On the principal series representation of $SU(2, 2)$

G. Bayarmagnai

1 Introduction

Let G denote the the special unitary group $SU(2, 2)$. In the paper, we will deal with the principal series representations of G which are parabolically induced by the minimal parabolic subgroup P_{min} with Langlands decomposition $P_{\text{min}} = MAN$,

$$\pi_{\sigma, \nu} = \text{Ind}^{G}_{P_{\text{min}}}(\sigma \otimes e^{\nu+\rho} \otimes 1_{N}),$$

where ρ is the half sum associated to the root system of the pair (G, A), ν is a complex valued real linear form on $a = \text{Lie}(A)$, σ is a unitary character of M.

Let η be a continuous unitary character of N. We then have the Jacquet functional $J_{\sigma, \nu}$ on the space of differentiable functions of $L^{2}_{\mathbb{R}}(K)$, the representation space of $\pi_{\sigma, \nu}$, such that $J_{\sigma, \nu}(\pi_{\sigma, \nu}(n)f) = \eta(n)J_{\sigma, \nu}(f)$ for any $n \in N$. The functional defines an intertwiner J from $\pi_{\sigma, \nu}|_{K}$ to $\mathcal{A}_{\eta}(N \backslash G)$ by sending any $v \in \pi_{\sigma, \nu}|_{K}$ to the function $J_{\nu}(g) := J_{\sigma, \nu}(\pi_{\sigma, \nu}(g)v), \ (g \in G).$ Here the subspace of all K-finite vectors of $\pi_{\sigma, \nu}$ is denoted by $\pi_{\sigma, \nu}|_{K}$ and $\mathcal{A}_{\eta}(N \backslash G)$ is the subspace of $C^\infty(G)$ consisting of all moderate growth functions $f(g)$ such that $f(n g) = \eta(n) f(g)$ for $n \in N$ and $g \in G$. In fact, J is an intertwiner of K and g-equivariant, and hence the study of the image of J (the Whittaker model) leads us to the problem of the investigations of the (g, K)-module structure and the functions $J_{\nu}(g)$ for certain K-types of $\pi_{\sigma, \nu}$.

The main goal of this paper is to describe the above mentioned objects in terms of parameters of the principal series representation $\pi_{\sigma, \nu}$ explicitly. Note that our results are quite similar to that of Ishii [4] and Oda [5], for both $Sp(2, \mathbb{R})$ and $SU(2, 2)$ have the same restricted root system.

We also consider a matrix representations of the Knapp-Stein intertwiner operator which have been motivated by a result of Goodman-Wallach [2].

2 Preliminaries

Let K be the compact group $S(U(2) \times U(2))$. Then K is the maximal compact subgroup of G fixed by the Cartan involution θ for G given by

$$\theta(g) = {}^tg^{-1}, \ g \in G.$$

We fix the following basis for the 7 dimensional Lie algebra $\mathfrak{k}_{\mathbb{C}}$, the complexification of $\mathfrak{k} = \text{Lie}(K)$:

$$h^{1} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad h^{2} = \begin{pmatrix} 0 & 0 \\ 0 & h \end{pmatrix}, \quad I_{2, 2} = \begin{pmatrix} 12 & 0 \\ 0 & -12 \end{pmatrix},$$

$$e^{1}_{\pm} = \begin{pmatrix} e_{\pm} & 0 \\ 0 & 0 \end{pmatrix}, \quad e^{2}_{\pm} = \begin{pmatrix} 0 & 0 \\ 0 & e_{\pm} \end{pmatrix},$$

where $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ e_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $e_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
For every K-module V, it is clear that $I_{2,2} \in \mathfrak{k}_C$ commutes with the action of K on V. If V is irreducible, then by Schur's lemma, the operator is a scalar of the identity map.

Lemma 2.1 Let m_1, m_2 be positive integers and l be an integer. If $m_1 + m_2 + l$ is an even integer, then there is an irreducible K-module $(\pi_{m_1, m_2}; l, V_{m_1, m_2})$ with a basis $\{f_{pq} \mid 0 \leq p \leq m_1, 0 \leq q \leq m_2\}$ of V_{m_1, m_2} such that $I_{2,2}f_{pq} = lf_{pq}$ and

\[
\begin{align*}
 h^1(f_{pq}) &= (2p - m_1)f_{pq}, & e^1_{+}(f_{pq}) &= (m_1 - p)f_{p+1,q}, & e^1_{-}(f_{pq}) &= pf_{p-1,q}, \\
 h^2(f_{pq}) &= (2q - m_2)f_{pq}, & e^2_{+}(f_{pq}) &= (m_2 - q)f_{pq+1}, & e^2_{-}(f_{pq}) &= qf_{pq-1}.
\end{align*}
\]

