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Spherical functions on U(n,n)/ (U(n) x U(n)) and

hermitian Siegel series

Yumiko Hironaka

80 Introduction

Let k' be an unramified quadratic extension over a non-archimedian local filed & of charac-
teristic 0. We fix a prime element 7 of k, and the additive value v,( ) and the normalized
absolute value | | on k¥, where |r|™! = ¢ is the cardinality of the residue class field of k.
We consider hermitian matrices with respect to the involution * on k' which is identity
on k, and set

Hp={A€ My(K)| A*= A}, HM=H,NGLn(k), (0.1)

where, for a matrix A = (a;;) € Mmn(k'), we denote by A* the matrix (a;*) € M (K.
For T € H™, we define the spaces

Xr = {LL' € Mgn,n(k') | Z*an = T}, Xr = %T/U(T),

10 l(;l ) € Hon and U(T) = {g € GL.(K')| g*Tg =T}. We consider

spherical functions on X7, which is isomorphic to U(n,n)/ (U(T) x U (T")) over k, where
U(n,n) = U(Hy) (cf. Lemma 1.1). We consider the following integral

where H, =

wr(F; 8) = /K fr(k2)|™ dk, (% € X, 5 € CP). (0.2)

Here dk is the normalized Haar measure on K = U(n,n) N GLg,(Oy),

€=(_17"'7—1)_%)+(ﬂ\/__1 ﬂ\/:l—)ecna

logg 7" " logg

r@))" = [T ldi (@1 ap)],

where z, is the lower half n by n block of * € Xr and d;(y) is the determinant of
the upper left ¢ by 7 block of y. The right hand side of (0.2) is absolutely convergent
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if Re(s;) > 1 (1 <1 < n—1) and Re(sp) 2 %, continued to a rational function of
¢*',...,q¢*", and becomes a common eigen function with respect to the action of Hecke
algebra H(G,K) with G = U(n,n); thus we have a spherical function on Xg. It is

convenient to introduce the new variable z which is related to s by
si=—zi+zin (1<i<n—1), 8s,=—2n, (0.3)

and we write wr(T; 2) = wr(T;s). We denote by W the Weyl group of G' with respect to
the maximal k-split torus in G, which is is isomorphic to S, x (C2)", S, acts on z; by
permutation of indices. We denote by X% the set of positive roots of G with respect to
the Borel group, and regard it a subset of Z™ and write (o, z) = Y, a;z; for o € &F
(for details, see §2.2).

Our main results in §1 and §2 are the following.

Theorem 1(i) For any T € H™¢, the function

H ((1 + QZi_zj) % wT(E; Z)

1 — qzi—Zj—l)

1<i<j<n

is holomorphic for all z in C" and S,-invariant, and the function

2 —Zge——2 1 zi—z5\(1 zit2z;
g ] (( +g%7%)(1 + g% 7)) X wp(T: 2)

s =g ) = g5
is also holomorphic for all z in C* and W -invariant. In particular the latter is an element
in Clg*t™, ..., ¢ W.

(ii) For any T € H and 0 € W, the following functional equation holds

wr(z; 2) = To(2) - wr(z; 0(2)), (0.4)
where
l—ﬁ if a is short
To(2) = [] falla,2),  fal®)=1Q ¢ —q* :
acTt 12|° if a is long

o(a)<0

In §3, we give an explicit expression for wr(zr;s).

As an application, we consider the hermitian Siegel series in §4. For each T € H,, the
hermitian Siegel series b,(T; s) is defined by

b (T 5) = /H V(R pHTR)AR, (0.5)

where ¥ is an additive character on k of conductor Oy, tr( ) is the trace of matrix
and v,(R) is the "denominator” of R, which is certain non-negative powers of g (cf.
(4.1)) As for Siegel series (for symmetric matrices), F. Sato and the author have given
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a new integral expression and related it to a spherical function on the symmetric space
O(2n)/(O(n) x O(n)) (cf. [HS]). In the present paper we develop the similar argument
for hermitian Siegel series. Since we know well about the functional equations of spherical
functions wr(Z; s) with respect to W as above, we can bring out the functional equation
of b.(T';s) as an application; thus we obtain an integral expression of b,(T’;s) and its
functional equation.

