# Spherical functions on $U(n,n)/(U(n)\times U(n))$ and hermitian Siegel series

#### Yumiko Hironaka

## §0 Introduction

Let k' be an unramified quadratic extension over a non-archimedian local filed k of characteristic 0. We fix a prime element  $\pi$  of k, and the additive value  $v_{\pi}()$  and the normalized absolute value  $| \cdot |$  on  $k^{\times}$ , where  $|\pi|^{-1} = q$  is the cardinality of the residue class field of k. We consider hermitian matrices with respect to the involution \* on k' which is identity on k, and set

$$\mathcal{H}_m = \{ A \in M_m(k') \mid A^* = A \}, \quad \mathcal{H}_m^{nd} = \mathcal{H}_m \cap GL_m(k'), \tag{0.1}$$

where, for a matrix  $A = (a_{ij}) \in M_{mn}(k')$ , we denote by  $A^*$  the matrix  $(a_{ji}^*) \in M_{nm}(k')$ . For  $T \in \mathcal{H}_n^{nd}$ , we define the spaces

$$\mathfrak{X}_T = \{ x \in M_{2n,n}(k') \mid x^* H_n x = T \}, \quad X_T = \mathfrak{X}_T / U(T),$$

where  $H_n = \begin{pmatrix} 0 & 1_n \\ 1_n & 0 \end{pmatrix} \in \mathcal{H}_{2n}$  and  $U(T) = \{g \in GL_n(k') \mid g^*Tg = T\}$ . We consider spherical functions on  $X_T$ , which is isomorphic to  $U(n,n)/(U(T) \times U(T))$  over k, where  $U(n,n) = U(H_n)$  (cf. Lemma 1.1). We consider the following integral

$$\omega_T(\overline{x};s) = \int_K |f_T(kx)|^{s+\varepsilon} dk, \quad (\overline{x} \in X_T, \ s \in \mathbb{C}^n).$$
 (0.2)

Here dk is the normalized Haar measure on  $K = U(n, n) \cap GL_{2n}(\mathcal{O}_{k'})$ ,

$$\varepsilon = (-1, \dots, -1, -\frac{1}{2}) + (\frac{\pi\sqrt{-1}}{\log q}, \dots, \frac{\pi\sqrt{-1}}{\log q}) \in \mathbb{C}^n,$$
$$|f_T(x)|^s = \prod_{i=1}^n |d_i(x_2T^{-1}x_2^*)|^{s_i},$$

where  $x_2$  is the lower half n by n block of  $x \in \mathfrak{X}_T$  and  $d_i(y)$  is the determinant of the upper left i by i block of y. The right hand side of (0.2) is absolutely convergent

2000 Mathematics Subject Classification: Primary 11F85; secondly 11E95, 11F70, 22E50. Key words and phrases: spherical functions, unitary groups, hermitian Siegel series. This research is partially supported by Grant-in-Aid for scientific Research (C):20540029. A full version of this article will appear elsewhere (cf. arXiv: 0904.4304).

if  $\text{Re}(s_i) \geq 1$   $(1 \leq i \leq n-1)$  and  $\text{Re}(s_n) \geq \frac{1}{2}$ , continued to a rational function of  $q^{s_1}, \ldots, q^{s_n}$ , and becomes a common eigen function with respect to the action of Hecke algebra  $\mathcal{H}(G, K)$  with G = U(n, n); thus we have a spherical function on  $X_T$ . It is convenient to introduce the new variable z which is related to s by

$$s_i = -z_i + z_{i+1} \quad (1 \le i \le n-1), \quad s_n = -z_n,$$
 (0.3)

and we write  $\omega_T(\overline{x};z) = \omega_T(\overline{x};s)$ . We denote by W the Weyl group of G with respect to the maximal k-split torus in G, which is is isomorphic to  $S_n \ltimes (C_2)^n$ ,  $S_n$  acts on  $z_i$  by permutation of indices. We denote by  $\Sigma^+$  the set of positive roots of G with respect to the Borel group, and regard it a subset of  $\mathbb{Z}^n$  and write  $\langle \alpha, z \rangle = \sum_{i=1}^n \alpha_i z_i$  for  $\alpha \in \Sigma^+$  (for details, see §2.2).

Our main results in §1 and §2 are the following.

**Theorem 1**(i) For any  $T \in \mathcal{H}_n^{nd}$ , the function

$$\prod_{1 \le i \le j \le n} \frac{(1 + q^{z_i - z_j})}{(1 - q^{z_i - z_j - 1})} \times \omega_T(\overline{x}; z)$$

is holomorphic for all z in  $\mathbb{C}^n$  and  $S_n$ -invariant, and the function

$$|2|^{-z_1-z_2-\cdots-z_n} \prod_{1 \le i \le j \le n} \frac{(1+q^{z_i-z_j})(1+q^{z_i+z_j})}{(1-q^{z_i-z_j-1})(1-q^{z_i+z_j-1})} \times \omega_T(\overline{x}; z)$$

is also holomorphic for all z in  $\mathbb{C}^n$  and W-invariant. In particular the latter is an element in  $\mathbb{C}[q^{\pm z_1},\ldots,q^{\pm z_n}]^W$ .

(ii) For any  $T \in \mathcal{H}_n^{nd}$  and  $\sigma \in W$ , the following functional equation holds

$$\omega_T(x;z) = \Gamma_{\sigma}(z) \cdot \omega_T(x;\sigma(z)), \tag{0.4}$$

where

$$\Gamma_{\sigma}(z) = \prod_{\substack{\alpha \in \Sigma^{+} \\ \sigma(\alpha) < 0}} f_{\alpha}(\langle \alpha, z \rangle), \qquad f_{\alpha}(t) = \left\{ egin{array}{ll} rac{1 - q^{t-1}}{q^{t} - q^{-1}} & \textit{if $\alpha$ is short} \\ |2|^{t} & \textit{if $\alpha$ is long} \end{array} 
ight..$$

In §3, we give an explicit expression for  $\omega_T(x_T; s)$ .

As an application, we consider the hermitian Siegel series in §4. For each  $T \in \mathcal{H}_n$ , the hermitian Siegel series  $b_{\pi}(T;s)$  is defined by

$$b_{\pi}(T;s) = \int_{\mathcal{H}_n(k')} \nu_{\pi}(R)^{-s} \psi(\operatorname{tr}(TR)) dR, \qquad (0.5)$$

where  $\psi$  is an additive character on k of conductor  $\mathcal{O}_k$ , tr() is the trace of matrix and  $\nu_{\pi}(R)$  is the "denominator" of R, which is certain non-negative powers of q (cf. (4.1)) As for Siegel series (for symmetric matrices), F. Sato and the author have given

a new integral expression and related it to a spherical function on the symmetric space  $O(2n)/(O(n) \times O(n))$  (cf. [HS]). In the present paper we develop the similar argument for hermitian Siegel series. Since we know well about the functional equations of spherical functions  $\omega_T(\overline{x};s)$  with respect to W as above, we can bring out the functional equation of  $b_{\pi}(T;s)$  as an application; thus we obtain an integral expression of  $b_{\pi}(T;s)$  and its functional equation.