It follows from the fact that $SU(2) \times SU(2) \times \mathbb{C}^{(1)}$ is a twofold covering of K with the projection given by

\[
 pr(g_1, g_2; u) = \text{diag}(ug_1, u^{-1}g_2), \quad g_1, g_2 \in SU(2), \quad u \in \mathbb{C}^{(1)}.
\]

3 K-finite vectors in the principal series

In this section, for each simple K-module $\tau \in \hat{K}$, we associate a matrix function $S^{(\tau)}(k), \ k \in K$, whose entries give a basis for the τ-isotypic component of $\pi_{\sigma,\nu}$. The main feature of this basis is that the both \mathfrak{g} and K-actions on $\pi_{\sigma,\nu} |_K$ have simple expressions in terms of parameters of given representation. For more details about this theme, we refer to [5] which is our main reference.

Proposition 3.1 Let $H(\tau)$ be the τ-isotypic component of $L^2(K)$, and put $\dim(\tau) = n$. There exists a unique square matrix function $S^{(\tau)}(k), \ k \in K$, of size n with entries in $H(\tau)$,

\[
 S^{(\tau)}(k) = \begin{bmatrix} f_{11}(k) & \cdots & f_{n1}(k) \\ \vdots & \ddots & \vdots \\ f_{1n}(k) & \cdots & f_{nn}(k) \end{bmatrix} = \{f_{ij}(k)\}_{1 \leq i, j \leq n},
\]

satisfying the following two conditions:

1. $S^{(\tau)}(1_K) = \text{diag}(1, \ldots, 1) \in M_n(\mathbb{C}),$

2. For each $\alpha (1 \leq \alpha \leq n)$, the set $\{f_{\alpha 1}(k), \ldots, f_{\alpha n}(k)\}$ is a basis for τ as in Lemma 2.1. Moreover, we have

\[
 H(\tau) = \bigoplus_{\alpha} W_{\alpha},
\]

where W_{α} denotes the space spanned by $f_{\alpha 1}(k), \ldots, f_{\alpha n}(k)$.

Proof. The existence of the matrix function is similar to that of [5]. We consider the uniqueness. Assume that there exist two matrices $F^{(\tau)}(k) = \{f_{ij}(k)\}$ and $G^{(\tau)}(k) = \{g_{ij}(k)\}$ as required. Denote by F_{α} the isomorphism between τ and the space spanned by $\{f_{\alpha j}(k), \ldots, f_{\alpha n}(k)\}$. Similarly, we define G_{α} for the α-th column of $G^{(\tau)}(k)$. As a result, we obtain two ordered bases $\{F_{\alpha}\}_\alpha$ and $\{G_{\alpha}\}_\alpha$ for the n-dimensional vector space $\text{Hom}_K(\tau, H(\tau))$. Then we have the n by n matrix $A = \{a_{\alpha\beta}\}$, the change of coordinate matrix, such that

\[
 F_{\alpha} = \sum_{\beta} a_{\alpha\beta} G_{\beta}.
\]

For a basis $\{f_\gamma\}$ of τ, one obtains

\[
 f_{\alpha \gamma}(k) = F_{\alpha}(f_\gamma) = \sum_{\beta} a_{\alpha\beta} G_{\beta}(f_\gamma) = \sum_{\beta} a_{\alpha\beta} f_{\beta \gamma}(k).
\]
Evaluation at the point 1_K shows that
\[a_{\alpha\gamma} = \delta_{\alpha\gamma}. \]
If $v \neq 0 \in W_\alpha \cap W_\beta$, then $Kv = W_\alpha = W_\beta$. Schur's lemma and second condition imply that $\alpha = \beta$. Assume there is a matrix $S(\tau)(k)$ as required, we then have the direct sum decomposition of $H(\tau)$. \[\Box \]

For each $\tau_m = \tau[m_1,m_2;l] \in \hat{K}$, define a finite set $I(\tau_m)$ to be the collection of indices α such that W_α occurs in $\pi_{\sigma,\nu} |_K$ as a K-module. Thus, the cardinality of $I(\tau_m)$ is the K-multiplicity of τ_m in $\pi_{\sigma,\nu}$. Let s be the integer parameter corresponding to $\sigma \in \hat{M}$. By setting $n = (m_1 + m_2 + s)/2$, one can see that $p + q = n$ if $\alpha \in I(\tau_m)$ with $\alpha = (m_2 + 1)p + q + 1, (q \leq m_2)$. We identify the index α with the pair (p, q) defined by α.

