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GEOMETRIC LIMITS VIEWED THROUGH MODEL
MANIFOLDS

KEN’ICHI OHSHIKA (KBRA%)

1. INTRODUCTION

In this note, we shall present results which will appear in the part 11
of the author’s joint project with Teruhiko Soma [10]. The aim of this
project is to give a topological and geometric classification of geometric
limits of finitely generated Kleinian groups. In the second part, we shall
define geometric limits of hierarchies of tight geodesics in the sense of
Masur-Minsky. Such limits may not be hierarchies in general, but as
we shall see, they have properties similar to hierarchies. We call such
objects bug-infested hierarchies. We shall then show that bug-infested
hierarchies give rise to model manifolds for geometric limits, via slices
and resolutions as in the case of surface Kleinian groups.

In this note, we shall restrict ourselves to bug-infested hierarchies
and their geometric limits without mentioning model manifolds.

2. BUG-INFESTED HIERARCHIES

Before defining bug-infested hierarchies, we shall review some termi-
nologies on curve complexes defined by Masur-Minsky [6]. We shall use
the same notations in the definition below. Let g = {v;}icr, where T is
either finite or Z~ or Z* or Z, be a tight geodesic (segment or ray or
line) in the curve complex C(X) for a domain X (i.e., an open essential
subsurface) of S connecting a vertex in the initial marking I(g) to a
vertex in the terminal marking 7T'(g) or converging to I(g) as 1 — —o0
or to T'(g) as i — oo in the compactification C(X) U EL(X). We say
that X is the support of g then and denote it by D(g). Recall that
each v; is not necessarily a vertex but a simplex in C(X) except for the
first and the last ones. A component domain at a simplex v; of g is
either a component of X \ v; or an open annulus which is a tubular
neighbourhood of a component of v;. For a simplex v; of g, we define
its predecessor pred(v;) to be v;_; if j # 1, and I(g) if j = 1. Similarly
we define the successor succ(v;). We denote pred(v;)|Y by I(Y, g) and
succ(v;)|Y by T(Y,g). For a component domain Y of a simplex v of

d

d
g9, if T(Y,g) # 0, then we write Y \, g. Similarly we write g ./ Y
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if I(Y,g) # 0. We also write Y \, (g,v) or (g,v) ./ Y if we need to
specify whose component domain Y is. There is a case when Y'|I(g) or
Y|T(g) is an element of £L(D(g)). This corresponds to the case when

Y supports a “solitary geodesic ray”in the definition of bug-infested
d d
hierarchy below. In the expression Y \, g or g /' Y, we are assuming

implicitly that we think of Y as a component domain at a simplex of
g-
Since the same domain may appear as supports of distinct geodesics
in bug-infested hierarchies which will be defined below, when we say
that two domains are the same, we need to explicate whether we are
just regarding them as subsurfaces on S or as component domains of
simplices. Therefore, we say that two domains are isotopic when we
regard them only as subsurfaces of S. We regard two isotopic domains
as being the same only when they are component domains of simplices
belonging to the same geodesic. In spite of this distinction, as a con-
vention, for a domain X and a simplex v of a geodesic whose support
contains a surface X' isotopic to X, we use the symbol v|X to denote
v| X'

Definition 2.1 (Bug-infested hierarchy). A bug-infested hierarchy Ho,
on S is a system of possibly infinitely many finite tight geodesics (seg-

d d
ments or rays or lines) on domains of S related by ./ and \,, which
has the following properties. We should remark that the same geodesic
can appear more than once in the system, and that a bug-infested hi-
erarchy is not just a collection of geodesics but geodesics together with
the relation of subordination. We distinguish two appearances of the
same geodesic, and regard them as different geodesics. Also, if we have

d d d A
relations a; \, az \, ... "\, an in the following, we shall write a; \, an.
We use similarly the symbol /.

(1) There are two generalised markings I(Hs) and T(Hs) which
are unmeasured laminations on S with (possibly empty) transver-
sals on closed leaves, and Ho contains only one tight geodesic
supported on S itself, which is called the main geodesic, which
may be a geodesic segment or a ray or a line. The main geodesic
connects a vertex in base(/(Hy)) to one in base(T(Hy)) if it
is a segment. When it is a ray or line, its open end tends to
base(I(Hy,) or base(T(Hy)) in the Gromov compactification
C(S)U EL(S).