**Theorem 2**(i) If Re(s) > 2n, one has

$$b_{\pi}(T;s) = \zeta_{n}(k';\frac{s}{2})^{-1} \cdot \int_{\mathfrak{X}_{T}(\mathcal{O}_{k'})} \left| N_{k'/k}(\det x_{2}) \right|^{\frac{s}{2}-n} |\Theta_{T}|(x), \tag{0.6}$$

where  $\mathfrak{X}_T(\mathcal{O}_{k'}) = \mathfrak{X}_T \cap M_{2n,n}(\mathcal{O}_{k'})$ ,  $\zeta_n(k';)$  is the zeta function of the matrix algebra  $M_n(k')$ , and  $|\Theta_T|(x)$  is a certain normalized measure on  $\mathfrak{X}_T$ .

(ii) For any  $T \in \mathcal{H}_n^{nd}$ , one has

$$\frac{b_{\pi}(T;s)}{\prod_{i=0}^{n-1} (1-(-1)^{i}q^{-s+i})} = \chi_{\pi}(\det T)^{n-1} \left| \det(T/2) \right|^{s-n} \times \frac{b_{\pi}(T;2n-s)}{\prod_{i=0}^{n-1} (1-(-1)^{i}q^{-(2n-s)+i})},$$

where  $\chi_{\pi}$  is the character on  $k^{\times}$  determined by

$$\chi_{\pi}(a) = (-1)^{v_{\pi}(a)} = |a|^{\frac{\pi\sqrt{-1}}{\log q}}, \quad a \in k^{\times}.$$

We note here that the above functional equation is related to an element of the Weyl group of U(n,n), which was not the case for symmetric case when n is odd. The existence of functional equation of  $b_{\pi}(T;s)$  was known in an abstract form as functional equations of Whitakker functions of a p-adic group by Karel [Kr](cf. also Kudla-Sweet [KS], Ikeda [Ik]).

## $\S 1$

We follow the notations in the introduction. For  $A \in \mathcal{H}_m$  and  $X \in M_{mn}(k')$ , we write

$$A[X] = X^*AX = X^* \cdot A \in \mathcal{H}_n$$

then our spaces are given for each  $T \in \mathcal{H}_n^{nd}$  by

$$\mathfrak{X}_{T} = \left\{ x \in M_{2n,n}(k') \mid H_{n}[x] = T \right\}, \quad X_{T} = \mathfrak{X}_{T} / U(T),$$

$$x_{T} = \begin{pmatrix} \frac{1}{2}T \\ 1_{n} \end{pmatrix} \in \mathfrak{X}_{T}.$$

$$(1.1)$$

The group G = U(n, n) acts on  $\mathfrak{X}_T$ , as well as on  $X_T$ , through left multiplication, which is transitive by Witt's theorem for hermitian matrices (cf. [Sch], Ch.7, §9). Our first observation is the following.

**Lemma 1.1** The stabilizer subgroup of G = U(n,n) at  $x_TU(T) \in X_T$  is given as

$$\left\{ \left. \widetilde{T}^{-1} \left( \begin{array}{cc} h_1^* & 0 \\ 0 & h_2^* \end{array} \right) \widetilde{T} \, \right| \, h_1, \, h_2 \in U(T) \right\}, \qquad \widetilde{T} = \left( \begin{array}{cc} 1_n & \frac{1}{2}T \\ 1_n & -\frac{1}{2}T \end{array} \right) \in GL_{2n}(k').$$

In particular, the space  $X_T$  is isomorphic to  $G/(U(T) \times U(T))$ .

We fix the Borel subgroup B of G as

$$B = \left\{ \begin{pmatrix} b & 0 \\ 0 & b^{*-1} \end{pmatrix} \begin{pmatrix} 1_n & a \\ 0 & 1_n \end{pmatrix} \middle| \begin{array}{c} b \text{ is upper triangular of size } n, \\ a + a^* = 0 \end{array} \right\}, \tag{1.2}$$

and introduce the B-relative invariants on  $\mathfrak{X}_T$ 

$$f_{T,i}(x) = d_i(x_2 T^{-1} x_2^*) \quad 1 \le i \le n,$$
 (1.3)

associated with k-rational characters  $\psi_i$  of B by

$$f_{T,i}(bx) = \psi_i(b) f_{T,i}(x), \quad \psi_i(b) = N(d_i(b))^{-1},$$
 (1.4)

where  $x_2$  is the lower half n by n block of  $x \in \mathcal{X}_T$ ,  $d_i(y)$  is the determinant of upper left i by i block of y and  $N = N_{k'/k}$ . Since  $f_{T,i}(xh) = f_{T,i}(x)$  for any  $h \in U(T)$ , we understand  $f_{T,i}(x)$  as B-relative invariants on  $X_T$ ,  $1 \le i \le n$ .

**Remark 1.2** It is possible to realize above objects as the sets of k-rational points of algebraic sets defined over k and develop the arguments, but we take down to earth way for simplicity of notations. We only note here that  $X_T$  is isomorphic to  $U(n,n)/(U(n)\times U(n))$  over the algebraic closure  $\overline{k}$  of k and  $\{x\in X_T\mid f_{T,i}(x)\neq 0,\ 1\leq i\leq n\}$  is a Zariski open B-orbit over  $\overline{k}$ , where  $U(n)=U(1_n)$ .

Hereafter, we write an element  $\overline{x} = xU(T)$  in  $X_T$  by its representative x in  $\mathfrak{X}_T$  for simplicity of notations. We set |0| = 0 for the absolute value on  $k^{\times}$  for convenience.

The modulus character  $\delta$  on B (which is characterized by  $d_l(bb') = \delta(b')^{-1}d_l(b)$  for the left invariant measure  $d_l(b)$  on B) is given by

$$\delta^{\frac{1}{2}}(b) = \prod_{i=1}^{n-1} |\psi_i(b)|^{-1} \times |\psi_n(b)|^{-\frac{1}{2}}.$$

Now we introduce the spherical function  $\omega(x;s)$  on  $X_T = \mathfrak{X}_T/U(T)$ 

$$\omega_T(x;s) = \omega_T^{(n)}(x;s) = \int_K |f_T(kx)|^{s+\varepsilon} dk, \qquad (1.5)$$

where dk is the normalized Haar measure on  $K = G \cap GL_{2n}(\mathcal{O}_{k'}), s \in \mathbb{C}^n$ 

$$\varepsilon = (-1, \dots, -1, -\frac{1}{2}) + (\frac{\pi\sqrt{-1}}{\log q}, \dots, \frac{\pi\sqrt{-1}}{\log q}) \in \mathbb{C}^n,$$

$$f_T(x) = \prod_{i=1}^n f_{T,i}(x), \qquad |f_T(x)|^s = \prod_{i=1}^n |f_{T,i}(x)|^{s_i}.$$

The right hand side of (1.5) is absolutely convergent if  $Re(s_i) \ge 1$  ( $1 \le i \le n-1$ ) and  $Re(s_n) \ge \frac{1}{2}$ , continued to a rational function of  $q^{s_1}, \ldots, q^{s_n}$ , and becomes a common eigenfunction with respect to the action of the Hecke algebra  $\mathcal{H}(G, K)$  (cf. [H2], §1).