We define a matrix function $S^{(\tau_m)}(k)_{\alpha} \in \hat{K}$ attached to the τ-isotypic component of $\pi_{\sigma,\nu}$ by eliminating all the α-th columns of $S^{(\tau_m)}(k)$ when $p + q \neq n$ and change the α-th columns by 0 if $\alpha \notin I(\tau_m)$ and $p + q = n$.

4 The (\mathfrak{g}, K)-module structure on $\pi_{\sigma,\nu}$

Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be the Cartan decomposition of $\mathfrak{g} = \text{Lie}(G)$ corresponding to θ. In this section, we explicitly describe \mathfrak{p}_C-action on the space

\[\pi_{\sigma,\nu} \mid_K \cong \bigoplus_{\tau_m \in \hat{K}} \bigoplus_{\alpha \in I(\tau_m)} W_\alpha. \]

Since the adjoint representation of K on \mathfrak{p}_C splits into two irreducible components, the antiholomorphic part \mathfrak{p}_- and the holomorphic part \mathfrak{p}_+, it is enough to investigate the \mathfrak{p}_+-action for our purpose. Let E_{ij} be the matrix unit of $M_4(\mathbb{R})$ with 1 in the (i, j)-entry and zero elsewhere. Then the set $\{E_{ij} \mid i = 1, 2, j = 3, 4\}$ forms a basis for \mathfrak{p}_+. For a fixed pair (ϵ_1, ϵ_2), $\epsilon_j \in \{\pm 1\}$ with $j = 1, 2$, we define c_j^T by

\[c_j^T = \frac{t}{m_j + 1} \quad (0 \leq t \leq m_j + \epsilon_j). \]

Let (τ_m, V_m) be an irreducible representation of K with parametrization $m = [m_1, m_2; l]$. By the well known Clebsch-Gordan theorem, the irreducible components in the K-module $\mathfrak{p}_+ \otimes \tau_m$ are precisely the K-representations

\[T = \{ \tau[m_1 + \epsilon_1, m_2 + \epsilon_2; l + 2] \mid \epsilon_1, \epsilon_2 \in \{\pm 1\} \}, \]

and we will denote these by $\tau_{[\pm, \pm; \pm]}$ or $\tau_{[\epsilon_1, \epsilon_2; \pm]}$.

For each K-isomorphism between τ_m and W_α in Proposition 3.1, we have the following surjective homomorphism $\mathfrak{p}_+ \otimes \tau_m \to \mathfrak{p}_+ W_\alpha$ of K-modules. Therefore, we obtain an injection

\[\mathfrak{p}_+ H_{\sigma,\nu}(\tau_m) \hookrightarrow \bigoplus_{\tau_{m'} \in T} H_{\sigma,\nu}(\tau_{m'}) \]

which implies the following theorem. Here $H_{\sigma,\nu}(\tau_m)$ stands for the τ_m-isotypic component of $\pi_{\sigma,\nu}$.

Theorem 4.1 Let $\tau_{[\epsilon_1, \epsilon_2; \pm]}$ be a simple K-submodule of the K-module $\mathfrak{p}_+ \otimes \tau_m$ for a given simple K-module τ_m and the K-module $(\text{Ad}, \mathfrak{p}_+)$. Then we have that

\[C_{[\epsilon_1, \epsilon_2; \pm]} S^{(\tau_m)}(k) = S^{(\tau_{[\epsilon_1, \epsilon_2; \pm]})}(k) \Gamma_{[\epsilon_1, \epsilon_2; \pm]}, \]

where the product of matrices of the left hand side is the differential operation. Here, $r = (s + l)/2$ and
1. $\Gamma_{[-,-,+]} = \{a_{ij}\}_{0 \leq i \leq n-1, 0 \leq j \leq n}$ is a matrix whose all non zero entries are given by

\[a_{t-1,t} = \frac{1}{2}(\nu + 1 + m_1 + r - 2t) \quad \text{if} \ (t, n-t) \in I(\tau_m), \ (t-1, n-t) \in I(\tau_{m'}) \]
\[a_{t,t} = -\frac{1}{2}(\nu_1 - 1 - m_2 + r - 2t) \quad \text{if} \ (t, n-t) \in I(\tau_m), \ (t, n-t-1) \in I(\tau_{m'}) \]

and $C_{[-,-,+]} = \{C_{ij}\}$ is a matrix of size $(m_1 m_2) \times (m_1 + 1)(m_2 + 1)$ with entries given by

\[C_{m_2p+q+1,(m_2+1)p+q+1} = -E_{24} \]
\[C_{m_2p+q+1,(m_2+1)p+q+2} = -E_{13} \]
\[C_{m_2p+q+1,(m_2+1)(p+1)+q+1} = E_{23} \]
\[C_{m_2p+q+1,(m_2+1)(p+1)+q+2} = E_{24} \]

for each $0 \leq p \leq m_1 - 1$ and $0 \leq q \leq m_2 - 1$, but all other entries are 0.

