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Ikeda’s conjecture on the period of
the Ikeda lift

by Hidenori KATSURADA* and Hisa-aki KAWAMURA'

Abstract

As an affirmative answer to the Duke-Imamoglu conjecture, Ikeda
constructed a certain lifting of classical cusp forms on the special lin-
ear group SL, towards Siegel cusp forms, namely cuspidal automorphic
forms on the symplectic group Sp,, of general even genus 2n. After-
wards he also proposed a certain conjecture concerning the periods
(Petersson norms squared) of such forms. In this paper, we would
like to explain a brief sketch of a proof of the conjecture. Details will
appear elsewhere.

1 Introduction

For each positive integer n € Z, the symplectic modular group Sp,,(Z) of
genus 2n is defined to be

SP2n(Z) = {7 € GLan( Z)| yIy=JJ=(.)}-

For either an integer or a half-integer x € %Z, we denote the complex vector
space consisting of all Siegel cusp forms of weight k with respect to a suitable
congruence subgroup I' of Sp,,(Z) by S.(I'). Then for each F,G € S.(I),
we define the Petersson scalar product (F, G) by

(F, G) := [Spy,(Z) : T - {£15,}]" - F(2)G(Z) det(Im(Z))~ dZ*,
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where Z = X +/=1Y € 9, = { Z € Mat,x,(C) | *Z = Z, Im(Z) > 0} and
dZ* = det Y~ (™DdXdY is a finite volume element on SPon(Z)\$Hn. As is
well-known, this defines a Hermitian scalar product on the space S.(I") and
hence we can introduce the norm ||F||? := (F, F) for each F € S.(I'). We
note that if F' is a Hecke eigenform, that is, a common eigenfunction of all
Hecke operators, then the Petersson norm squared ||F||? plays an impor-
tant role within the framework of studying critical values of the standard
L-function L(s, F, st) attached to F (cf. [1]).

On the other hand, for a couple of positive even integers n and k such that
k>n+1,let f € So—n(Spy(Z)) = Sok_n(SL2(Z)) be a normalized Hecke
eigenform. Then we can consider the lift of f towards the space Si(Sp,,(Z))
as follows. Namely, Ikeda ([9]) showed that there exists a Hecke eigenform
Ff € Sk(Sp,(Z)) such that

L(s, Fy, st) = (o) [[ Ls + k — 4, ),
=1

where ((s) and L(s, f) are the Riemann zeta function and the Hecke L-
function associated with f, respectively. We note that the above lifting
coincides with the Saito-Kurokawa lifting in case n = 2, and the existence
of the lifting was firstly conjectured by Duke and Imamoglu in case n > 2
(cf. [2]). More precisely, Tkeda explicitly constructed F; by Fourier expan-
sions of f and a Hecke eigenform g € Si_p/2+1/2 (1“32’(4)) corresponding to f
under the Shimura correspondence, where I'?)(4) = {y € SLy(Z) | v = (32
(mod 4)}. In this paper, we simply call F; the Ikeda lift of f.

As will be explained precisely in the subsequent part, Ikeda also con-
jectured in [10] that the ratio ||F;||2/|lg||* should be expressed in terms of
special values of certain L-functions attached to f. The purpose of this paper
is to explain a proof of the conjecture. We note that F could not necessarily
be realized as a theta lift except for the case n = 2. Thus we cannot use a
general method for evaluating Petersson scalar products of theta lifts due to
Rallis (cf. [24]). The method we use is to give explicit formulae for several
kinds of Dirichlet series of Rankin-Selberg type attached to Siegel modular
forms and then to compare their residues.

We note that we can consider an application of the main result to a
problem concerning congruences between Ikeda lifts and some genuine Siegel
modular forms. This has been announced in {13, 16], and the details will be
discussed in [14].
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2 Main results

Throughout this section, we fix a pair of positive even integers n, k € Z such
that £k > n + 1.