Since we see

$$\omega_{T[h]}(x;s) = \omega_T(xh^{-1};s), \qquad h \in GL_n(k'), \ x \in \mathfrak{X}_{T[h]}, \tag{1.6}$$

it suffices to consider only for diagonal T's for the study of functional properties of  $\omega_T(x;s)$  (e.g., Theorem 1 in the introduction),

We write  $\omega_T(x;z) = \omega_T(x;s)$  for the new variable z introduced by (1.7). The Weyl group W of G relative to the maximal k-split torus in B acts on rational characters of B as usual (i.e.,  $\sigma(\psi)(b) = \psi(n_{\sigma}^{-1}bn_{\sigma})$  by taking a representative  $n_{\sigma}$  of  $\sigma$ ), so W acts on  $z \in \mathbb{C}^n$  and on  $s \in \mathbb{C}^n$  as well. We will determine the functional equations of  $\omega_T(x;s)$  with respect to this Weyl group action. The group W is isomorphic to  $S_n \ltimes C_2^n$ ,  $S_n$  acts on z by permutation of indices and W is generated by  $S_n$  and  $\tau:(z_1,\ldots,z_n) \longmapsto (z_1,\ldots,z_{n-1},-z_n)$ .

By using a result on spherical functions on the space of hermitian forms((cf. [H1]-§2 or [H3]-§4.2)), we obtain the following.

**Theorem 1.3** For any  $T \in \mathcal{H}_n^{nd}$ , the function

$$\prod_{1 \le i < j \le n} \frac{q^{z_j} + q^{z_i}}{q^{z_j} - q^{z_i - 1}} \times \omega_T(x; z)$$

is holomorphic for any z in  $\mathbb{C}^n$  and  $S_n$ -invariant. In particular it is an element in  $\mathbb{C}[q^{\pm z_1},\ldots,q^{\pm z_n}]^{S_n}$ .

**Remark 1.4** For the transposition  $\tau_i = (i \ i+1) \in W$ ,  $1 \le i \le n-1$ , the following functional equation holds by Theorem 1.3

$$\omega_T(x;z) = \frac{1 - q^{z_i - z_{i+1} - 1}}{q^{z_i - z_{i+1}} - q^{-1}} \times \omega_T(x;\tau_i(z)), \quad 1 \le i \le n - 1.$$
(1.7)

On the other hand, one can obtain (1.8) directly in the similar way to the case of  $\tau$  in § 3, then Theorem 1.3 follows from (1.8).

## **§2**

**2.1.** We fix a unit  $\epsilon \in \mathcal{O}_k^{\times}$  for which  $k' = k(\sqrt{\epsilon})$  and  $\epsilon \in 1 + 4\mathcal{O}_k^{\times}$  if k is dyadic (cf. [Om]-63.3 and 63.4).

**Theorem 2.1** For any  $T \in \mathcal{H}_n^{nd}$ , the spherical function satisfies the following functional equation:

$$\omega_T(x;z) = |2|^{2z_n} \,\omega_T(x;\tau(z)).$$

The case n=1 is easy; we calculate spherical functions explicitly for representatives of  $K_1$ -orbits in  $\mathfrak{X}_T$ , where  $K_1=U(H_1)\cap GL_2(\mathcal{O}_{k'})$ , and obtain the functional equation. For  $n\geq 2$  we take a representative  $w_{\tau}$  of  $\tau\in W$  by

$$w_{ au} = \left( egin{array}{c|ccc} 1_{n-1} & & & & \\ \hline & 0 & & 1 & \\ \hline & 1 & & 0 \end{array} 
ight) \in G,$$

and take the parabolic subgroup  $P = P_{\tau}$  attached to  $\tau$  (cf. [Bo], 21.11)

$$P = B \cup Bw_{\tau}B$$

$$= \left\{ \begin{pmatrix} q & & & \\ & a & b \\ & & q^{*-1} \\ & c & d \end{pmatrix} \begin{pmatrix} 1_{n-1} & \alpha & & \\ & 1 & & \\ & & & 1_{n-1} \\ & & -\alpha^{*} & 1 \end{pmatrix} \begin{pmatrix} 1_{n} & B & \beta \\ & -\beta^{*} & 0 \\ & & 1_{n} \end{pmatrix} \in G \right\}$$

$$q \text{ is upper triangular in } GL_{n-1}(k'),$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U(1,1), \ \alpha, \beta \in M_{n-1,1}(k'),$$

$$B \in M_{n-1}(k'), \ B + B^{*} = 0$$

$$(2.1)$$

where each empty place in the above expression means zero-entry. Hereafter we fix a diagonal  $T \in \mathcal{H}_n^{nd}$ , and write  $f_i(x) = f_{T,i}(x)$  by abbreviating the suffix T. The B-relative invariants  $f_i(x)$  become P-relative invariants associated with  $\psi_i$  except i = n. We consider the following action of  $\widetilde{P} = P \times GL_1$  on  $\widetilde{X}_T = X_T \times V$  with  $V = M_{21}(k')$ :

$$(p,r)\cdot(x,v)=(px,\rho(p)vr^{-1}),$$

where  $\rho(p) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  for the decomposition of  $p \in P$  as in (2.1). For  $(x, v) \in \widetilde{X}_T$ , set

$$g(x,v) = \det \left[ \left( \begin{array}{c|c} 1_{n-1} & x_2 \\ \hline & t_v \end{array} \right) \left( \begin{array}{c} x_2 \\ -y \end{array} \right) \cdot T^{-1} \right],$$

where  $x_2$  is the lower half n by n block of x (the same before) and y is the n-th row of x. Then we obtain

**Lemma 2.2** g(x,v) is a relative  $\widetilde{P}$ -invariant on  $\widetilde{X_T}$  associated with character

$$\widetilde{\psi}(p,r) = N(d_{n-1}(p))^{-1}N(r)^{-1} = \psi_{n-1}(p)N(r)^{-1}, \quad (p,r) \in \widetilde{P} = P \times GL_1,$$

satisfies

$$g(x,v_0)=f_n(x), \qquad v_0=\left(\begin{array}{c}1\\0\end{array}\right),$$

and is expressed as

$$g(x,v) = D(x)[v],$$

with some hermitian matrix

$$D(x) = \begin{pmatrix} a & b + c\sqrt{\epsilon} \\ b - c\sqrt{\epsilon} & d \end{pmatrix}, \quad a, c, d \in k, \ b = -\frac{1}{2}f_{n-1}(x), \ ad = b^2 - c^2\epsilon. \tag{2.2}$$

In order to prove Theorem 2.2, we need the functional equation of the following function

$$\zeta_{K_1}(A;s) = \int_{K_1} |d_1(h \cdot A)|^{s-\frac{1}{2}} dh, \qquad (A \in \mathcal{H}_2, \ s \in \mathbb{C}),$$

where dh is the normalized Haar measure on  $K_1$ .