(2) Each geodesic g in He is either a tight geodesic segment in
C(D(g)) connecting a vertex in base(I(g)) to a vertex in base(T(g))
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or a tight geodesic ray in C(D(g)) starting from a vertex of
base(I(g)) or base(T(g)), where D(g) is a domain in S, called

the support of g, where I(g) and T'(g) are markings on D(g).

We assume that gy contains at least two simplices.

For any geodesic segment b € H,, that is not the main geodesic,

there are (finite or infinite) geodesics a,a’ € H,, and simplices

d d
v € a,v € a such that (a,v) /" b and b\ (a’,v’). For these,
D(b) is isotopic to component domains X at v of @ and X’ at v/

d d

of a’ with (a,v) /' X and X’ \ (a',v"), and I(b) = I(X,a) and
T(b) = T(X',a'). (It is possible that (a,v) and (a’,v’), hence
X and X’ coincide.) We say that b is supported on X and X".
For any geodesic ray b € H, that is not the main geodesic,

, d
there are a € Hy, and a simplex v on a with either (a,v) / bor
d
b\ (a,v). (Only one of the two can hold.) In either case, D(b)
d d
is a component domain X at v of a with a ./ X or X "\ a holds

d
depending on whether a ,// b or b <, a, and I(b) = I(X,a) in
the former case and T'(b) = T (X, a) in the latter case. The ray
b is called an upward ray in the former case, and a downward
ray in the latter case.

Suppose that X is a component domain at a simplex v of some
geodesic a € Hy,, and that I(X,a) # @ and T'(X,a) # 0. Then
one and only one of the following holds.

(a) There is a unique finite tight geodesic b € H,, supported

d d

on X with (a,v) ./ b\ (a,v).
(b) There is a unique pair, called a matching pair, of geodesic
rays b~ and b*, called the lower ray and the upper ray of
the matching pair, both of which are supported on X and

d
satisfy (a,v) } b= and bt \ (a,v). (Note that a lower
ray is upward and an upper ray is downward.) For any
simplices s~ € b~ and st € b*, we have dx(s~,st) > 3,
and also dx(I(b~),T(b%)) > 3.

(¢) The domain X is an annulus and there is a matching pair of
geodesic rays c¢™, ¢t supported on some component domain
Y of v such that (a,v) / ¢7,¢t \\ (a,v) and X NY # @
as domains on S. In this case, X supports no geodesics.
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Let X and X’ be distinct component domains at v of g and at v/ of ¢’
for g,9' € Hy. Then, we say that X is parallel up to X’, and X’ down
to X when the following hold.

(i) X and X’ are isotopic, i.e., they are the same as domains on S.
(i) T(X,9) =0 and I(X',¢') =
(iii) In the case when X is an a.nnulus there is no matching pair
h~,h* with D(h*) containing a core curve of X such that either
(g,v)/h or h* \\ (¢',v").
When we need not to specify the positions of X and X', we simply
say that X and X’ are parallel. We also call the geodesic h above the
geodesic realising the parallelism between X and X’.

(6) Suppose that X is a component domain with £(X) # 3 at the
last vertex v of a such that (X, a) # 0, that X’ is a component
domain at the first vertex v’ of a geodesic a’ € H,, such that
T(X',a') # 0, and that X and X' are parallel. Then, one and
only one of the following holds.

(a) There is a unique finite tight geodesic b € H,, supported

d d

on X and X' with (a,v) / b\ (d’,?').
(b) There is a unique pair of geodesic rays b~ and bt, called the
lower ray and the upper ray of a matching pair also in this

d
case, such that b~ is supported on X and (a,v) ./ b~ and

d
b* is supported on X’ and b* \ (d/,7'). As in (5), for any
simplices s~ € b~ and s* € b*, we have dx(s~,st) > 3,
and also dx(I(b™),T(b*)) > 3.