2.1 Construction of the Ikeda lift

Let Sym, (Z)+ be the set of all positive definite half-integral symmetric ma-
trices of size n. For each B € Sym),(Z), and a rational prime p, we put

bp(B; 8) 1= Z e(tr(BR)) p~* ",
ReSym,, (Z{p~1])/Sym,(Z)

where e(z) = exp(2nv/—1z) for z € C, and u,(R) = [ZyR + Zy : Zj]. As
is known by Kitaoka ([18]), we have that there exists a unique polynomial
F,(B; X) € Z[X] such that

—s n/2 2i—2s
bp(B; S) — FP(B; p—s) X (1 p )Hi:l(l f) )
1 - xg(p) p/*—*
where xp : Z — {£1, 0} denotes the Kronecker character corresponding to
the quadratic field extension Q(v/®p5)/Q with Dp := (—1)"2det(2B). In
addition, we can write D g = 05 f% in terms of a fundamental discriminant 9,
that is. the discriminant of Q(v/®35)/Q and fg = v/Dp/0p € Z. Then it is
also known that the Laurent polynomial F,(B; X) := X %) F (B; p~(»+1/2X)
is invariant under X — X1 (cf. [12]).
On the other hand, let

f(r)=>"as(m)e(mr) € Sak_n(SL2(Z)) (7 € M)

m>1

?

be a Hecke eigenform normalized as as(1) = 1. Then we can associate f with
a Hecke eigenform

g(r) = > co(m)e(mr) (T € H1)

m>1,
(=1)k="/2m=0,1 (mod 4)

in Kohnen’s plus space S;__ /241 /2(1‘(()2)(4)) of half-integral weight k — n/2 +

1/2, that is, a subspace of Sk_n/2+1 /Q(ng)(4)) characterized by the Shimura’s
Hecke-equivariant isomorphism

S nery/2(C8(4)) = Sak—n(SL2(Z))
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(cf. [20]). Then Ikeda’s lifting theorem is stated as follows:
Theorem I (cf. [9]). For each B € Sym®(Z).., we put
Cr,(B) 1= cy(os)) f5 "*7* T] Fo(B; ),

plfs
where oy, + o = pTFT2H12g (D). Then

Fi(Z)= Y. Cp/(B)e(tr(BZ)) (Z € $H,)
BeSym}, (Z)+
belongs to the space Sk(Sp,,(Z)), and forms a Hecke eigenform such that

L(s, Fy, st) = C(s)ﬁL(s+k — 14, f).

=1

We do not consider Eisenstein series here. However, one can formally look
at the Ikeda lift as an analogy to the association between Siegel Elsensteln
series E( of weight k with respect to Sp,,,(Z) and Eisenstein series E2k o
of Welght 2k — n with respect to SLy(Z). Namely, we have

L(s, B, st) = C(s) [ L(s + k — 4, ES.).
=1
2.2 Ikeda’s conjecture and the main theorem

In order to state Ikeda’s conjecture precisely, we introduce some notations
of L-functions as follows. For a given normalized Hecke eigenform f €
Sok—n(SL2(Z)) as in the previous section, we put

£(s) =Tc(s) ¢(s),
é(S, f) = FC(S) L(S, f)ﬁ
A(s, f, ad) :=Tc(s)T'c(s + 2k — n — 1) L(s, f, ad),

where I'c(s) := 2(27)7°I'(s) and L(s, f, ad) denotes the adjoint L-function
of f defined by

s, f, ad) = H{l—-p )1 —aZp~*)(1~o;%p ")}

As is well-known, we have £(2i) = |By;| /2i € Q* for each positive 1€ Z,
where B,; is the 2i-th Bernoulli number. It is also known that A(2i —
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1, f, Ad)/|IfII? is an algebraic number for each 1 < ¢ < k —n/2. In par-
ticular, we have A(1, f, Ad) = 22 "||f||?> (cf. [26]). Then Ikeda proposed
the following;:

Conjecture I (cf. [10]). Under the same situation as in Theorem I, there
exists a(n, k) € Z such that

0 n/2—-1
”HFs;flllL = 22 IA(k, f)E(n) T] €(20)A2i+1, f, ad).

i=1

When n = 2, it has been already known by Kohnen and Skoruppa that the
above conjecture holds true (cf. [21], see also [23]). Then the main theorem
in this paper is stated as follows.

Theorem 2.1. Conjecture I holds true for any positive even n.

In the subsequent sections, we will explain a proof of Theorem 2.1 by
using a three step-wise approach.