Theorem 2(i) If Re(s) > 2n, one has

S S_n

b.,r(T, S) = Cn(k),; 5)—1 . / ,Nk,/k(det .’L'z)lz l@Tl (Z), (06)
X1 (Oy)

where Xp(Og) = Xr N Maono(Ok), (K5 ) is the zeta function of the matriz algebra

M, (K'), and |Or| (x) is a certain normalized measure on Xr.

(ii) For any T € H"%, one has

be(T; ) 4 s—n b (T;2n — s)
— : — = X.(det T)" ™" |det(T/2)| X , )
FL‘:O1 (1= (=1)ig—s*%) Hz':ol 1 — (—1)ig=Cn-9)+i)

where X is the character on k* determined by

Xr(a) = (=1)v(@) = |a|%§ , aé€k.

We note here that the above functional equation is related to an element of the Weyl
group of U(n,n), which was not the case for symmetric case when n is odd. The existence
of functional equation of b,(7’; s) was known in an abstract form as functional equations
of Whitakker functions of a p-adic group by Karel [Kr](cf. also Kudla-Sweet [KS], Ikeda

[Ik]).

81
We follow the notations in the introduction. For A € H,, and X € M,,(k'), we write
AX]|=X"AX = X*- A€ H,,
then our spaces are given for each T € H?¢ by
Xr = {2 € Mynn(K) | Hola] =T}, Xr=%2/U(T), (1)

1
ET‘—‘(Q]‘T)G%T.

The group G = U(n,n) acts on X7, as well as on X7, through left multiplication, which
is transitive by Witt’s theorem for hermitian matrices (cf. [Sch], Ch.7, §9). Our first
observation is the following.
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Lemma 1.1 The stabilizer subgroup of G = U(n,n) at xrU(T) € Xr is given as
=1 ht 0 \& =_ (1. 3T :
{T ( o ny )T|mmev@y,  T=(1 g ) eGLu)
In particular, the space X is isomorphic to G/ (U(T) x U(T)).

We fix the Borel subgroup B of G as

. b O 1, a b is upper triangular of size n,
B‘{(o b*—l)(o 1n> a+ar=0 o (12
and introduce the B-relative invariants on Xr
fri(z) = di(z.T7'zy) 1<i<n, (1.3)

associated with k-rational characters v¢; of B by

fri(bz) = ¥i(b) fri(z), i(b) = N(di(b))™", (1.4)

where x, is the lower half n by n block of x € X1, d;(y) is the determinant of upper left ¢
by i block of y and N = Ny . Since fr;(zh) = fri(z) for any h € U(T'), we understand
fri(z) as B-relative invariants on Xp, 1 <7 < n.

Remark 1.2 It is possible to realize above objects as the sets of k-rational points of
algebraic sets defined over k and develop the arguments, but we take down to earth way for
simplicity of notations. We only note here that X7 is isomorphic to U(n,n)/(U(n) xU(n))
over the algebraic closure k of k and {z € Xr | fri(z) #0, 1 <14 < n} is a Zariski open
B-orbit over k, where U(n) = U(1,).

Hereafter, we write an element T = zU(T) in X7 by its representative x in X1 for
simplicity of notations. We set |0} = O for the absolute value on k* for convenience.

The modulus character § on B (which is characterized by d;(bb’) = 6(b')~*d;(b) for the
left invariant measure d;(b) on B) is given by

#0) = [T )™ x bud)

Now we introduce the spherical function w(z;s) on X7 = X7 /U(T)

wr(z;8) = Wi (z;5) = / | fr(ka)|** dk, (1.5)
K
where dk is the normalized Haar measure on K = G N GL3p(Ok), s € C*
e=(-1,....-1,-D+(5=,..., 55 e Cn,

fr(z) = HfT,i(I), |fr(z)|® = H | fri(2)|%
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The right hand side of (1.5) is absolutely convergent if Re(s;) > 1 (1 < ¢ < n —1)

and Re(s,) > %, continued to a rational function of ¢*!, ..., ¢*", and becomes a common

eigenfunction with respect to the action of the Hecke algebra H(G, K) (cf. [H2], §1).
Since we see

wrin(@; 8) = wp(zh™;s), h € GL,(K'), x € Xy, (1.6)

it suffices to consider only for diagonal T”s for the study of functional properties of wr(z; s)
(e.g., Theorem 1 in the introduction),