(7) Suppose that there is either a finite geodesic or a matching pair
of geodesic rays is supported on X and X’ which are component
domains of distinct simplices v at b and ¢’ at f. Then X and
X' are parallel.

We say that a component domain X is a terminal domain if there is a

d d d d
descending sequence (gn, wn) " (gn-1,Wn-1) ... ./ (g1, w1) / X in
Hy, such that w; is the last vertex of g,- for j =1,...,n, the geodesic g,
is the main geodesic, and T'(X, g1) = @. Similarly, we say that X is a.n

initial domain if there is a descending sequence X \ (g1, wy) \ \
(gnswn) in Hy, such that w; is the first vertex of gJ for j = 1,.
the geodesic g, is the main geodesic, and I(X,g,) =

(8) Suppose that b~ is a lower ray supported on a component do-
main X at a simplex v of a, which is not a terminal domain,

)

d
and that a ,/ b~. Then there exists a unique downward ray
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b* such that b~ and b* constitute a matching pair. Similarly,
suppose that bt is a downward ray supported on a component
domain X' at a simplex v’ of a’, which is not an initial domain,

d \
and that bt \, a. Then there exists a unique upward ray &~
such that b~ and b* constitute a matching pair.

(9) A geodesic ray g which is neither the main geodesic nor a part of
a matching pair, which we call solitary, must be either a down-
ward one satisfying g \, (gn.,,,v) for the first vertex v of gy,
and I(g) € EL(D(g)) or an upward one satisfying (gg,,,w) for
the last vertex w of gy and T'(g) € £L£(D(g)). A component
domain Y of the last (resp. the first) vertex of gy supports a
solitary ray g if and only if T(He)|Y (resp. I(Ho)|Y) is con-
tained in £L(Y"). In this case, we have T'(9) = T(Hs)|Y (resp.
I(g) = I(Ho)|Y),

3. SLICES IN A BUG-INFESTED HIERARCHY

To define the geometric convergence of hierarchies to an bug-infested
hierarchy, we need to fix some slice in the main geodesic for each hier-
archy as a basepoint and allow each domain to be twisted when viewed
from the base point.

We first recall the definition of (saturated) slice from Minsky (8],
which can be used also for a bug-infested hierarchy. In this paper,
when we refer to a slice, we always assume that it is saturated in the
sense of [7].

Definition 3.1 (Slice). A slice o of a bug-infested hierarchy H,, is a
non-empty set of pairs (g,v) for a geodesic g in Hy, and a simplex v
on g with the following properties.
(1) A geodesic appears in pairs of o at most once.
(2) If (g,v) is a pair contained in o and g is not the main geodesic
of H., then there is (¢’,v') € o such that D(g) is parallel to a
component domain of v'.
(3) If (g,v) is contained in o, for any component domain D of v
supporting a geodesic in Hy, there is (¢’,v') € o such that
D(g’) is parallel to D.
For a simplex v € gy_, we define the bottom slice at v to be a slice o
containing (gy,v) such that for any (g, w) € o, the geodesic g is either
a segment or an upward ray and w is the first vertex of g.

Note that by the definition of bug-infested hierarchies, if v is not the
first vertex of gu, , the bottom slice at v always exists. From now on,
when we consider the bottom slice at some simplex of gy, we assume
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the simplex is not the first vertex. Since we assumed in Definition 2.1
that gy, contains at least two simplices, gy, always contains a simplex
which has bottom slice.

We shall define the twisting operation below which is necessary for
the definition of the geometric convergence of hierarchies. For speci-
fying where we should twist, we need to define some terms concerning
the position of a component domain in a bug-infested hierarchy first.

Definition 3.2. Let H be a bug-infested hierarchy and ¢ a slice of H.
A geodesic g in H, its domain D(g) and its simplices are said to be
situated before o when one of the following two conditions holds.

(1) There are a geodesic g’ such that g\,(¢’,w) and a simplex v on
g with w < v and (¢’,v) € 0.
(2) There is a downward ray h such that ¢g\,(h,w) such that the
upward ray A, which is the other half of h, has a simplex w’
with (h/,w') € 0.
Similarly we define g, D(g) and the simplices on g to be situated after
o when one of the following two conditions holds.