3 Rankin-Selberg method for the Fourier-Jacobi
expansion of the Ikeda lift

For the moment, let us review the theory of Fourier-Jacobi expansions of
Siegel modular forms of genus 2n > 4 and its application towards the evalu-
ation of Petersson norm squared.

For each positive k € Z, let F' € Sx(Sps,(Z)) possess the Fourier expan-
sion
F(Zy= >_ Cr(B)e(tr(BZ)) (Z € $n).

BeSym?,(2)+

Then by decomposing each point Z € §), into the form

( T2 ) (7 2) € $ut x C1, 7' € $91),

ty T

we obtain the Fourier-Jacobi expansion

(T2 )= gjlasm(r, De(mr’).
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where
m r/2
Gm(T, 2) 1= Z CF(( tr /2 ]/, ))e(tr(TT + 'rz)).
(T\yr)eSym},_,(Z)xz™?
dmT—trr>0

We note that for each m, the function ¢,, belongs to the complex vector space
Jem (SP2n—2(Z)”) consisting of all holomorphic Jacobi cusp forms of weight
k and index m with respect to the Jacobi modular group SPop_o(Z)’ =

SPan—2(Z) X (Z**~2 x Z) of genus 2n — 2 (cf. [28]). Then we define the
Dirichlet series D(s, F') attached to F by

D(s, F):=((25 =2k +2n) > _ ||$ml*>m ™",
m=1

where [|¢||? denotes the Petersson norm squared of ¢, € Tomy (Span_o(Z)7)
introduced to be

Iénl:= [ Bm(r, 2)[*det(Tm(7))*
SP2n—2(2)’\Hr-1 xCn=1
x exp(—47m Im(z)Im(7)Im(2)) dr*d=.

WEe easily see that the Dirichlet series D(s, F') converges absolutely for Re(s) >
k. Moreover, Yamazaki showed the following:

Theorem II (cf. [27], see also [22]). The function
D*(s, F) := 7" ™1 (2m)1=2°I'(s) D(s, F)

has a meromorphic conticuation to the whole s-plane, and has simple poles
at s = k, k—n with the residue | F||2. Furthermore, it satisfies the functional
equation

D*(2k —n —s, F) = D*(s, F).

Then, as the first main ingredient of the proof of Theorem 2.1, we have
the following;:

Theorem 3.1 (cf. [15]). Let n,k be as in §2. If f € Sox—n(SL2(Z)) is a
normalized Hecke eigenform, then

D(s, Fy) = ll¢sall*¢(s — k +1)¢(s — k +n)L(s, f),

where ¢y 1 denotes the first coefficient of the Fourier-Jacobi expansion of Fy.
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Moreover, by comparing residues at s = k£ on both sides, we also obtain
Corollary 3.1. Under the same situation as above, we have

F 2 ~
TII‘?m—,fJIW = 27 Ak, £)E(n). (1)

When n = 2, the above two results have been obtained by Kohnen and
Skoruppa ([21]).

4 The Eichler-Zagier-Ibukiyama isomorphism

Based on the result in the previous section, let us review in this section that
there exists a natural correspondence between holomorphic Jacobi forms of
integral weight and index 1 and Siegel modular forms of half-integral weight,
and explain the coincidence of Petersson norms squared up to scalar.

We put T8 2 (4) = {7 €Spy2(Z)| y=(o,,%) (mod4)}. Then
for each k € Z, we introduce the generalized Kohnen’s plus space by
n—2
52—1/2(P(()2 (4))

= {F(Z) € Sk_1/2(f‘(()2"‘2)(4)) Cr(A) =0 unless A = (—1)k+1trp }

(mod 4Sym?*_,(Z)) for some r € Z™!

As is mentioned before, for each positive even k € Z, we have
Si_1/2(067 (4)) = Sak-2(SLa(2)).

