirichlet series
has been studied by Shimura ([25]) and Kalinin ([11]) in case of integral
weight. Then by using a similar method, we easily see the following:

Proposition 5.1. We put $\Gamma_{\mathbb{R}}(s)=\pi^{-s/2}\Gamma(s/2),$ $\xi(s)=\Gamma_{\mathbb{R}}(s)\zeta(s)$ and

$R^{*}(s, F):= \gamma_{n-1}(s)\xi(2s-2k+n+1)\prod_{i=1}^{n/2-1}\xi(4s-4k-2i+2n+2)R(s, F)$,

where $\gamma_{n-1}(s)=2^{1-2s(n-1)}\prod_{j=1}^{n-1}\Gamma_{\mathbb{R}}(2s-j+1)$ . Then the function $R^{*}(s, F)$

has a meromorphic continuation to the whole s-plane and has a simple pole
at $s=k-1/2$ with the residue $\prod_{i=1}^{n/2-1}\xi(2i+1)\Vert F\Vert^{2}$

Then we have an explicit formula for the Dirichlet series $R(s, \sigma(\phi_{f,1}))$ as
follows:

Theorem 5.2 (cf. [17]). Under the same situation as in Theorem 3.1, $we$

put $\lambda_{n}=\frac{1}{2}\prod_{i=1}^{n/2-1}\tilde{\xi}(2i)$ . Then we have

$R(s, \sigma(\phi_{f1})))=\frac{\lambda_{n}}{2^{(n-1)(s+1/2)}}\zeta(2s+n-2k+1)^{-1}\prod_{i=1}^{n/2-1}\zeta(4s+2n-4k+2-2i)^{-1}$

$\cross\{R(s-n/2+1, g)\zeta(2s-2k+3)$

$\cross\prod_{j=1}^{n/2-1}L(2s-2k+2j+2, f, ad)$ $\zeta(2s-2k+2j+2)$

$+(-1)^{n(n-2)/8}R(s, g)\zeta(2s-2k+n+1)$

$\cross\prod_{j=1}^{n/2-1}L(2s-2k+2j+1, f, ad)$ $\zeta(2s-2k+2j+1)\}$ .

Moreover, by comparing residues at $s=k-1/2$ , we also obtain

Corollary 5.2. Under the same situation as above, we have

$\frac{\Vert\sigma(\phi_{f,1})\Vert^{2}}{||g||^{2}}=2^{\beta(n,k)}\prod_{i=1}^{n/2-1}\tilde{\xi}(2i)\tilde{\Lambda}(2i+1, f, ad)$, (3)

where $\beta(n, k)=-3k(n-2)+n(n-3)/2+1$ .
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Therefore, by combining the three equations (1), (2) and (3), we can show
Theorem 2.1. Indeed, we have

$\frac{\Vert F_{f}||^{2}}{||g\Vert^{2}}$ $=$ $\frac{||F_{f}\Vert^{2}}{\Vert\phi_{f,1}||^{2}}$ . $\frac{||\phi_{1}||^{2}}{\Vert\sigma(\phi_{f,1})\Vert^{2}}$ . $\frac{\Vert\sigma(\phi_{f,1})\Vert^{2}}{\Vert g||^{2}}$

$=$ $2^{-k+n-1} \Lambda(k, f)\tilde{\xi}(n)\cdot 2^{2(k-1)(n-1)-1}\cdot 2^{\beta(n,k)}\prod_{i=1}^{n/2-1}\tilde{\xi}(2i)\tilde{\Lambda}(2i+1, f, ad)$

$=$ $2^{-(n-3)(k-n/2)-n+1} \Lambda(k, f)\tilde{\xi}(n)\prod_{i=1}^{n/2-1}\tilde{\xi}(2i)\tilde{\Lambda}(2i+1, f, ad)$ ,

and this proves the assertion. $\square$

6 Proof of Theorem 5.2
The rest of the paper is devoted to a sketch of a proof of Theorem 5.2.
Details will appear in [17]. For each positive $m\in \mathbb{Z}$ , we simply write $S_{m,p}=$

$Sym_{m}^{*}(\mathbb{Z}_{p})$ and $S_{m,p}^{x}=S_{m,p}\cap GL_{m}(\mathbb{Q}_{p})$ . In particular, if $m$ is odd, then we
put

$S_{m_{I}p}^{(1)}:=\{A\in S_{m,p}|A+{}^{t}rr\in 4S_{m,p}$ for some $r\in \mathbb{Z}_{p}^{m}\}$ .

For each $A\in S_{n-1,p}^{(1)}$ , we put

$\tilde{F}_{p}^{(1)}(A;X):=\tilde{F}_{p}( ({}^{t}r/21 (A+{}^{t}rr)/4r/2);X)$ ,

where $r=r_{A}\in \mathbb{Z}_{p}^{n-1}$ such that $A+{}^{t}rr\in 4S_{n-1,p}$ . For each $A\in S_{m,p}^{\cross}$ and
$e\geq 0$ , we put

$\mathcal{A}_{e}(A, A)=\{X\in Mat_{n-1\cross n-1}(\mathbb{Z}_{p})/p^{e}Mat_{n-1xn-1}(\mathbb{Z}_{p})|{}^{t}XAX-A\in p^{e}S_{m,p}\}$

and
$\alpha_{p}(A, A)$ $:= \frac{1}{2}\lim_{earrow\infty}p^{e\{-m^{2}+m(m+1)/2\}}\#\mathcal{A}_{e}(A, A)$ .