**Lemma 2.3** Let  $x \in X_T$  such that  $f_T(x) \neq 0$  and D(x) be given by (2.4). Then one has  $\zeta_{K_1}(D(x), s) = |2|^{-2s} |f_{n-1}(x)|^{2s} \zeta_{K_1}(D(x), -s)$ .

Now Theorem 2.2 is proved as follows. By the embedding

$$K_1 \longrightarrow K = K_n, \quad h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \widetilde{h} = \begin{pmatrix} 1_{n-1} & b \\ \hline & a & b \\ \hline & c & d \end{pmatrix},$$

we have

$$\omega_{T}(x;s) = \int_{K_{1}} dh \int_{K} \left| f(\widetilde{h}kx) \right|^{s+\varepsilon} dk$$

$$= \int_{K} \chi_{\pi}(\prod_{i \leq n} f_{i}(kx)) \prod_{i \leq n} \left| f_{i}(kx) \right|^{s_{i}-1} \left( \int_{K_{1}} \chi_{\pi}(f_{n}(\widetilde{h}kx)) \left| f_{n}(\widetilde{h}kx) \right|^{s_{n}-\frac{1}{2}} dh \right) dk.$$

By definition of  $f_n(x)$  and g(x, v) and Lemma 2.3, we see

$$f_n(\widetilde{h}x) = g(x, \begin{pmatrix} d \\ -c \end{pmatrix}) = D(x) \begin{bmatrix} \begin{pmatrix} d \\ -c \end{pmatrix} \end{bmatrix} = d_1(h^{*-1} \cdot D(x)), \quad (h \in K_1),$$

hence we have

$$\omega_T(x;s) = \int_K \chi_\pi(\prod_{i < n} f_i(kx)) \prod_{i < n} |f_i(kx)|^{s_i - 1} \zeta_{K_1}(D(kx); s_n + \frac{\pi\sqrt{-1}}{\log q}) dk.$$

Then the functional equation of  $\omega_T(x;s)$  follows from Lemma 2.4.

**2.2.** We denote by  $\Sigma$  the set of roots of G with respect to the k-split torus of G contained in B and by  $\Sigma^+$  the set of positive roots with respect to B. We may understand

$$\Sigma^{+} = \{ e_i - e_j, \ e_i + e_j \mid 1 \le i < j \le n \} \cup \{ 2e_i \mid 1 \le i \le n \},$$

where  $e_i \in \mathbb{Z}^n$  whose j-th component is given by the Kronecker delta  $\delta_{ij}$ , and the set

$$\Sigma_0 = \{ e_i - e_{i+1} \mid 1 \le i \le n - 1 \} \cup \{ 2e_n \}$$

forms the set of simple roots. We denote by  $\Delta$  the subset of W consisting of the reflections associated to elements in  $\Sigma_0$ . Then  $\Delta = \{\tau_i \mid 1 \le i \le n-1\} \cup \{\tau\}$  generates W. We write  $\alpha < 0$  if  $\alpha \in \Sigma$  is negative. We see the pairing  $\langle , \rangle$  on  $\Sigma \times \mathbb{C}^n$  given by

$$\langle \alpha, z \rangle = \sum_{i=1}^{n} \alpha_i z_i, \qquad (\alpha \in \Sigma, \ z \in \mathbb{C}^n).$$

is W-invariant. Then we obtain

**Theorem 2.4** For  $T \in \mathcal{H}_n^{nd}$  and  $\sigma \in W$ , the spherical function  $\omega_T(x;z)$  satisfies the following functional equation

$$\omega_T(x;z) = \Gamma_{\sigma}(z) \cdot \omega_T(x;\sigma(z)), \tag{2.3}$$

where

$$\Gamma_{\sigma}(z) = \prod_{\substack{\alpha \in \Sigma^+ \\ \sigma(\alpha) < 0}} f_{\alpha}(\langle \alpha, z \rangle),$$

$$f_{lpha}(t) = \left\{ egin{array}{ll} \left| 2 
ight|^t & \emph{if} \quad lpha = 2e_i \quad \emph{for some} \quad \emph{i} \ & \ rac{1-q^{t-1}}{q^t-q^{-1}} & \emph{otherwise}, \end{array} 
ight.$$

in particular, the Gamma factor  $\Gamma_{\sigma}(z)$  does not depend on T nor x.

*Proof.* For an element of  $\Delta$ , we know the Gamma factor by (1.8) and Theorem 2.2. In general, assume that  $\sigma \in W$  has the shortest expression

$$\sigma = \sigma_{\ell} \cdots \sigma_{1}$$

with  $\sigma_i \in \Delta$  associted by some  $\alpha_i \in \Sigma_0$ . Since the Gamma factors satisfy cocycle relations and  $\langle , \rangle$  is W-invariant, we have

$$\Gamma_{\sigma}(z) = \Gamma_{\sigma_{\ell}}(\sigma_{\ell-1}\cdots\sigma_{1}(z))\cdots\Gamma_{\sigma_{2}}(\sigma_{1}(z))\cdot\Gamma_{\sigma_{1}}(z) 
= f_{\alpha_{\ell}}(\langle\alpha_{\ell},\sigma_{\ell-1}\cdots\sigma_{1}(z)\rangle)\cdots f_{\alpha_{2}}(\langle\alpha_{2},\sigma_{1}(z)\rangle)\cdot f_{\alpha_{1}}(\langle\alpha_{1},z\rangle) 
= f_{\alpha_{\ell}}(\langle\sigma_{1}\cdots\sigma_{\ell-1}(\alpha_{\ell}),z\rangle)\cdots f_{\alpha_{2}}(\langle\sigma_{1}(\alpha_{2}),z\rangle)f_{\alpha_{1}}(\langle\alpha_{1},z\rangle).$$

Hence  $\Gamma_{\sigma}(z)$  has the required form, since we have

$$\{\alpha \in \Sigma^+ \mid \sigma(\alpha) < 0\} = \{\sigma_1 \cdots \sigma_{k-1}(\alpha_k) \mid 1 \le k \le \ell\}.$$

Corollary 2.5 Set  $\rho \in W$  by

$$\rho(z_1, \dots, z_n) = (-z_n, -z_{n-1}, \dots, -z_1). \tag{2.4}$$

Then

$$\Gamma_{\rho}(z) = |2|^{2(z_1 + \dots + z_n)} \prod_{1 \le i < j \le n} \frac{1 - q^{z_i + z_j - 1}}{q^{z_i + z_j} - q^{-1}}.$$
 (2.5)

**Remark 2.6** The above  $\rho$  gives the functional equation of the hermitian Siegel series (cf. §4), and it is interesting that such  $\rho$  corresponds to the unique automorphism of the extended Dynkin diagram of the root system of type  $(C_n)$ , which was pointed out by Y. Komori.