Moreover, Eichler and Zagier ([3]) showed that there exists an isomorphism
TP (SLa(Z)7) = Si_y 1o(T6(4)),

which is compatible with actions of all Hecke operators up to p = 2. As a
generalization of the isomorphism, Ibukiyama showed the following:

Theorem III (cf. [4]). If n > 2, then for each positive even k € Z, there
exists an isomorphism

0 TP (SPan_(Z)7) = Siy n(T6" 2 (4)),

which is compatible with actions of Hecke operators up to p = 2.
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In addition, Eichler and Zagier ([3]) also showed that the isomorphism o is
compatible with Petersson norms squared. As its generalization to higher
genus, we obtain the following:

Theorem 4.1. Under the same assumtion as in Theorem III, for each ¢ €
JISHSP(SPzn-z(ZV), we have

l¢l* = 220D g (g)||2. (2)
Proof. The proof proceeds in a similar way to that of Theorem 5.4 in [3]. O

Thus by combining Corollary 3.1 and Theorem 4.1, we can show Theorem
2.1 in case n = 2. Indeed, for a given normalized Hecke eigenform f &
Sok-2(SL2(Z)), we denote by g € S,':_l/z(l“(()2)(4)) and ¢51 € Jioq (SL2(Z)7) a
Hecke eigenform corresponding to f under Shimura’s isomorphism and the
first coefficient of the Fourier-Jacobi expansion of the Saito-Kurokawa lift
Fy € 5,(Spy,(Z)) of f, respectively. Then we have o(¢;1) = g, and hence
by combining the equations (1) and (2), we obtain

LEAl? _ Ffl?  lidrall?
gl lgeall®  lgll?

and this proves the assertion. O

= 2"2A(k, f)€(2),

5 Rankin-Selberg method for Siegel modular
forms of half-integral weight

In this section, we derive an explicit formulae for certain Dirichlet series
attached to Siegel modular forms of half-integral weight and apply it to
evaluate Petersson norms squared of such forms.

For each positive even k € Z, we consider

FiZ)= Y Cp(A)e(tr(A2)) € Si1p(TED(4)).

AeSym},_ (Z)+

Then we define the Dirichlet series R(s, F') attached to F' by

R(S, F) e Z |CF(A)|2

e(A) det A5’
AeSym?,_,(Z)+/SLn-1(2)
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where e(A) = #{X € SL,_1(Z) | *XAX = A}. This kind of Dirichlet series
has been studied by Shimura ([25]) and Kalinin ([11]) in case of integral
weight. Then by using a similar method, we easily see the following:

Proposition 5.1. We put ['g(s) = 77%/?T'(s/2), £(s) = I'r(s)¢(s) and

n/2—1 _
R*(s, F) = pp-1(s)€(2s =2k +n+1) J[ &(4s — 4k — 2i +2n+ 2)R(s, F),
i=1
where yp_1(s) = 2172=D ]2 Tr(2s — j + 1). Then the function R*(s, F)

has a meromorphic continuation to the whole s-plane and has a simple pole
at s =k — 1/2 with the residue H?ﬁ—l £(2i+ 1) || F)>.

Then we have an explicit formula for the Dirichlet series R(s, o (¢¢,1)) as
follows:

Theorem 5.2 (cf. [17]). Under the same situation as in Theorem 3.1, we
n/2-1
put A, = 3 H £(2i). Then we have

=1 \ n/2—1
R(s,0(¢s1)) = mg(%—kn—%-{-l)_l H C(4s+2n—4k+2—-2i)7!

i=1

x{R(s—n/2+1,g){(2s — 2k + 3)

n/2-1
x [T L(2s— 2k + 25 +2, f, ad) ¢(2s — 2k + 2j + 2)
i=1
+(—=1)M"=2D/8R(s,9) ((2s — 2k + n + 1)
nf2-1
x [T L(2s —2k+25 +1, f, ad) (25 — 2k + 2j + 1)}.
j=1

Moreover, by comparing residues at s = k — 1/2, we also obtain

Corollary 5.2. Under the same sttuation as above, we have

n/2-1

I|0’(H¢;fl,'12)ﬂ2 _ 2ﬂ(ﬁ,k) IT €20 R@i+1, £, ad), (3)

where B(n, k) = —=3k(n — 2) + n(n — 3)/2 + 1.
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Therefore, by combining the three equations (1), (2) and (3), we can show
Theorem 2.1. Indeed, we have

WFA P IEAR el ol
912 l6sal® Nlo(or)lZ gl
n/2—1
= 27FTIA(K, f)é(n) - 2200001 9800k TT £(24) K(2i+ 1, f, ad)
=1
n/2-1

= oA nin (£ E(m) [T €20 A28+ 1, £, ad),

=1

and this proves the assertion. O

6 Proof of Theorem 5.2

The rest of the paper is devoted to a sketch of a proof of Theorem 5.2.
Details will appear in [17]. For each positive m € Z, we simply write S, , =
Symy, (Zy) and S , = Spm,p N GL,(Q,). In particular, if m is odd, then we
put

SV, ={A€8n, | A+'rr €4S, , for somer € Z™}.