(1) There are a geodesic g’ such that (¢’,w)./ g and a simplex v on
g with w > v and (¢’,v) € 0. i
(2) There is a lower ray ray h of a matching pair such that (h,w), /g
such that the upper ray h', which is the other half of k, has a
simplex w’ with (h/,w') € 0.
We say that g is hanging on o if it is situated neither before nor after
o.

Definition 3.3. We say that a simplex v on a geodesic g is situated
before a slice o when either g is situated before o or g is hanging on ¢
and contains (g,p) with v < p. Similarly, we define the condition that
v is situated after o by reversing the directions of the subordinacy and
the order.

3.1. -distance, descending paths and twisting systems. We
next define the distance between a slice of H and a simplex w con-
tained in some geodesic in H.

Definition 3.4 (4-distance). Let H be a bug-infested hierarchy, and w
a simplex on a geodesic g € H. We first consider the case when g is sit-
uated after 0. We consider a sequence of simplices wp = w, wy, ..., wg
such that
(1) w; is a vertex in g; € H for each j = 0,...k, and for j < k
there is no simplex u; with (g;,u;) € o,
(2) there is a simplex ux such that (g, ux) € o, and
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d
(3) for each j =0,...,k — 1, we have (gj41,w;j41) gi >~ g;.

Let v be the first vertex of g} and vZ, the last vertex of g;. Then we
define ¢; to be mjn{dD(g;,)(wj,vg),dp(gj)(wj,vgo)} + ¢; + 1, where the
distance between simplices belonging to different rays in the matching
pair is set to be 0o and ¢; is set to be 0 if the vertex, v} or v/, realising
the minimum is equal to I(g;) or T(g;), and to be 1 otherwise. We say
that w; lies in the first half if the minimum is attained by dp(gy) (wj, %)
including the case when the two terms in min are equal, and in the
second half otherwise. We need to introduce another term n; which is
defined to be 0 when both w; and w;4, lie in the same half; the first
or the second, and to be 1 if they lie in different halves. Let v be the
simplex of gy such that (gy,v) € 0. Then by summing up distances,
we let d(w,0) = E;:é 0; + 15 + ds(w, uk).

Similarly, we define ¢ in the case when g is situated before o as

follows. We consider a sequence of vertices wo = w,w,...,w, such
that

(4) wj is a vertex in g; € h, and for j < k there is no simplex u,
with (g5, u;) € 0,
(5) there is ux such that (gi,ux) € o, and

d
(6) for each j =0,...,k — 1, we have g; ~ 95 N\ (9541, Wit1)-

Then we let 6; = min{dp,)(w;, v{,),dg(g;)(wj,v-’;o)} + 1 + €5, where ¢}
is the first vertex and v, is the last vertex of g} and e; is defined in
the same way as above. Having defined §;, the rest of the definition is
the same as the previous case.

Finally, suppose that g is hanging on o. Then there is v on g such
that (g,v) € o by Lemma ??. We set §(w, o) to be dp(g) (v, w).

This definition of the distance may appear asymmetric. We adopt
this definition because of its convenience in defining twisting systems
below and then the geometric convergence of hierarchies. It will turn
out later in §?? that in fact this -distance is within uniformly bounded
error from a symmetric distance which should be used geometric con-
vergence for model manifolds.

Let Y be a component domain of a simplex in a hierarchy h (an
ordinary one, not bug-infested), which supports a geodesic v, and v a
simplex of the main geodesic. We associate each Y with a homeomor-
phism fy : § — S fixing S\ Y and call {fy} a twisting system and
each of its elements a twisting map. Twisting maps are necessary to
control geometric convergence for geodesics in hierarchies whose lengths
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go to infinity. For geodesics other than these, the twisting maps will
be defined to be the identity.