2. $\Gamma_{[+,+,+]} = \{a_{ij}\}_{0 \leq i \leq n+1, 0 \leq j \leq n}$ is a matrix whose all non zero entries are given by

\[a_{t,t} = \frac{1}{2}(\nu + 1 + m_1 + r - 2t)(1-c_t^{1})c_{\nu-t}^{2} \quad \text{if} \ (t, n-t) \in I(\tau_m), \ (t, n-t+1) \in I(\tau_{m'}) \]
\[a_{t+1,t} = \frac{1}{2}(\nu_1 + 3 + 2m_1 - m_2 + r - 2t)c_{t+1}^{1}(c_{\nu-t}^{2}-1) \quad \text{if} \ (t, n-t) \in I(\tau_m), \ (t+1, n-t) \in I(\tau_{m'}) \]

and $C_{[+,+,+]} = \{C_{ij}\}$ is a matrix of size $(m_1+2)(m_2+2) \times (m_1+1)(m_2+1)$ with entries given by

\[C_{(m_2+2)p+q+1,(m_2+1)p+q+1} = -(1-c_p^{1})(1-c_q^{2})E_{23} \]
\[C_{(m_2+2)p+q+1,(m_2+1)p+q} = -c_p^{1}c_q^{2}E_{24} \]
\[C_{(m_2+2)p+q+1,(m_2+1)(p-1)+q+1} = -(1-c_q^{2})E_{13} \]
\[C_{(m_2+2)p+q+1,(m_2+1)(p-1)+q} = c_q^{2}E_{14} \]

for each $0 \leq p \leq m_1+1$ and $0 \leq q \leq m_2+1$, but all other entries are 0.

3. $\Gamma_{[+,+,-]} = \{a_{ij}\}_{0 \leq i \leq n, 0 \leq j \leq n}$ is a square matrix whose all non zero entries are given by

\[a_{t-1,t} = \frac{1}{2}(\nu + 1 + m_1 + r - 2t)c_{\nu-t+1}^{2} \quad \text{if} \ (t, n-t) \in I(\tau_m), \ (t-1, n-t+1) \in I(\tau_{m'}) \]
\[a_{t,t} = \frac{1}{2}(\nu_1 + 1 + m_2 + r - 2t)c_{t+1}^{1} \quad \text{if} \ (t, n-t) \in I(\tau_m), \ (t+1, n-t) \in I(\tau_{m'}) \]

and $C_{[+,+,-]} = \{C_{ij}\}$ is a matrix of size $m_1(m_2+2)(m_2+2) \times (m_1+1)(m_2+1)$ with entries given by

\[C_{(m_2+2)p+q+1,(m_2+1)p+q+1} = -(1-c_p^{1})(1-c_q^{2})E_{23} \]
\[C_{(m_2+2)p+q+1,(m_2+1)p+q} = -c_p^{1}c_q^{2}E_{24} \]
\[C_{(m_2+2)p+q+1,(m_2+1)(p-1)+q+1} = -(1-c_q^{2})E_{13} \]
\[C_{(m_2+2)p+q+1,(m_2+1)(p-1)+q} = c_q^{2}E_{14} \]

for $0 \leq p \leq m_1+1$ and $0 \leq q \leq m_2-1$, but all other entries are 0.

4. $\Gamma_{[-,+-,+]} = \{a_{ij}\}_{0 \leq i \leq n, 0 \leq j \leq n}$ is a square matrix whose all non zero entries are given by

\[a_{t,t} = \frac{1}{2}(\nu + 1 + m_1 + r - 2t)(1-c_t^{1}) \quad \text{if} \ (t, n-t) \in I(\tau_m), \ (t, n-t) \in I(\tau_{m'}) \]
\[a_{t+1,t} = \frac{1}{2}(\nu_1 + 1 + 2m_1 - m_2 + r - 2t)c_{t+1}^{1} \quad \text{if} \ (t, n-t) \in I(\tau_m), \ (t+1, n-t-1) \in I(\tau_{m'}) \]
and $C_{[+,--;+]} = \{C_{ij}\}$ is a matrix of size $(m_1 + 2)m_2 \times (m_1 + 1)(m_2 + 1)$ with entries given by

$$
C_{m_2p+q+1,(m_2+1)p+q+1} = (1 - c_p^{1})E_{24},
$$
$$
C_{m_2p+q+1,(m_2+1)p+q+2} = (1 - c_p^{1})E_{23},
$$
$$
C_{m_2p+q+1,(m_2+1)(p-1)+q+1} = c_p^{1}E_{14},
$$
$$
C_{m_2p+q+1,(m_2+1)(p-1)+q+2} = c_p^{1}E_{13},
$$

for $0 \leq p \leq m_1 + 1$ and $0 \leq q \leq m_2 - 1$, but all other entries are 0.