By Theorem 1.3 and Theorem 2.5, we obtain the following.

#### Theorem 2.7 Set

$$F(z) = \prod_{lpha \in \Sigma^+} g_lpha(z),$$

where, for  $\alpha \in \Sigma$ ,

$$g_{lpha}(z) = \left\{ egin{array}{ll} |2|^{-rac{\langle lpha,z
angle}{2}} & if \quad lpha = \pm 2e_i \quad for \ some \quad i \ \ rac{1+q^{\langle lpha,z
angle}}{1-q^{\langle lpha,z
angle-1}} & otherwise \end{array} 
ight.$$

Then, for any  $T \in \mathcal{H}_n^{nd}$ , the function  $F(z)\omega_T(x;z)$  is holomorphic for all z in  $\mathbb{C}^n$  and W-invariant. In particular it is an element in  $\mathbb{C}[q^{\pm z_1},\ldots,q^{\pm z_n}]^W$ .

*Proof.* Take any  $\sigma \in \Delta$  associated by  $\alpha \in \Sigma_0$ . Then  $F(z)\omega_T(x;z)$  is  $\sigma$ -invariant, since  $g_{\alpha}(\sigma z) = g_{-\alpha}(z) = g_{-\alpha}(z)$  and  $\Gamma_{\sigma}(z) = g_{-\alpha}(z)/g_{\alpha}(z)$ . Thus,  $F(z)\omega_T(x,z)$  is W-invariant, since  $\Delta$  generates W. Set

$$F_1(z) = \prod_{1 \le i < j \le n} \frac{1 + q^{z_i - z_j}}{1 - q^{z_i - z_j - 1}}, \qquad F_2(z) = |2|^{-z_1 - \dots - z_n} \prod_{1 \le i < j \le n} \frac{1 + q^{z_i + z_j}}{1 - q^{z_i + z_j - 1}}.$$

Then  $F(z) = F_1(z)F_2(z)$  and  $F_1(z)\omega_T(x;z)$  is holomorphic in  $z \in \mathbb{C}^n$  and  $S_n$ -invariant by Theorem 1.3. Hence  $F(z)\omega_T(x;z)$  is holomorphic in  $z \in \mathbb{C}^n$ , since it is W-invariant and holomorphic for certain region e.g.,  $\{z \in \mathbb{C}^n \mid \operatorname{Re}(z_i) \leq 0\}$ .

## $\S 3$

**3.1.** In this section we give an explicit formula of  $\omega_T(x;s)$  at  $x_T$  by using the general formula of Proposition 1.9 in [H2] (or Theorem 2.6 in [H4]). In order to apply it, we have to check several conditions ((A1) – (A4) in [H4]-§1), and it is obvious our  $(B, X_T)$  satisfies them except (A3), which is the same as (C) below.

**Proposition 3.1** The following condition (C) is satisfied.

(C): For  $y \in X_T$  such that  $f_T(y) = 0$ , there exists a character  $\psi \in \langle \psi_i \mid 1 \leq i \leq n \rangle$  whose restriction to the identity component of the stabilizer of B at y is not trivial.

**Theorem 3.2** Let  $T = Diag(\pi^{\lambda_1}, \dots, \pi^{\lambda_n})$  with  $\lambda_1 \geq \lambda_2 \dots \geq \lambda_n \geq v_{\pi}(2)$ . Then

$$\omega_T(x_T; z) = \frac{(-1)^{\sum_i \lambda_i (n-i+1)} q^{\sum_i \lambda_i (n-i+\frac{1}{2})} (1-q^{-2})^n}{\prod_{i=1}^{2n} (1-(-1)q^{-i})} \sum_{\sigma \in W} \gamma(\sigma(z)) \Gamma_{\sigma}(z) q^{\langle \lambda, \sigma(z) \rangle}, \quad (3.1)$$

where  $\langle \lambda, z \rangle = \sum_{i=1}^{n} \lambda_i z_i$ ,  $\Gamma_{\sigma}(z)$  is defined in Theorem 2.5, and

$$\gamma(z) = \prod_{1 \le i < j \le n} \frac{(1 - q^{2z_i - 2z_j - 2})(1 - q^{2z_i + 2z_j - 2})}{(1 - q^{2z_i - 2z_j})(1 - q^{2z_i + 2z_j})} \cdot \prod_{i=1}^n \frac{1 - q^{2z_i - 1}}{1 - q^{2z_i}}.$$

We admit Proposition 3.1 for the moment and prove Theorem 3.2.

The set  $X_T^{op} = \{x \in X_T \mid f_T(x) \neq 0\}$  becomes a disjoint union of B-orbits as follows.

$$X_T^{op} = \bigsqcup_{u \in \mathcal{U}} X_{T,u}, \quad \mathcal{U} = (\mathbb{Z}/2\mathbb{Z})^{n-1},$$
  
 $X_{T,u} = \{ x \in X_T \mid v_{\pi}(f_{T,i}(x)) \equiv u_1 + \dots + u_i \pmod{2}, \quad 1 \le i \le n-1 \}.$ 

We set

$$\omega_{T,u}(x;s) = \int_K |f_T(kx)|_u^{s+\varepsilon} dk,$$

where

$$|f_T(y)|_u^{s+\varepsilon} = \begin{cases} |f_T(y)|^{s+\varepsilon} & \text{if } y \in X_{T,u}, \\ 0 & \text{otherwise} \end{cases}$$

For a character  $\chi = (\chi_1, \dots, \chi_{n-1})$  of  $\mathcal{U}$ , we set

$$L_T(x;\chi;z) = \int_K \chi(f_T(kx)) \left| f_T(kx) \right|^{s+arepsilon} dk = \sum_{u \in \mathcal{U}} \chi(u) \omega_{T,u}(x;z),$$

where  $\chi(u) = \prod_{i=1}^{n-1} \chi_i(u_1 + \cdots + u_i)$ . Adjusting z according to  $\chi$ , by adding  $\frac{\pi\sqrt{-1}}{\log q}$  to  $z_i$  if necessary, we may write

$$L_T(x;\chi;z) = \omega_T(x;z_\chi).$$

Then, by the functional equations of  $\omega_T(x;z)$  (Theorem 2.5), we have

$$L_T(x;\chi;z) = \Gamma_{\sigma}(z_{\chi})L_T(x;\sigma(\chi);\sigma(z)), \qquad \sigma \in W$$
(3.2)

by taking suitable character  $\sigma(\chi)$  of  $\mathcal{U}$ . If  $\chi$  is the trivial character 1, then (3.2) coincides with the original functional equation of  $\omega_T(x;z)$ . We obtain