For each $0\in \mathbb{Z}_{p}$ and a GL$n-1(\mathbb{Z}_{p})$ -invariant function $\omega_{p}$ on $S_{n-1,p}^{x}$ , we put

$H_{p}^{(n-1)}(0, \omega_{p};X, t):=\sum_{l=0}^{\infty}\sum_{A\in \mathcal{A}_{p}(0,l)}\omega_{p}(A)\frac{|\tilde{F}_{p}^{(1)}(A;X)|^{2}}{\alpha_{p}(A,A)}t^{ord_{p}(\det A)}$,
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where $\mathcal{A}_{p}(0, l)=\{A\in S_{n-1,p}^{(1)}|\det A=0p^{2l+(n-2)\delta_{2,p}}\}/GL_{n-1}(\mathbb{Z}_{p})$ . As for
$\omega_{p}:S_{n-1,p}^{\cross}/GL_{n-1}(\mathbb{Z}_{p})arrow\{\pm 1,0\}$ , we consider either the constant function
$\iota_{p}$ on $S_{n-1,p}^{\cross}$ taking the value 1 or the function $\epsilon_{p}$ assigning the Hasse invariant
of $A$ for $A\in S_{n-1.p}^{\cross}$ (cf. [19]). Then by using the same method to Ibukiyama
and Saito ([8]), similarly to [5, 6], we have
Theorem 6.1. We have

$R(s, \sigma(\phi_{f1})))=\kappa_{n-1}\sum_{0}|c_{g}(|0|)|^{2}|0|^{-k+n/2+1/2}$

$\cross\{\prod_{p}H_{p}^{(n-1)}(0, \iota_{p};\alpha_{p}, p^{-s+k-1/2})+\prod_{p}H_{p}^{(n-1)}(0, \epsilon_{p};\alpha_{p}, p^{-s+k-1/2})\}$ ,

where the summation is taken over all fundamental discriminant $0\in \mathbb{Z}$ such
that $(-1)^{n/2}0>0$ and we put $\kappa_{n-1}=2^{(n-2)(n-1)/2-\delta_{n.2}}\pi^{-n(n-1)/4}\prod_{i=1}^{n-1}\Gamma(i/2)$ .

Moreover, we obtain the following explicit formulae for the power series
$H_{p}^{(n-1)}(0, \omega_{p};X, t)$ :
Theorem 6.2. Let $0\in \mathbb{Z}$ be a fundamental discriminant and $\xi=(\frac{0}{p})$ , where
$(_{*}\underline{D})$ denotes the Kronecker symbol associated with D.
(1) For $\omega_{p}=\iota_{p}$ , we have

$H_{p}^{(n-1)}(0, \iota_{p};X_{\urcorner}t)$

$=$ $\frac{(2^{-(n-1)(n-2)/2}t^{n-2})^{\delta_{2.p}}}{\prod_{i=1}^{n/2-1}(1-p^{-2i})}(p^{-1}t)^{ord_{p}(\mathfrak{d})}(1-p^{-n}t^{2})\prod_{i=1}^{n/2-1}(1-p^{-2n+2i}t^{4})$

$\cross\frac{(1+p^{-2}t^{2})(1+\xi^{2}p^{-3}t^{2})-2\xi p^{-5/2}(X+X^{-1})t^{2}}{(1-p^{-2}X^{2}t^{2})(1-p^{-2}X^{-2}t^{2})(1-p^{-2}t^{2})^{2}}$

$\cross\frac{1}{\prod_{i=1}^{n/2-1}(1-p^{-2i-1}X^{2}t^{2})(1-p-2i-1X^{-2}t^{2})(1-p^{-2i-1}t^{2})^{2}}$ .

(2) For $\omega_{p}=\epsilon_{p}$ , we have
$H_{p}^{(n-1)}(0, \epsilon_{p};X, t)=((-1)^{n(n-2)/8}2^{-(n-1)(n-2)/2}t^{n-2})^{\delta_{2,p}}$

$\cross\frac{((-1)^{n/2},(-1)^{n/2}0)_{p}}{\prod_{i=1}^{n/2-1}(1-p^{-2i})}(p^{-n/2}t)^{ord_{p}(\mathfrak{d})}(1-p^{-n}t^{2})\prod_{i=1}^{n/2-1}(1-p^{-2n+2i}t^{4})$

$\cross\frac{(1+p^{-n}t^{2})(1+\xi^{2}p^{-n-1}t^{2})-2\xi p^{-1/2-n}(X+X^{-1})t^{2}}{(1-p^{-n}X^{2}t^{2})(1-p^{-n}X^{-2}t^{2})(1-p^{-n}t^{2})^{2}}$

$\cross\frac{1}{\prod_{i=1}^{n/2-1}(1-p^{-2i}X^{2}t^{2})(1-p^{-2i}X^{-2}t^{2})(1-p^{-2i}t^{2})^{2}}$ ,
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where $(*, *)_{p}$ denotes the Hilbert symbol over $\mathbb{Q}_{p}$ .
On the other hand, by using the same argument as in Theorem 6.1, we

obtain the following:

Proposition 6.3. Let $f$ and $g$ be a couple of Hecke eigenforms as in \S 2.
Then we have

$R(s, g)=L(2s-2k+n+1, f, ad)\sum_{0}|c_{g}(|0|)|^{2}|0|^{-s}$

$\cross\prod_{p}\{(1+p^{-2s+2k-n-1})(1+(\frac{0}{p})^{2}p^{-2s+2k-n-2}-2(\frac{0}{p})a_{f}(p)p^{-2s+2k-n-3/2})\}$ ,

where the summation is taken over all fundamental discriminant $0\in \mathbb{Z}$ such
that $(-1)^{n/2}0>0$ .

By combining Theorems 6.1, 6.2 and Proposition 6.3, we can prove
$The-\square$

orem 5.2.
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