4.0.1 The Knapp-Stein operator

In this subsection, we consider a matrix representation of the Knapp-Stein operator with respect to the basis for $\pi_{\sigma,\nu}|_K$. This is motivated by Theorem 6.7 in the paper of Goodman-Wallach [2].

Let us recall the Knapp-Stein intertwining operator $A_{\sigma,\nu}^{s}$ from the space of all C^∞-vectors of $\pi_{\sigma,\nu}$ to that of $\pi_{s(\sigma),s(\nu)}$ defined by

$$(A_{\sigma,\nu}^{s}f)(k) = \int_{\overline{N}_{\theta}}a(n_{\partial}s^{*}k)^{\nu+\rho}f(k(n_{\epsilon}s^{*}k))dn_{s}, \quad (f \in \pi_{\sigma,\nu}^\infty).$$

Here $s^{*} \in K$ such that $s := Ad(s^{*}) \in W(A), \overline{N}_{s} = N \cap s^{*}Ns^{*-1}$ and $s(\sigma)$ is a character of M given by $s(\sigma)(m) = \sigma(s^{*}ms^{*-1}), m \in M$. Since it is a linear map from $\pi_{\sigma,\nu}$ to $\pi_{s(\sigma),s(\nu)}$ satisfying

$$A_{\sigma,\nu}^{s}\pi_{\sigma,\nu}(x)f = \pi_{s(\sigma),s(\nu)}(x)A_{\sigma,\nu}^{s}f,$$

$x \in G$ (or $U(\mathfrak{g}))$, we have a linear map

$$A^{s}(\tau) : \text{Hom}_{K}(\tau, \pi_{\sigma,\nu}|_K) \rightarrow \text{Hom}_{K}(\tau, \pi_{s(\sigma),s(\nu)}|_K).$$

for any $\tau \in \hat{K}$.

Let $[\alpha_{i}]$ be the K-isomorphism from τ to $W_{\alpha_{i}}$ for $\alpha_{i} \in I(\tau)$. We equip the space $\text{Hom}_{K}(\tau, \pi_{\sigma,\nu}|_K)$ with the basis consisting of the K-homomorphisms $[\alpha_{i}]$. Similarly, we choose a basis for the space $\text{Hom}_{K}(\tau, \pi_{s(\sigma),s(\nu)}|_K)$. Then we want to compute all entries a_{ij} of the matrix $A^{s}(\tau) = (a_{ij})$ such that

$$A^{s}(\tau)[\alpha_{i}] = \sum_{\alpha_{j} \in I} a_{ij} \cdot [\alpha_{j}^s]$$

where $I = \{\alpha_{i}^{s} \mid W_{\alpha_{i}} \rightarrow \pi_{s(\sigma),s(\nu)}|_K\}$. For each basis vector f_{pq} of τ as in Lemma 2.1, we have that

$$(A^{s}(\tau)[\alpha_{i}]) (f_{pq}) = \sum_{\alpha_{j} \in I} a_{ij} \cdot [\alpha_{j}^s] (f_{pq}) = \sum_{\alpha_{j} \in I} a_{ij} \cdot f_{\alpha_{j}^s, pq}^{(r)}(k).$$

On the other hand, by definition of the map $A^{s}(\tau)$, one has

$$(A^{s}(\tau)[\alpha_{i}]) (f_{pq}) = (A_{\sigma,\nu}^{s}f_{\alpha_{i}, pq}^{(r)}) (k), \quad \alpha_{i} \in I(\pi_{\sigma,\nu}, \tau).$$

Thus we have the following formula for the coefficients a_{ij} of the matrix $A^{s}(\tau)$ for each $\tau \in \hat{K}$.

Lemma 4.2 Let $\alpha_{i} \in I(\pi_{\sigma,\nu}, \tau)$ and $\alpha_{j}^{s} \in I(\pi_{s(\sigma),s(\nu)}, \tau)$. Then the (i,j)-th coefficient of $A^{s}(\tau)$

$$a_{ij} = (A_{\sigma,\nu}^{s}f_{\alpha_{i}, \alpha_{j}^{s}}^{(m)})(1_{4}).$$

Example 4.3
Let s be a generator of $W(A)$ whose image is the matrix $\text{diag}(1, -1)$ under the representation of $W(A)$ on a^*. Then we choose the corresponding $s^* \in K$ as the matrix $\text{diag}(1, -i, 1, i)$ and hence

$$
\overline{N}_s = \exp(g_{-2\lambda_2}) = \left\{ n_s(t) = \kappa^{-1} \begin{pmatrix} 1 & t & 1 \\ 1 & 1 & t \\ t & 1 & 1 \end{pmatrix} \kappa : t \in \mathbb{R} \right\}.
$$

Since $n_s \in \overline{N}_s$, one has $^t n_s I_{2,2} n_s = I_{2,2}$ and hence $n_s s^* = I_{2,2}^t n_s^{-1} I_{2,2} s^*$. Thus, we have the following.