We write wr(z;2) = wr(z;s) for the new variable z introduced by (1.7). The Weyl
group W of G relative to the maximal k-split torus in B acts on rational characters of
B as usual (i.e., o(¥)(b) = ¢(n;'bn,) by taking a representative n, of o), so W acts on
z € C" and on s € C" as well. We will determine the functional equations of wr(z;s)
with respect to this Weyl group action. The group W is isomorphic to S, X C?, S,
acts on z by permutation of indices and W is generated by S, and 7 : (215 .., 2n) —
(21, .y 2Zn—1, —2n).

By using a result on spherical functions on the space of hermitian forms((cf. [H1]-§2
or [H3]-§4.2)), we obtain the following.

Theorem 1.3 For any T € H™, the function
24 Z5
H _q_]_i—i__ x LUT(.’E; Z)

2 — z;—1
1<i<j<n q q

is holomorphic for any z in C* and S,-invariant. In particular it is an element in
Clg*=, ..., g**]5,

Remark 1.4 For the transposition 7; = (i i+ 1) € W, 1< i < n — 1, the following
functional equation holds by Theorem 1.3

1 — qz,'~z,'+1——1 '
g g1 X er(@m(2), 1<isn-L (1.7)

wr(z; z) =

On the other hand, one can obtain (1.8) directly in the similar way to the case of 7 in
§ 3, then Theorem 1.3 follows from (1.8).

§2

2.1. We fix a unit € € Of for which k¥’ = k(\/€) and ¢ € 1 + 407 if k is dyadic (cf.
[Om]-63.3 and 63.4).

Theorem 2.1 For any T € H™, the spherical function satisfies the following functional
equation:
wr(z; 2) = |21 wr(z; 7(2)).
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The case n = 1 is easy; we calculate spherical functions explicitly for representatives

of K;-orbits in X7, where Ky = U(H;) N GL2(Ok), and obtain the functional equation.
For n > 2 we take a representative w, of 7 € W by

1n—1
0 1
ln—l

0
and take the parabolic subgroup P = P, attached to 7 (cf. [Bo], 21.11)
P =BUBw.B

g
~]
Il

€ G,

1

q ln—l 8]
a b 1 1, B* b
= 1 1 _,3 O E G
q n—1 l 1
c d l —a* 1 "

q is upper triangular in GL,_(k'),

@ Z ) e U(1,1), a,8 € Ma_11(K), ¥, (2.1)

Be M, (k'), B+B*=0

where each empty place in the above expression means zero-entry. Hereafter we fix a
diagonal T' € H™®, and write fi(z) = fr:(x) by abbreviating the suffix 7. The B-relative
invariants f;(z) become P—relatlve invariants associated with ; except ¢ = n. We consider
the following action of P=Px GL,on Xr = X7 x V with V = Mo, (K'):

(p,7) - (z,v) = (pz, p(p)vr™?),

where p(p) = ( CCL Z ) for the decomposition of p € P as in (2.1). For (z,v) € Xr, set

g(z,v) = det K In-1 - ) ( i ) .T—l],

where x5 is the lower half n by n block of z (the same before) and y is the n-th row of z.
Then we obtain

Lemma 2.2 g(z,v) is a relative P-invariant on X1 associated with character

(0, 7) = N(dn-1(p))"'N(r) ™t = s (p)N(r)™2, (p,r) € P=P x GL,,

satisfies
sz =l w=(g ),

and is expressed as

g(:c,v) = D(l‘)[’v],

with some hermitian matriz

a b+ cye 1
D(x) = ( b—C\/ﬁ_ d\/_ ) ; a,cd€k, b= _Efn—l(x),~ ad = b — . (22)
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In order to prove Theorem 2.2, we need the functional equation of the following func-
tion

i (As ) :/ di(h- A dh, (A€ My, seC),
K

where dh is the normalized Haar measure on Kj.