Suppose that w is a simplex on a geodesic g in a hierarchy h, and
that o is a slice. We have a simplex v/ with (g,,,v’) € o and a descend-

d d d d
ing sequence g = go \\ (g1,w1) \, (gz,;vz) N N (gmy wm) with

d d
Wm < V' or (gm,Wm) .../ (g1, w1) ~ go = g with v/ < w,, as in
Definition 3.4, where we regard m as 0 if g, is hanging on ¢,. Since we
are considering an ordinary hierarchy, we do not need to consider the
relation =~ in this sequence. Note that this sequence is uniquely deter-
mined. We call this sequence the descending sequence from w to o. Let
vg be the first vertex of g; and vj, the last one, where Nj is the length

of g;. For j =0,...m— 1, we connect w; to one of v, and vaj which is
nearer a geodesic path, regarding w as wo by a sub-geodesic ¢; on g;.
If the distances from w; to v and v',’;,j are the same, then we connect
w; to v} in the case when the descending sequence is forward and to
vf;,j otherwise. We define ¢, to be the geodesic path on g,, connecting
wm to v'. Denote the simplices of the path ¢; by w; = xi,... ,:t:,’;j. We
concatenate these paths cp, ..., ¢, first. Then in the case when w; lies
in the first half, we interpose I(g;) just after xij if ¢; = 1 and T(g;)

before %! if n; = 1. (Refer to Definition 3.4 for the definition of €5
and 7;.) In the case when w; lies in the second half, we interpose T(g;)
after z; if ¢; = 1 and I(g;) if n; = 1. We call a sequence of positions
J

thus obtained a descending path from w to o and the paths cy,. .., cm
its constituent paths. A constituent path is called forward or backward
depending on it lies on a forward geodesic or a backward geodesic. We
should note that the length of a descending path from w to o, which
is the number of positions contained in the path minus 1, is equal to
0(w, o) by our definition of descending path.

Definition 3.5. We say that the descending path from w to o passes a
component domain T of A if one of the following conditions is satisfied.

(a) T is the support of some constituent path g; for which both
I(g;) and T'(g,) are in the descending path.

(b) There is subordinacy (g;,¥1) ./ T\ (9j,y2) with both y; and
y2 being among the simplices z},x3,... , Tk, of a constituent
path such that y; # z] if the path is backward and Y2 # x] if
it is forward.
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(c} There is subordinacy (g;,1(g;)) ./ T \ (gj,x,’;j) for the case
when 77 is the ﬁrst' vertex of g; or (g;,%%,) " T \. (95, T(95))
for the case when xy; is the last vertex of g;.

(d) There is subordinacy (g;,,%1) »* T \\ (9;,, ¥2) such that one of
¥1 and y; is the first or last vertex of a constituent path and the
other appears in another constituent path coming after that.

(e) In the case when w is situated before o, there is subordinacy
(95, 11) /T \\ (93, ¥2) such that 1, appears in a constituent
path and (g;,, 22) € o for some 2; < y;. In the case when w is
situated before o, there is the same subordinacy such that y,
appears in a constituent path and (g;,, z1) € o for some z; > y;.

Evidently, a component domain can satisfy at most one of the above
four conditions.

We say that T is outermost when in addition, the following hold.

(1) fr is not the identity.
(2) The domain T is not subordinate to another domain 7" which
the descending path passes with fr # id.

We say that T is subordinate to the constituent path on g; in the
cases (b) and (c), and to one of the two constituent paths related
to T which appears later in the descending path, the one either on
gj, or gj depending on which appears later in the case (d). In the
case (e), we say that T is forward subordinate to ¢ and backward
subordinate to the constituent path containing y, if (g,,,%2) € o, and
backward subordinate to ¢ and forward subordinate to the constituent
path containing y, if (g;,,31) € 0.

We call the constituent path on which y; as above lies the front leg
of T and the one on which y; lies the back leg in the cases (b), (¢) and
(d). In the case (a), we define I(g;) to be the back leg and T'(g;) the
front leg.

Now we shall give an order among the domains that the descending
path passes. Let Tj,T, be outermost domains which the descending
path from w to o passes, and suppose that they support geodesics
91y, 91, Tespectively in h. We state the definition of the ordering under
the assumption that w is situated after o, and explain how to modify
it in the case when w is situated before o.after that.

Definition 3.6 (Path-ordering). Let v be a descending path from w,
which is situated after o, to 0. We define T to be greater than T3 in
the path ordering on v and write T ., T> when the following hold.
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(1) Both T and T are subordinate to the same forward constituent
path and there is a time-ordering T, <, T5.