Assume $n_s = n_s(t) \in \overline{N}_s$. Let $n' \in N$, $a(n_s s^*) \in A$ and $k(n_s s^*) \in K$ be so that $n_s s^* = n'a(n_s s^*)k(n_s s^*)$.

Then

$$
a(n_s s^*)^{\nu + \rho} = (1 + t^2)^{-\frac{d+1}{2}},
$$

$$
k(n_s s^*) = \text{diag}(1, -iu, -1, -iu^{-1})
$$

where $u = ((1 - it)/(1 + it))^\frac{1}{2}$.

For a fixed $\tau_m \in \hat{K}$, therefore

$$f_{\gamma_i, \beta_j}(k(n_s s^*)) = 0 \text{ when } \gamma_i \neq \beta_j$$

If $\tau = \tau_{[m_1, m_2, l]}$ then we have

$$A^*(\tau) = 2\pi 2^{-\nu_2} \Gamma(\nu_2) \text{ diag} \left[\frac{(-1)^{\frac{1}{2}(m_1 + m_2)/2} - p + \frac{1}{2} + d + \frac{1}{2} m_2 + r}{\Gamma(\frac{1}{2} \nu_2 + \frac{1}{2} + d)} \Gamma(\frac{1}{2} \nu_2 + \frac{1}{2} - d) \right]_p$$

where $d = \frac{1}{2}(m_1 - 2p)$ for $(p, (m_1 + m_2)/2 - p) \in I(\pi_{\sigma, \nu}, \tau_m)$.

5 Whittaker functions

The main focus of this section is on the integral expressions of Whittaker functions on G related to certain principal series. The results of the section 4.1 lead us to the study of Whittaker functions related to some K-types. For this purpose, we focus our investigation on the principal series representations which contain one dimensional K-types and apply the method used in [4] to evaluate such Whittaker functions. More precisely, in this setting, the character σ of M factors through a character χ of μ_2. Let $(\pi_{\chi, \nu}, L_\chi^2(K))$ denote the principal representation series corresponding to such character σ.

For an integer u, define a function $f_u(k)$ on K by $f_u(k) := \det(k_{21})^u$, $k = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}$.

Lemma 5.1 Let $f_u(k)$ be as above. Then $\tau_{[0, 0, 2u]} \cong \mathbb{C} f_u(k)$ as K-modules. Moreover, if $\chi(-1) = (-1)^u$ then $f_u(k) \in L_\chi^2(K)$ and $[\pi_{\chi, \nu} : \tau_{[0, 0, 2u]}] = 1$.

5.1 The Jacquet integral.

Let $J_{\chi, \nu}$ be the Jacquet functional on the subspace of differentiable functions of $L_\chi^2(K)$ given by

$$J_{\chi, \nu}(f) = \int_{N} \eta(n)^{-1} a(s^* n)^{\nu + \rho} f(k(s^* n)) dn$$

for a differentiable function f in $L_\chi^2(K)$ and the longest element $s \in W(A)$. Here $W(A)$ is the Weyl group defined as the quotient of $M^* = N_K(a)$, the normalizer of a in K, by M and s^* is an element of M^* mapping to the longest element $s \in W(A)$.
Then one has \(J_{X,\nu}(\pi(n)f) = \eta(n)J_{X,\nu}(f) \) and hence
\[
J \in \text{Hom}_{(g,K)}(\pi_{X,\nu}|_{K}, \mathcal{A}_{\eta}(N\backslash G)),
\]
where \(J \) associates \(v \in \pi_{X,\nu}|_{K} \) to the function \(J_{v}(g) := J_{X,\nu}(\pi_{X,\nu}(g)v) \).

In our case, we can choose \(I_{2,2} \in K \) for \(s^{*} \in K \).