Lemma 2.3 Let z € Xr such that fp(z) # 0 and D(x) be given by (2.4). Then one has
gKl (D(CIJ), 5) = |2[—2S Ifn—l(w)'zs CK1 (D(.’E), _S)'

Now Theorem 2.2 is proved as follows. By the embedding

1n—1
R S R e e
c d
we have
wr(z;s) = /th/K lf(lNzkx)'s+€dk
= /KXW(Hfi(kx))H | fi(kz)[* (/K X (fn(RET)) fn(ﬁkx)‘sn_idh) dk.

By definition of f,(z) and g(x,v) and Lemma 2.3, we see

flba) = ot (4 ) =@ [(4)] =t @), e
hence we have

wr(z;s) = /K o LT k) [ 1£:(k2)[* 7 Crer(D(ka); 50 + D)k

i<n i<n
Then the functional equation of wr(z; s) follows from Lemma 2.4. ]

2.2. We denote by X the set of roots of G with respect to the k-split torus of G contained
in B and by X* the set of positive roots with respect to B. We may understand

Tt = {e; — e, e,-+e?| 1<i<j<n}u{2e|1<i<n},
where e; € Z™ whose j-th component is given by the Kronecker delta d;;, and the set
20={6i—6i+1| 1 SZSn—l}U{Qen}

forms the set of simple roots. We denote by A the subset of W consisting of the reflections
associated to elements in ¥y. Then A = {7;| 1 <i < n — 1}U{r} generates W. We write
a < 0if a € ¥ is negative. We see the pairing {, ) on ¥ x C" given by

(,2) =Y iz, (a€X, z€C).
i=1

is W-invariant. Then we obtain
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Theorem 2.4 For T € H™ and 0 € W, the spherical function wr(z;z) satisfies the
following functional equation

wr(z; 2) = Ty(2) - wr(z; 0(2)), (2.3)
where

To(2) = [] falla,2))

acnt
o(a)<0
12|° if a=2e; forsome i
fa=91-¢7' .
-(?_:F otherwise,

in particular, the Gamma factor T',(z) does not depend on T nor x.

Proof. For an element of A, we know the Gamma factor by (1.8) and Theorem 2.2.
In general, assume that ¢ € W has the shortest expression

o =0¢ 01,

with o; € A associted by some a; € L. Since the Gamma factors satisfy cocycle relations
and (, ) is W-invariant, we have

L,(2) = TDo0e-1--01(2)) - -Tsy(01(2)) - To,(2)
= for({og,00-1---01(2))) -+ for ({2, 01(2)}) - fou ({1, 2))
= fae(<01"'gl—1(al)> >) faz(( 1(02),Z>)fa1(<a1,z>).

Hence I',(2) has the required form, since we have

{aGE"'I ola) <0} ={o1--or-1(on) | 1 < k< £}

|
Corollary 2.5 Set pe W by
p(zl,...,zn) = (—zn,—zn_l,...,—zl). (24)
Then
rttan 1 — gotal
O | G (25)

1<i<j<n

Remark 2.6 The above p gives the functional equation of the hermitian Siegel series
(cf. §4), and it is interesting that such p corresponds to the unique automorphism of the
extended Dynkin diagram of the root system of type (C,), which was pointed out by
Y. Komori.

By Theorem 1.3 and Theorem 2.5, we obtain the following.



149

Theorem 2.7 Set

Fiz) = [] (2.

aeX+

where, for a € ¥,

(o, 2)
12|72 if a=x2e; for some 1
9a(2) = 1+ q(a,2> _
m_—l otherwise

Then, for any T € H™, the function F(z)wr(z;z) is holomorphic for all z in C* and
W -invariant. In particular it is an element in Clg=*, ..., ¢¥*= V.

Proof. Take any o € A associated by a € Xo. Then F(2)wr(x; z) is o-invariant,
since ga(02) = goa(2) = g-a(2) and Ts(2) = g-a(2)/ga(2). Thus, F(z)wr(z,z) is W-
invariant, since A generates W. Set

1+ g% e 14 g%t%
Fi(z)= H T__.g__.__ Fy(2) = |27 2Zn H I’ S

PR 1— gu+s—1
1<i<j<n 1<i<j<n

Then F(z) = Fi(2)Fy(2) and Fi(2)wr(z; z) is holomorphic in z € C™ and S,-invariant by
Theorem 1.3. Hence F(z)wr(x; 2) is holomorphic in z € C”, since it is W-invariant and
holomorphic for certain region e.g., {z € C* | Re(z;) < 0}. 5

83

3.1. In this section we give an explicit formula of wr(z;s) at zr by using the general
formula of Proposition 1.9 in [H2] (or Theorem 2.6 in [H4]). In order to apply it, we have
to check several conditions ((A1) — (A4) in [H4]-§1), and it is obvious our (B, Xr) satisfies
them except (A3), which is the same as (C) below.