$$\left(\omega_{T,u}(x_T;z)\right)_u = \left(A^{-1} \cdot G(\sigma,z) \cdot \sigma A\right) \left(\omega_{T,u}(x_T;\sigma(z))\right)_u,$$

where

$$A = (\chi(u))_{\chi,u}, \quad \sigma A = (\sigma(\chi)(u))_{\chi,u} \in GL_{2^n}(\mathbb{Z}),$$

and  $G(\sigma, z)$  is the diagonal matrix of size  $2^n$  whose  $(\chi, \chi)$ -component is  $\Gamma_{\sigma}(z_{\chi})$ . For T given as in Theorem 3.2, we obtain

$$\int_{U} |f_{T}(ux_{T})|^{s+\varepsilon} du = |f_{T}(x_{T})|^{s+\varepsilon}$$

$$= (-1)^{\sum_{i} \lambda_{i}(n-i+1)} q^{\sum_{i} \lambda_{i}(n-i+\frac{1}{2})} q^{\langle \lambda, z \rangle},$$

where U is the Iwahori subgroup of K compatible with B and du is the normalized Haar measure on U. Setting

$$\delta_{u}(x_{T},z) = \begin{cases} (-1)^{\sum_{i} \lambda_{i}(n-i+1)} q^{\sum_{i} \lambda_{i}(n-i+\frac{1}{2})} q^{\langle \lambda, z \rangle} & \text{if } x_{T}U(T) \in X_{T,u} \\ 0 & \text{otherwise,} \end{cases}$$

we have, by Proposition 1.9 in [H2] (or its generalization Theorem 2.6 in [H4]),

$$\left(\omega_{T,u}(x_T;z)\right)_u = \frac{1}{Q} \sum_{\sigma \in W} \gamma(\sigma(z)) \left(A^{-1} \cdot G(\sigma,z) \cdot \sigma A\right) \left(\delta_u(x_T,\sigma(z))\right)_u,$$

where

$$Q = \sum_{\sigma \in W} [U\sigma U : U]^{-1} = \prod_{i=1}^{2n} \left(1 - (-1)^i q^{-i}\right) / (1 - q^{-2})^n.$$

Hence we obtain

$$\omega_T(x_T; z) = \sum_{u \in \mathcal{U}} \mathbf{1}(u)\omega_u(x_T; z)$$

$$= \frac{(-1)^{\sum_i \lambda_i (n-i+1)} q^{\sum_i \lambda_i (n-i+\frac{1}{2})}}{Q} \sum_{\sigma \in W} \gamma(\sigma(z)) \Gamma_{\sigma}(z) q^{\langle \lambda, \sigma(z) \rangle}.$$

**3.2.** In order to prove Proposition 3.1, we consider the action of  $G \times U(T)$  on  $\mathfrak{X}_T$  by  $(g,h) \circ x = gxh^{-1}$ . Then, the stabilizer  $B_y$  of B at  $yU(T) \in X_T$  coincides with the image  $B_{(y)}$  of the projection to B of the stabilizer  $(B \times U(T))_y$  at  $y \in \mathfrak{X}_T$  to B. Hence the condition (C) is equivalent to the following:

(C'): For  $y \in \mathfrak{X}_T$  such that  $f_T(y) = 0$  there exists  $\psi \in \langle \psi_i \mid 1 \leq i \leq n \rangle$  whose restriction to the identity component of  $B_{(y)}$  is not trivial.

It is sufficient to prove the condition (C) (equivalently, (C')) over the algebraic closure  $\overline{k}$ , since, for a connected linear algebraic group  $\mathbb{H}$ ,  $\mathbb{H}(k)$  is dense in  $\mathbb{H}(\overline{k})$ . In the rest of this section, we consider algebraic sets over  $\overline{k}$ , extend the involution \* on k' to  $\overline{k}$  and denote it by  $\overline{\phantom{m}}$ , and write  $\overline{x} = (\overline{x_{ij}})$  for any matrix  $x = (x_{ij})$ . Since  $\mathfrak{X}_T$  is isomorphic to  $\mathfrak{X}_{T[h]}$  by  $x \longmapsto xh$  and  $B_{(x)} = B_{(xh)}$  for  $h \in GL_n$ , we may assume that  $T = 1_n$ . Then, our situation is the following:

$$\mathfrak{X} = \mathfrak{X}_{1_n} = \left\{ x \in M_{2n,n} \mid H_n[x] = 1_n \right\},$$

$$(U(n,n) \times U(n)) \times \mathfrak{X} \longrightarrow \mathfrak{X}, \quad ((g,h),x) \longmapsto (g,h) \circ x = gxh^{-1}.$$

We consider the set

$$\widetilde{\mathfrak{X}} = \left\{ \left. (x, y) \in M_{2n, n} \oplus M_{2n, n} \, \right| \, {}^t y H_n x = 1_n \right\}$$

together with  $GL_{2n} \times GL_n$ -action defined by

$$(g,h) \star (x,y) = (gxh^{-1}, \dot{g}y^th), \quad \dot{g} = H_n^t g^{-1}H_n,$$
 (3.3)

and take the Borel subgroup P of  $GL_{2n}$  by

$$P = \left\{ \left( \begin{array}{cc} p_1 & r \\ 0 & p_2 \end{array} \right) \in GL_{2n} \mid p_1, {}^tp_2 \in B_n, \ r \in M_n \right\},$$

where  $B_n$  is the Borel subgroup of  $GL_n$  consisting of upper triangular matrices.

Then, the embedding  $\iota: \mathfrak{X} \longmapsto \widetilde{\mathfrak{X}}, \ x \longmapsto (x, \overline{x})$  is compatible with the actions, i.e., we have the commutative diagram

$$(U(n,n) \times U(n)) \times \mathfrak{X} \stackrel{\circ}{\longrightarrow} \mathfrak{X}$$

$$\downarrow^{id} \qquad \qquad \downarrow^{\iota} \qquad \qquad \downarrow^{\iota}$$

$$(GL_{2n} \times GL_n) \times \mathfrak{X} \stackrel{*}{\longrightarrow} \mathfrak{X}.$$

For  $(x, y) \in \widetilde{\mathfrak{X}}$  and  $p \in P$ , set

$$\widetilde{f}_i(x,y) = d_i(x_2^t y_2), \quad \widetilde{\psi}_i(p) = \prod_{1 \le j \le i} p_j^{-1} p_{n+j}, \quad (1 \le i \le n),$$

where  $x_2$  (resp.  $y_2$ ) is the lower half n by n block of x (resp. y), and  $p_j$  is the j-th diagonal entry of p. Then for each i, we see

$$\widetilde{f}_{i}((p,r)\star(x,y)) = \widetilde{\psi}_{i}(p)\widetilde{f}_{i}(x,y), \qquad (p,r) \in P \times GL_{n}, 
\widetilde{f}_{i}(x,\overline{x}) = f_{i}(x), \quad (x \in \mathfrak{X}), \quad \widetilde{\psi}_{i}|_{B} = \psi_{i}.$$

We set

$$S = \left\{ (x,y) \in \widetilde{\mathfrak{X}} \,\middle|\, \prod_{i=1}^n \,\widetilde{f}_i(x,y) = 0, \quad (P \times GL_n) \star (x,y) \cap \mathfrak{X} \neq \emptyset \right\}.$$

For  $\alpha = (x, y) \in \widetilde{\mathfrak{X}}$ , we denote by  $H_{\alpha}$  the stabilizer of  $P \times GL_n$  at  $\alpha$ , and by  $P_{\alpha}$  its image of the projection to P. In order to prove the condition (C), it is sufficient to show the following:

 $(\widetilde{C})$ : For each  $\alpha \in \mathcal{S}$ , there exists some  $\psi \in \langle \widetilde{\psi}_i \mid 1 \leq i \leq n \rangle$  whose restriction to the identity component of  $P_{\alpha}$  is not trivial.