(2) Both T} and T, are subordinate to the same backward con-
stituent path and there is a time-ordering T} >, 75.

(3) T1 is subordinate to a constituent path appearing earlier (i.e.
in a geodesic with a smaller subscript) in the descending path
than the one to which 7% is subordinate.

(4) Both T and T are subordinate to the same forward constituent
path, and one of the following two conditions holds:

(a) T) C T, and T, is forward subordinate to (974, 22) for the
first vertex 2, of gr,, whereas T} is not backward subordi-
nate to grp;.

(b) T1 D T; and T; is backward subordinate to (g, 2;) for the
last vertex z; of gr,, whereas T is not forward subordinate
to gr;.

(5) Both T; and T3 are subordinate to the same backward con-
stituent path and one of the following two conditions holds:

(a) T, C T, and T; is forward subordinate to (g1y, 21) for the
first vertex 2, of g7,, whereas T} is not backward subordi-
nate to gty .

(b) T2 O Ty and T; is backward subordinate to (g7, 2) for the
last vertex 2, of gr,, whereas T is not forward subordinate
to g1;.

(6) T3 is backward subordinate to o and one of the following holds:

(a) T3 is forward subordinate to (gr,, z1) for the first vertex z;.

(b) T < T,.

(7) The front and back legs of T; are I(g;) and T(g,), and T is sub-
ordinate to a constituent path appearing later than I (g9;) and
T(g;) or the front and back legs of T, are initial and terminal
markings appearing later than I(g;) and T'(g;).

(8) The front and back legs of T3 are I(g;) and T'(g;), and T} is sub-
ordinate to a constituent path appearing earlier than I(g;) and
T(g;) or the front and back legs of T} are initial and terminal
markings appearing earlier than I(g;) and T'(g;).

In the case when w is situated before o, we need to change the

condition (6) as follows.

(6)' T3 is forward subordinate to o and one of the following holds.
(a) T3 is backward subordinate to (gr,, 2,) for the first vertex

of gr,.
(b) T] <t Tz.
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Now we return to our hierarchy h with twisting system {fy} for
component domains Y of h. Let v be a base simplex on the main
geodesic gp, and Y a component domain of a simplex w which supports
a geodesic g € h. Recall that there is a bottom slice o, for v. Consider
all the outermost domains Sj, . .., S; that the descending path, denoted
by <, from w to o, passes, and their twisting maps fs,,. .., fs,j arrayed
according to the path-ordering of the domains so that a smaller one
comes before a greater one: if S <., Si, then k < I. When two domains
have no relation in path-ordering, by Lemma, ??, their twisting maps
commute each other and the order does not matter. We define the
initial twisting of ¥ as the composed map fint(9) = (fso fglo--- 0
fs)IY, where ¢; is defined to be 1 when either S; is subordinate to
a backward constituent path or is subordinate to no constituent path
and supports a backward constituent path, and —1 otherwise. On the
other hand, the terminal twisting fierm(g) is defined to be finis © fy(g).
We also use the symbols finit(¥') and fierm(Y) putting the domain Y
of g into the parenthesis instead of g. When we use these notations,
we need not assume that Y supports a geodesic. Since our choices of
the descending path is unique, the initial and the terminal twistings
are uniquely determined.

The initial and the terminal twistings of the main geodesic should be
defined separately. Let v, be the simplex of gn such that (gn,v,) € 0.
We consider all the domains 7" such that either we have (gn, w1) ./ T \,
(gn,w2) with v, < w; or T is backward subordinate to ¢, and denote
the set of such domains by 7, . Similarly, we define 7_ to be the set of
domains T that either satisfy (gn,w1) ./ T \\ (gn, w2) with v, > ws
or are forward subordinate to 0. Compose all the twistings fr with
T € T, so that a smaller one in the order <., comes before a greater
one, letting v be the sub-geodesic of g, consisting of simplices coming
after v, with the orientation reversed, and postcompose fs, then we
get the terminal twisting for the main geodesic. Similarly, we get the
initial twisting of the main geodesic by composing all the twistings f7'
with T € 7_ in the order of <, and then postcomposing fs.