Proposition 3.1 The following condition (C) is satisfied.
(C) : Fory € Xp such that fr(y) = 0, there ezists a character ¥ € (¢; | 1 < i < n)
whose restriction to the identity component of the stabilizer of B at y is not trivial.

Theorem 3.2 Let T = Diag(n™,..., ) with A\; > Ag-+ = A 2 vr(2). Then

— 1) diln—i+1) 032, Ai(n—i+3) 1 —g-2)" .
( ) l—I2n (ql _ (—l)q—’§ 9 ) Z ’Y(O'(Z))FG(Z)Q<A’ ( )>a (31)
i=1 oeW

where < A\, z >= Y . Nz;, ['o(2) is defined in Theorem 2.5, and

wr(zr; 2) =

2z;~1

1 — q2zi—2zj—2 1— q2z¢+2zj——2 n 1— q

(1 — q2z,-—2zj)(1 — q2z.;+2zj) 1 — q2z,- )

1<i<j<n i=1
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We admit Proposition 3.1 for the moment and prove Theorem 3.2.
The set X7¥ = {z € Xr | fr(z) # 0} becomes a disjoint union of B-orbits as follows.

xX#F =\ | Xrw U=(z2/22)"7,
ueU
Xru={z€Xr| v:(fri(z)) =ur+---+u; (mod2), 1<i<n-—1}.

We set

wp (T 8) = / | Fr(ka)|5Fe dk,
K

where e
ie | fr(y)| if y € X1,

0 otherwise .

For a character x = (x1,-..,Xn-1) of U, we set

Lr(einiz) = [ x(frka)) (ko)™ dk = 3 x(uwra(ai2),

K uel

where x(u) = H;:ll xi(uy + - -+ + u;). Adjusting z according to x, by adding —"foég% to z;
if necessary, we may write

Lr(z; x5 2) = wr(T; 2y )
Then, by the functional equations of wr(x;z) (Theorem 2.5), we have

Lr(z;x;2) = To(2y) Lr(z; 0(x); 0(2)), ceW (3.2)

by taking suitable character a(x) of Y. If x is the trivial character 1, then (3.2) coincides
with the original functional equation of wr(z;z). We obtain

(wru(zT; 2)), = (A7 - G(o, 2) - 0 A) (wru(zT; 0(2))),
where
A= (xW)xu A= (0(x)(u))xu € GL(Z),

and G(o, z) is the diagonal matrix of size 2" whose (x, x)-component is I';(2,). For T
given as in Theorem 3.2, we obtain

./UlfT(umT”H.edu = |fr(zr)"**
_— (_I)Zi'\i(n“i+1)qzi)\i(n—i+%)q<z\,z>,

where U is the Iwahori subgroup of K compatible with B and du is the normalized Haar
measure on U. Setting

Ou(zT, 2) =
0 otherwise,
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we have, by Proposition 1.9 in [H2] (or its generalization Theorem 2.6 in [H4]),

(Wru(er; 2)), = % > 2(0(2) (A7 G(o,2) - 0 4) (Bu(ar,0(2))),,,

ocEW
where .
Q= Z [UoU : U™t = H (1 — (_1)iq—i) /(1 — g
ceW i=1

Hence we obtain

wr(zr;z) = Zl(u)wu(:vT;z)
ueld
(_1)Zi/\,-(n—i+1)qzi/\i(n—i-l—%)

= 0 > Vo()To(2)g >,
oceW

3.2. In order to prove Proposition 3.1, we consider the action of G x U (T) on X7 by
(9,h) oz = gzh™'. Then, the stabilizer B, of B at yU(T) € X coincides with the image
Byy) of the projection to B of the stabilizer (B x U(T)), at y € Xp to B. Hence the
condition (C') is equivalent to the following:

(C') : For y € X7 such that fr(y) = 0 there exists ¢ € (¢; | 1 <4 < n) whose restriction
to the identity component of By, is not trivial.