We show the condition  $(\widetilde{C})$  by taking suitable representatives by  $P \times GL_n$ -action.

(i) Assume  $\alpha = (x, y) \in \mathcal{S}$  satisfies  $\det(x_2) \neq 0$ . Then, in the  $P \times GL_n$ -orbit containing  $\alpha$ , there is  $\beta = \begin{pmatrix} 0 \\ 1_n \end{pmatrix}, \begin{pmatrix} 1_n \\ h \end{pmatrix}$ ) with some hermitian matrix h, further we may assume

$$h = 1_r \perp \langle 0 \rangle \perp h_1$$
 or  $h = 1_r \perp h_2$ ,

where  $0 \le r \le n-1$ , and for  $h_2$ , there is some i,  $(1 < i \le n-r)$  such that each entry in the first row and column or in the i-th row and column is 0 except at (1,i) or (i,1) which are 1.

Then  $H_{\beta}$  contains the following elements, according to the above type of h,

$$\left(\left(\begin{array}{c|c} \delta_{r+1}(a) & \\ \hline & 1_n \end{array}\right), 1_n\right) \quad \text{or} \quad \left(\left(\begin{array}{c|c} \delta_{r+1}(a) & \\ \hline & \delta_{r+i}(a) \end{array}\right), \delta_{r+i}(a)\right),$$

where  $\delta_j(a)$  is the diagonal matrix in  $GL_n$  whose diagonal entries are 1 except the j-th which is  $a \in GL_1$ . Hence we see  $\widetilde{\psi}_{r+1} \not\equiv 1$  on the identity component of  $P_{\beta}$ .

(ii) The case  $\alpha = (x, y) \in \mathcal{S}$  with  $\det(y_2) \neq 0$  is reduced to the case  $\det(x_2) \neq 0$ , since  $\beta = (y, x) \in \mathcal{S}$  and  $H_{\beta} = \{(\dot{p}, {}^tr^{-1}) \mid (p, r) \in H_{\alpha}\}$  and  $\widetilde{\psi}_i(\dot{p}) = \widetilde{\psi}_i(p)^{-1}$ .

(iii) Assume  $\alpha = (x', y') \in \mathcal{S}$  satisfies  $\det x_2' = \det y_2' = 0$ . Then, in the  $P \times GL_n$ -orbit containing  $\alpha$ , there is some  $\beta = (x, y)$  of the following type: for some integers  $r_i, e_j$  satisfying

$$1 \le r_1 < r_2 < \dots r_{\ell} \le n \quad (1 \le \ell < n),$$
  
 $1 \le e_1 < e_2 < \dots < e_k < n \quad (k = n - \ell),$ 

$$x=\left(\begin{array}{c}x_1\\x_2\end{array}\right)$$
 and  $y=\left(\begin{array}{c}y_1\\y_2\end{array}\right)$  with  $x_i,y_i\in M_n$  is given by

 $x_1: 1$  at  $(r_i, k+i)$ -entry for  $1 \le i \le \ell$  and 0 at any other entry;

 $x_2: 1$  at  $(e_i, i)$ -entry for  $1 \le i \le k$  and 0 at any other entry;

 $y_1$ : the  $e_i$ -th row is the same as in  $x_2$  for  $1 \le i \le k$ , and the j-the column is 0 if j > k;

 $y_2$ : the  $r_i$ -th row is the same as in  $x_1$  for  $1 \le i \le \ell$ , and for each i, any (i, j)-entry is 0 for j > k if some (i, j')-entry is non-zero entry with  $j' \le k$ .

Let D(a) be the diagonal matrix in  $GL_n$  whose *i*-th diagonal entry is  $a \in GL_1$  (resp. 1) if every (i, j)-entry of  $y_2$  is 0 for  $j \leq k$  (resp. otherwise), where the  $r_i$ -th diagonal entry of D(a) is a by this choice. Then  $H_{\beta}$  contains

$$(\left(\begin{array}{c|c} D(a) & \\ \hline & 1_n \end{array}\right), \left(\begin{array}{c|c} 1_k & \\ \hline & a1_\ell \end{array}\right)),$$

and  $\widetilde{\psi}_{r_i} \not\equiv 1$  on the identity component of  $P_{\beta}$ ,  $1 \leq i \leq \ell$ .

## **§4**

We recall the hermitian Siegel series, and give its integral representation and functional equation. Let  $\psi$  be an additive character of k of conductor  $\mathcal{O}_k$ . For  $T \in \mathcal{H}_n(k')$ , the hermitian Siegel series  $b_{\pi}(T;s)$  is defined by

$$b_{\pi}(T;s) = \int_{\mathcal{H}_n(k')} \nu_{\pi}(R)^{-s} \psi(\operatorname{tr}(TR)) dR, \tag{4.1}$$

where tr() is the trace of matrix and  $\nu_{\pi}(R)$  is defined as follows: if the elementary divisors of R with negative  $\pi$ -powers are  $\pi^{-e_1}, \ldots, \pi^{-e_r}$ , then  $\nu_{\pi}(R) = q^{e_1 + \cdots + e_r}$ , and  $\nu_{\pi}(R) = 1$  otherwise (cf. [Sh]-§13).

In the following we assume that T is nondegenerate, since the properties of  $b_{\pi}(T;s)$  can be reduced to the nondegenerate case. We recall the set  $\mathfrak{X}_T$  for  $T \in \mathcal{H}_n^{nd}(k')$ 

$$\mathfrak{X}_T = \mathfrak{X}_T(k') = \{ x \in M_{2n,n}(k') \mid H_n[x] = T \},$$

which is the fibre space  $g^{-1}(T)$  for the polynomial map  $g: M_{2n,n}(k') \longrightarrow \mathcal{H}_n(k'), \ g(x) = H_n[x]$  defined over k. We may take the measure  $|\Theta_T|$  on  $\mathfrak{X}_T$  induced by a k-rational differential form  $\omega$  on  $M_{2n,n}(k')$  satisfying  $\omega \wedge g^*(dT) = dx$  where dT is the canonical

gauge form on  $\mathcal{H}_n(k')$ , dx is the canonical gauge form on  $M_{2n,n}(k')$ . Then the following identity holds (cf. [Ym], [HS]-§2):

$$\int_{\mathfrak{X}_{T}(k')} \phi(x) |\Theta_{T}|(x)$$

$$= \lim_{e \to \infty} \int_{\mathcal{H}_{n}(\pi^{-e})} \psi(-\operatorname{tr}(Ty)) \int_{M_{2n,n}(k')} \phi(x) \psi(\operatorname{tr}(H_{n}[x]y)) dx dy,$$

where  $\phi \in \mathcal{S}(M_{2n,n}(k'))$ , a locally constant compactly supported function on  $M_{2n,n}(k')$  and  $\mathcal{H}_n(\pi^{-e}) = \mathcal{H}_n(k') \cap M_n(\pi^{-e}\mathcal{O}_{k'})$ .