5.1.1 The first modification

Let \(E_{ij} \) be the usual matrix with 1 in \((i, j)\)-entry and zero elsewhere. Put
\[
E_{0} = \kappa^{-1}(E_{12} - E_{43})\kappa, \quad E_{1} = i\kappa^{-1}(E_{12} + E_{43})\kappa, \quad E_{2} = \kappa^{-1}E_{24}\kappa
\]
\[
F_{0} = \kappa^{-1}(E_{14} + E_{23})\kappa, \quad F_{1} = i\kappa^{-1}(E_{14} - E_{23})\kappa, \quad F_{2} = \kappa^{-1}E_{13^{K}}\kappa
\]
by setting \(i = \sqrt{-1} \) and
\[
\kappa = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -i & 0 & i & 0 \\ 0 & -i & 0 & i \end{pmatrix}.
\]

Then the corresponding root spaces of positive roots in \(\Phi(g, a) \) are given by
\[
g_{\lambda_{1}-\lambda_{2}} = E_{0} \cdot \mathbb{R} \oplus E_{1} \cdot \mathbb{R}, \quad g_{2\lambda_{2}} = E_{2} \cdot \mathbb{R},
\]
\[
g_{\lambda_{1}+\lambda_{2}} = F_{0} \cdot \mathbb{R} \oplus F_{1} \cdot \mathbb{R}, \quad g_{2\lambda_{1}} = F_{2} \cdot \mathbb{R}.
\]

Let \(n \) be a subalgebra defined by \(n = \sum_{\alpha \in \Phi_{+}} g_{\alpha} \). We now describe elements of a maximal nilpotent subgroup \(N \) of \(G \) given by \(N = \exp(n) \).

The Killing form \(B(X, Y) = \text{tr}(\text{ad}X \cdot \text{ad}Y) \), \((X, Y \in g)\) and Cartan involution \(\theta \) of \(g \) induce an inner product \(\langle \cdot, \cdot \rangle \) of \(g \) via
\[
\langle X, Y \rangle = -B(X, Y^{\theta}), \quad (X, Y \in g).
\]

Then one has that \(\langle g_{\alpha}, g_{\beta} \rangle = 0 \) if \(\alpha \neq \beta \), because of the involution \(\theta \). Moreover, one can see that the set \(\{E_{i}, F_{i} | i = 0, 1, 2\} \) is an \(\langle \cdot, \cdot \rangle \)-orthogonal basis for \(n \) such that a each element \(n = n(n_{0}, n_{1}, n_{2}, n_{3}) \) in the maximal unipotent group \(N = \exp(n) \) is expressed in the form:
\[
\kappa^{-1} \begin{pmatrix} 1 & n_{0} & 1 \\ 1 & 1 & n_{1} \\ -n_{0} & 1 & 1 \end{pmatrix} \kappa
\]
for \(n_{1}, n_{3} \in \mathbb{R}, \ n_{0}, n_{2} \in \mathbb{C} \).

Lemma 5.2 We have

1. Set \(N_{1} = \begin{pmatrix} n_{1} & n_{2} \\ \overline{n}_{2} & n_{3} \end{pmatrix} \) for \(n = n(n_{0}, n_{1}, n_{2}, n_{3}) \in N \). Then
\[
f_{u}(k(I_{2,2}n)) = \left(\frac{\text{det}(1 - \sqrt{-1}N_{1})/\text{det}(1 + \sqrt{-1}N_{1})}{1} \right)^{\frac{q}{2}}.
\]
2. Let \(\eta \) be a character of \(N \) determined by a real number \(c_2 \) and \(c = c_0 + \sqrt{-1}c_1 \in \mathbb{C} \). Then

\[
\eta(\alpha a^{-1}) = \exp(2\sqrt{-1} \left(\frac{a_1}{a_2} \text{Re}(\bar{c}n_0) + c_2a_3^2n_3 \right)),
\]

where \(a_i = \exp(t_i) \), \((i = 1, 2) \) for \(a = (t_1, t_2) \in A \).

3. For \(\nu = (\nu_1, \nu_2) \in \text{Hom}_R(a, \mathbb{C}) \), we have that \(a(I_{2,2}n)^{\nu+\rho} = \Delta_1^{-\frac{n_1^2}{2} + \frac{n_2^2}{2}} \Delta_2^{-\frac{n_2^2}{2}} \) where

\[
\Delta_1 = 1 + n_1^2 + n_2n_2 + (n_0n_2 + n_0n_2)(n_1 + n_3) + n_0n_0(1 + n_2n_2 + n_3^2),
\]

\[
\Delta_2 = 1 + n_1^2 + 2n_2n_2 + n_3^2 + (n_1n_3 - n_2n_2)^2 \quad \text{for} \quad n = (n_0, n_1, n_2, n_3) \in N.
\]

For future convenience, we choose a new coordinate for \(A \) by

\[
y = (y_1, y_2) = \left(\frac{a_1}{a_2}, a_3^2 \right).
\]