It is sufficient to prove the condition (C) (equivalently, (C")) over the algebraic closure ,
since, for a connected linear algebraic group H, H(k) is dense in H(%). In the rest of this
section, we consider algebraic sets over &, extend the involution % on &’ to k and denote
it by —, and write T = (Z7;) for any matrix z = (z;;). Since Xy is isomorphic to X1 by
z —— zh and By = Bp) for h € GL,,, we may assume that T = 1,,. Then, our situation
is the following:

3: = .’fln = {.’L‘ (= Mgn,n I Hn[’L'] = 1n},
(Un,n) xU(n)) x X — X, ((9,h),z) — (g,h) oz = gzh™".

We consider the set
X= {(z,9) € Mann ® Mo, | tyHyz = 1.}
together with GL,, X GL,-action defined by
(9:h) % (2,9) = (92h™", gu'h), g = Hy'g ™ H, (3:3)

and take the Borel subgroup P of GLén by

P T
P = € GLoy,
(5 5 ) e

where B, is the Borel subgroup of G L, consisting of upper triangular matrices.

p17tp2 € Bna r e Mn} )
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Then, the embedding ¢ : X —— X, z— (z,T) is compatible with the actions, i.e., we
have the commutative diagram

(U(n,n) xU(n)) x X — X
l""’ l l
(GLygn x GL,) x X — X

For (z,y) € X and p € P, set

fiz,y) = di(z2'ye), wi@)= [] pj'prssy (1 <i<m),

1<5<i

where x5 (resp. yz) is the lower half n by n block of = (resp. y), and p; is the j-th diagonal
entry of p. Then for each i, we see

(@) * (@) =GP fi(z.9),  (p.7) € P x GLa,
f,(.’L‘,:’f) = i(m)v ($ € x)v "/’ilB = IZJ,

We set

n

II fi@v) =0, (Px GLn)*(m,y)ﬂ.’i;é(Z)}.

i=1

= {(x,y) €Xx

For a = (z,y) € 3;", we denote by H, the stabilizer of P x GL, at «, and by F, its image
of the projection to P. In order to prove the condition (C), it is sufficient to show the
following:

(6’) : For each o € S, there exists some ¥ € (Jz | 1 <4 < n) whose restriction to the
identity component of P, is not trivial.

We show the condition (5) by taking suitable representatives by P x GL,-action.
(i) Assume o = (z,y) € S satisfies det(z2) # 0. Then, in the P X G L,-orbit containing

a, there is G = (( 10 ) , ( 1; )) with some hermitian matrix h, further we may assume
n

h=1,1(0)Lh; or h=1,Lhs,

where 0 < r < n — 1, and for hy, there is some i, (1 < i < n — r) such that each entry in
the first row and column or in the i-th row and column is 0 except at (1,%) or (2, 1) which
are 1.

Then Hp contains the following elements, according to the above type of h,

(( or+1(a) - ) 1) or (< dr+1(a) |‘ ey ) 6,44(a)),

where J,(a) is the diagonal matrix in GL, whose diagonal entries are 1 except the j-th
which is a € GL;. Hence we see 9,4, Z 1 on the identity component of Pj.
(ii) The case a = (z,y) € S with det(yz) # O is reduced to the case det(x3) # 0, since

B=(y,z) €S and Hg = {(p,'r™") | (p,7) € Ha} and 4(p) = %(p) ™"
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(iii) Assume o = (2,7y') € S satisfies det ), = dety, = 0. Then, in the P x GL,,-
orbit containing c, there is some § = (x,y) of the following type: for some integers r;, €;
satisfying

1<r<re<-ory<n (1<4<mn),
1<ei<er<---<e<n (k=n-—1¥),

T = ( 2 ) and y = ( z; ) with z;,y; € M,, is given by
xy: 1 at (r;,k+1)-entry for 1 <¢ < ¢ and 0 at any other entry;
xz: 1 at (e;,1)-entry for 1 <7 < k and 0 at any other entry;
Y1 : the e;-th row is the same as in z3 for 1 <7 < k, and the j-the column is 0 if
J>k;
Y2 : the 7;-th row is the same as in z; for 1 <4 < ¢, and for each i, any (4, j)-entry
is 0 for j > k if some (%, j')-entry is non-zero entry with j' < k.