The following lemma can be proved in the similar line to the case of symmetric matrices (cf.  $[HS]-\S 2$ ).

**Lemma 4.1** If Re(s) > n, one has

$$\int_{\mathfrak{X}_{T}(\mathcal{O}_{k'})} \left| N_{k'/k}(\det x_{2}) \right|^{s-n} \left| \Theta_{T} \right| (x)$$

$$= \lim_{\epsilon \to \infty} \int_{\mathcal{H}_{n}(\pi^{-\epsilon}\mathcal{O}_{k'})} \psi(-\operatorname{tr}(Ty)) dy \int_{M_{2n,n}(\mathcal{O}_{k'})} \left| N_{k'/k}(\det x_{2}) \right|^{s-n} \psi(\operatorname{tr}(H_{n}[x]y)) dx.$$
(4.2)

Let us recall the zeta function of the matrix algebra  $M_n(k')$  and its explicit formula:

$$\zeta(k';s) = \int_{M_n(\mathcal{O}_{k'})} |\det x|_{k'}^{s-n} dx = \int_{M_n(\mathcal{O}_{k'})} |N_{k'/k}(\det x)|^{s-n} dx 
= \prod_{i=1}^n \frac{1-q^{-2i}}{1-q^{-2(s-i+1)}}.$$

Then we obtain the following integral expression of hermitian Siegel series, which can be proved in a similar line to the case of Siegel series.

**Theorem 4.2** If Re(s) > 2n, we have

$$b_{\pi}(T;s) = \zeta_{n}(k';\frac{s}{2})^{-1} \times \int_{\mathfrak{X}_{T}(\mathcal{O}_{k'})} \left| N_{k'/k}(\det x_{2}) \right|^{\frac{s}{2}-n} \left| \Theta_{T} \right|(x).$$

We introduce the spherical function on  $X_T$  with respect to the Siegel parabolic subgroup  $P = \left\{ \left( \begin{array}{cc} a & b \\ 0 & d \end{array} \right) \in G \ \middle| \ a,b,d \in M_n(k') \right\}$  by

$$\tilde{\omega}_T(x;s) = \int_K |N_{k'/k}(\det(kx)_2)|^{s-n} dk.$$

Then we have

$$\tilde{\omega}_T(x;s) = |\det T|^{s-n} \, \omega_T(x; 1 - \frac{\pi\sqrt{-1}}{\log q}, \dots, 1 - \frac{\pi\sqrt{-1}}{\log q}, s - n + \frac{1}{2} - \frac{\pi\sqrt{-1}}{\log q}), \tag{4.3}$$

which is holomorphic for  $s \in \mathbb{C}$  by Theorem 1.3. Next proposition shows the relation between hermitian Siegel series and spherical functions.

**Proposition 4.3** Denote the K-orbit decomposition of  $\mathfrak{X}_T(\mathcal{O}_{k'})$  as

$$\mathfrak{X}_T(\mathcal{O}_{k'}) = \sqcup_{i=1}^r Kx_i.$$

Then one has

$$b_{\pi}(T; s) = \zeta_{n}(k'; \frac{s}{2})^{-1} \cdot \sum_{i=1}^{r} c_{i} \tilde{\omega}_{T}(x_{i}; \frac{s}{2}), \quad c_{i} = \int_{Kx_{i}} |\Theta_{T}|(y).$$

By Proposition 4.3 and Corollary 2.6, we obtain the following functional equation of hermitian Siegel series.

#### Theorem 4.4

$$\frac{b_{\pi}(T;s)}{\prod_{i=0}^{n-1} (1-(-1)^{i}q^{-s+i})} = \chi_{\pi}(\det T)^{n-1} \left| \det(T/2) \right|^{s-n} \times \frac{b_{\pi}(T;2n-s)}{\prod_{i=0}^{n-1} (1-(-1)^{i}q^{-(2n-s)+i})}.$$

#### References

- [Bo] A. Borel: Linear Algebraic Groups, Second enlarged edition, Graduate Texts in Mathematics 126, Springer, 1991.
- [H1] Y. Hironaka: Spherical functions of hermitian and symmetric forms III, *Tôhoku Math. J.* **40**(1988), 651–671.
- [H2] Y. Hironaka: Spherical functions and local densities on hermitian forms, J. Math. Soc. Japan 51(1999), 553 581.
- [H3] Y. Hironaka: Functional equations of spherical functions on p-adic homogeneous spaces, Abh. Math. Sem. Univ. Hamburg 75(2005), 285 311.
- [H4] Y. Hironaka: Spherical functions on p-adic homogeneous spaces, preprint, 2008, arXiv:0904.0102.
- [HS] Y. Hironaka and F. Sato: The Siegel series and spherical functions on  $O(2n)/(O(n) \times O(n))$ , "Automorphic forms and zeta functions Proceedings of the conference in memory of Tsuneo Arakawa –", World Scientific, 2006, p. 150 169.
- [Ik] T. Ikeda: On the lifting of hermitian modular forms, Comp. Math.114 (2008), 1107-1154.
- [Kr] M. L. Karel: Functional equations of Whittaker functions on *p*-adic groups, *Amer. J. Math.* **101**(1979), 1303 –1325.
- [Om] O. T. O'Meara: Introduction to quadratic forms, Grund. math. Wiss. 117, Springer-Verlag, 1973.

- [KS] S. S. Kudla and W. J. Sweet: Degenerate principal series representations for U(n, n), Israel J. Math. 98 (1997), 253 -306.
- [Sch] W. Scharlau: Quadratic and hermitian forms, Grund. math. Wiss. 270, Springer-Verlag, 1985.
- $[Sh] \ \ G. \ Shimura: \ \textit{Euler products and Eisenstein series}, \ CBMS \ \textbf{93} \ (AMS), \ 1997.$
- [Ym] T. Yamazaki: Integrals defining singular series, Memoirs Fac. Sci. Kyushu Univ.37(1983), 113 128.

#### Yumiko Hironaka

Department of Mathematics, Faculty of Education and Integrated Sciences, Waseda University,

Nishi-Waseda, Tokyo 169-8050, JAPAN.