For each A € 57(1131, p>» We put
~ ~ 1 /2
(M A- — .
F, (A,X).-l*",,((,5T/2 (A+‘rr)/4)’X)’

where 7 = ry € Zp~! such that A+ *rr € 4S,_,,,. For each A € S, and
e > 0, we put

Ae(A, A) = {X € Matn_1><n_1(Zp)/peMatn_lxn_l(Zp) ! tXAX—A € pe m,p}

and 1
(A, 4) = 5 lim pCTITTRAYAL(A, 4).

For each 0 € Z, and a GL,_1(Zy)-invariant function w, on S;_, _, we put

1,p’

o ﬁ(l)(A. X)|?
(n—1) ) e E : § : l p ) tordp(det A)
Hp (b’ Wps X’ t) : wP(A) Ozp(A, A) ’
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where A ,0,0)={A € S,(ll_)l,p | det A = dp?+("=D%2r} /GL, ((Z,). As for
S,_1.p/GLn_1(Z,) — {£1, 0}, we consider either the constant function
tpon S, 1,p taking the value 1 or the function ¢, assigning the Hasse invariant

of A for Ac Sp_1.p (cf. [19]). Then by using the same method to Ibukiyama
and Saito ([8]), smnlarly to [5, 6], we have

Theorem 6.1. We have
R(s, o(#1)) = Fnmr D leg(PD oI 7H7/242/2
)

X {H Hz()n—l)(b, lp; Qp, p—s+k——1/2) + HH;()n—l)(o’ Ep; O, p—s+k—1/2)} :

P p

where the summation is taken over all fundamental discriminant ® € Z such

that (—1)™/%0 > 0 and we put Kk, = 2~ D(—1)/2=bn2 g=n(n=D/A "1 T(3/2).
Moreover, we obtain the following explicit formulae for the power series

H Y0, wy; X, t):

Theorem 6.2. Let d € Z be a fundamental discriminant and § = (%), where
(L) denotes the Kronecker symbol associated with .
(1) For w, = t,, we have

H (0, 4 X, t)

‘ /2-1

o-(n=1)(n=2)/2gn-2)b2p 2y on+2
- T2 p-m‘)) (P71 —pe?) [T (1 —p7 i)
i=1 - '

(1+p22)(1 + €2p7%t%) — 26p~5/2(X + X 1)t
(1 —p72X22)(1 — p2X 2t2)(1 — p~2t2)?
1
X :
H;l:/'él’—l(l — p~2-1X242)(1 — p~%-1X-242)(1 — p~2i-1§2)2
(2) For w, = €,, we have
H}()n—l)(a, Ep: X, t) — ((_1)n(n—2)/82—(n—1)(n——2)/2tn—2)62,p

n n n/2-1
X(( 1) /2 ( ) /20)17( —n/2t)ordp(b) —nt2) H —2n+2it4)

0 )
(AP + Ep7n M) — 2p P N(X + X 1)t2
(1 — pmX282)(1 — p "X 2t2)(1 — pt2)2
1
x b
H?ﬁ—l(l — p2X22)(1 — p~2 X -2£2)(1 — p~2i¢2)2
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where (x, %), denotes the Hilbert symbol over Qp.

On the other hand, by using the same argument as in Theorem 6.1, we
obtain the following;:

Proposition 6.3. Let f and g be a couple of Hecke eigenforms as in § 2.
Then we have

R(s,9) = L(2s — 2k +n+1, £, ad) > _ e (|o])[* |o|~*

0

2
—2s —n— —2s —n— 0 —2s —n—
% H{(1+p 2s+2k 1)(1+ (5) D 2s+2k 2_9 (1—3) af(p)p 2542k 3/2)}’
P

where the summation is taken over all fundamental discriminant 0 € Z such
that (—1)"?%0 > 0.

By combining Theorems 6.1, 6.2 and Proposition 6.3, we can prove The-
orem 5.2. O
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