Let D(a) be the diagonal matrix in GL,, whose i-th diagonal entry is a € GL, (resp. 1)
if every (4, j)-entry of y, is O for j < k (resp. otherwise), where the r;-th diagonal entry
of D(a) is a by this choice. Then Hjs contains

() (e

and 17;7'1' # 1 on the identity component of Pz, 1 < i < . ]
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We recall the hermitian Siegel series, and give its integral representation and functional
equation. Let 9 be an additive character of k of conductor Or. For T € H,(K'), the
hermitian Siegel series b,(T’; s) is defined by

bo(T ) = /H oy B (TR, (4.1)

where tr( ) is the trace of matrix and v, (R) is defined as follows: if the elementary divisors
of R with negative m-powers are 77°, ..., 7%, then v (R) = ¢+ ¢ and v, (R) = 1
otherwise (cf. [Sh]-§13).

In the following we assume that T is nondegenerate, since the properties of b,(T’; s)
can be reduced to the nondegenerate case. We recall the set Xr for T' € H (k)

Xr = Xp(K) = {2 € Monn(K') | Halz] =T},

which is the fibre space g=!(T") for the polynomial map g : Mo, n(k') — Hn(K'), g(z) =
H,[z] defined over k. We may take the measure |©7| on ¥r induced by a k-rational
differential form w on My, (k') satisfying w A g*(dT) = dz where dT is the canonical
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gauge form on H,(k'), dz is the canonical gauge form on My, ,(k'). Then the following
identity holds (cf. [Ym], [HS]-§2):

/ 6(z) [Or] (z)
X7 (k")
~ lim Y(=tx(Ty)) / &(2)(tr(Holzly))dzdy,

€00 Hn(‘l'l’—e) M2n,n(k,)

where ¢ € S(Ma, .(k')), a locally constant compactly supported function on Map (k')
and H,(77¢) = H, (k') N M,(77*O).

The following lemma can be proved in the similar line to the case of symmetric matrices

(cf. [HS]-§2).

Lemma 4.1 If Re(s) > n, one has

[ Newldetz) ™ 0nl () (42)

X7 (Or)

= lim Y(—tr(Ty))dy / | Nirji(det 32)|* " ¥ (tr( Hy[z]y) )da.
e—+00 Hn(m—eO) Man,n(Or)

Let us recall the zeta function of the matrix algebra M, (k') and its explicit formula:

C(k';s) = / |det z|;, " dz = / | N ji(det 2)|”" dz
Mn(Op) (O
n 1— q—2i
- H 1 — g=2(s—i+D)"

=1

Then we obtain the following integral expression of hermitian Siegel series, which can be
proved in a similar line to the case of Siegel series.

Theorem 4.2 If Re(s) > 2n, we have

be(T38) = K3 )7 % [ [Nugaleran)F" Or (@)

ffT(Ok/ )

We introduce the spherical function on X7 with respect to the Siegel parabolic sub-
group P = { ( g Z ) e€eG|abde Mn(k’)} by

Or(z;s) = / | Nk (det (kz)2)|” " dk.
K

Then we have

or(z;s) = |det TP "wp(a; 1 — L 1 -2 g gy 1 Vol (4.3)

logg > " " logq ’ log q

which is holomorphic for s € C by Theorem 1.3. Next proposition shows the relation
between hermitian Siegel series and spherical functions.
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Proposition 4.3 Denote the K-orbit decomposition of ¥1(O) as
%T(Ok’) = U:ZlK.Ti.

Then one has

bo(Ti0) = Gk )73 cor(es ). e= [ jeri)

By Proposition 4.3 and Corollary 2.6, we obtain the following functional equation of
hermitian Siegel series.

Theorem 4.4
(T 3 . (T 2n, —
0TS et Tyt jde(Ty2) o x oy Dx(Ti20 =)
i=0 (1 - (_1)1Q“8+z) Hi:O (1 — (_l)zq—(2n——s)+z)
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