Since \(f \to J_f(g) \) is the Whittaker realization of \(\pi_{\chi, \nu} \), \(J_{\nu}(a) \) is the radial part of a Whittaker function on \(G \) belonging to \(\pi_\nu \). Thus, in the new coordinate system, we can summarize that the radial part of Whittaker function associated with the \(K \)-type \(\tau_u \) can be written in the form

\[
y^{-\nu_1+3}y_2^{-\nu_2+2} \int_N \Delta_1^{-\frac{n_1^2}{2} + \frac{n_2^2}{2}} \Delta_2^{-\frac{n_2^2}{2}} \times \exp(-2\sqrt{-1}(\text{Re}(\bar{c}n_0) + c_2y_2n_3))f_u(k(I_{2,2}n))dn,
\]

where \(dn \) is a multiplicative Haar measure on \(N \). Now we shall give a normalization of Haar measure of \(N \). Since the exponential map of \(n \) onto \(N \) is an analytic isomorphism, there exists a unique Haar measure \(dn \) on \(N \) that corresponds to Lebesgue measure on \(n \).

Lemma 5.3 The radial part of the moderate growth Whittaker function \(W_{(\nu_1, \nu_2)}(y_1, y_2; u) \) (up to constant) associated with the \(K \)-type \(\tau_u \) can be written in the form

\[
y^{-\nu_1+3}y_2^{-\nu_2+2} \int_{\mathbb{R}^4} \Delta_1^{-\frac{n_1^2}{2} + \frac{n_2^2}{2}} \Delta_2^{-\frac{n_2^2}{2}} \times \exp(-2\sqrt{-1}(c_0y_1 + c_1t_0y_1 - n_3y_2))f_u(k(I_{2,2}n))dn,
\]

with respect to \(dz_0dt_0dn_1dz_2dt_2dn_3 \). Here \(n_i = z_i + \sqrt{-1}t_i \) \((i = 0, 2) \).

In fact, it suffices to consider the cases \(u = 0 \) and \(1 \) for our purposes. Let \(K_{\mu}(z) \) be the Bessel function.

Theorem 5.4 Let \(\pi_{\chi, \nu} \) be irreducible and \(\eta \) be a nondegenerated unitary character \(N \). Then we have the following assertions on the \(A \)-radial part of the primary Whittaker function \(W_{(\nu_1, \nu_2)}(y_1, y_2; u) \).

If \(\chi \) is trivial then the Whittaker function \(W_{(\nu_1, \nu_2)}(y_1, y_2; 0) \) is identified with \(y_1^3y_2^2 \) times

\[
\int_0^\infty \int_0^\infty T_{\nu_1, \nu_2}(y_1, y_2, t_1, t_2) \frac{dt_1}{t_1} \frac{dt_2}{t_2}.
\]

If \(\chi \) is non-trivial then the Whittaker function \(\tilde{W}_{(\nu_1, \nu_2)}(y_1, y_2; 1) \) is identified with \(y_1^3y_2^2/4 \) times

\[
\int_0^\infty \int_0^\infty T_{\nu_1, \nu_2}(y_1, y_2, t_1, t_2) (\sqrt{t_1/t_2} - 1/\sqrt{t_1t_2}) \frac{dt_1}{t_1} \frac{dt_2}{t_2}
\]

where \(T_{\nu_1, \nu_2}(y_1, y_2, 1, 0) \) is the function

\[
K_{\frac{\nu_1-1}{2}}(2\sqrt{t_2/t_1})K_{\frac{\nu_2-1}{2}}(2\sqrt{t_1t_2}) \exp \left(-c_2y_2t_1 - \frac{|c_2|y_2}{t_1} - \frac{t_2}{|c_2|y_2} - (c_0^2 + c_1^2)|c_2|y_2^2/t_2 \right)
\]

Note here that, we need the following formula to reduce the number of integral symbols corresponding to the root spaces \(t_{\lambda_1 - \lambda_2} \) and \(t_{\lambda_1 + \lambda_2} \):

Formula 5.5 Let \(a, c \in \mathbb{R}^*_+ \) and \(b, a, \beta \in \mathbb{R} \) such that \(a^2 + \beta^2 = 1 \). Then we have

\[
\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \exp(-c(x^2 + y^2) - a(ax + \beta y)^2 + 2\sqrt{-1}b(ax + \beta y))dxdy = \frac{\pi}{(c^2 + ac)^{1/2}} \exp\left(-\frac{b^2}{a + c}\right).
\]
References

[5] T. Oda, The standard (g, K)-modules of $Sp(2, \mathbb{R})$, Preprint Series, UTMS 2007-3, Graduate School of Mathematical Sciences, University of Tokyo.