Next we define the internal twisting of a geodesic. Let g be a geodesic
in a hierarchy h supported on T, and vJ, ... , U3, its simplices, where n,
is the length of g. For each v7, we can consider the path v],v{_,,..., 4§
and regard it as a descending path. This is in fact a descending path
from v] to a slice containing (g, v§) such that its restriction to D(g) is
the bottom slice at v§. As before, we array all the outermost domains
Y1,...,Y, that the descending path passes in such a way that if Y, <.,
Y;, then s < t. (By Lemma ?? the order between domains without

11
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time-ordering does not matter.) We consider the composition fi,(g) o
fri ©:--o fy, and let it be f(g);,. We define f(g); to be the identity
if there are no domains which the descending path passes. Now, we
define the internal twisted geodesic g7 to be a geodesic (segment or ray)
whose j-th simplex is f(g);(v?). It is easy to check that this is really a
geodesic, by observing the domains of the twisting maps composed to
f(g); to get f(g)j+1 are all disjoint from v;y;.

To deal with the case when the geodesics with basepoint at the termi-
nal vertex converge to a geodesic ray, we need to introduce the internal
twisting upside down. Let 0¥¢ be a slice containing (9,v%,) such that

for every (k,w) € 0¥ with D(k) C D(g), we have k \ g and the sim-
plex w is the last vertex. For each j, we consider the descending path
from v3, _ to 734, We define /(g); t0 be furm(9)o (fr)~1o- -0 (fy,),
where Y),...Y, are all the domains that the descending path passes,
arrayed in such a way that if Y, <5, Y;, then s < t. Then we define the
reversed internally twisted geodesic g/ to be a geodesic ray whose j-th
simplex is f(g);(v5_ _;)-

To simplify symbols, for a simplex v of a geodesic g, we denote by
f(v) the image of v under the internal twisting and by f(v) that under
the internal twisting upside down.

Definition 3.7 (Geometric convergence of hierarchies). We say that
hierarchies H; with base simplices v; at the main geodesics converge
geometrically to a bug-infested hierarchy H., with a vertex v, € g
when there is a twisting system {f},} for H; with the following proper-
ties.

First of all, we have f§(v;) = v except for finitely many i.

Let 0 and oy be the bottom slices in Hy, and H; containing v, and
v; respectively. For any K € N, let U, (K) be the set of simplices of
H, which either lie on geodesic segments whose first vertices are within
the distance K from the bottom slice o, containing v, or are situated
within the 4-distance K from o, and lie on geodesic rays. Then there
exist 7 and a set U;(K) for i > 4y including the K-neighbourhoods in
H; of the bottom slice containing v; such that the following hold for

(1) For any geodesic v in H; such that all the vertices of v are in
Ui(K), the twisting f}, ., is the identity.

(2) Otherwise YN U;(K) consists of two geodesic segments vini and
Yeerm Such that the first vertex is lies in i and the last vertex
lies in Yeerm-



GEOMETRIC LIMITS VIEWED THROUGH MODEL MANIFOLDS

(3) For any geodesic v; € H; with £(D(v)) > 4 or £(D(y)) = 2
and wg, (D(7)) < K such that y; N U;(K) is not empty, fi . (7)
takes D(v) to a component domain I of H,, supporting a

geodesic segment or two geodesic rays such that if (g, v) /
D(v) for the j-th 31mplex v, then (¢, f‘(g),(v)) ,/ D’ or
@, F(@iai-s ) 7 D’ and if D(7) N, (g,0), then D'

(9", F(g);(v)) or D' . (", {(9g1-i(v)). In this situation,
we denote D' = f*(D(v;)).

(4) I Ui(K) D 7, then D' = £*(D(v;)) supports a geodesic segment
equal to v/ .

(5) Suppose that U;(K)My; consists of two geodesic segments y(z)inge
and 7v(¢)eerm and that either §(D(’y,)) > 4 or £&(D(v)) = 2 and

wr, (D(v)) < K. We define v(i)/, to be a geodesic subsegment
in the internally twisted geodesic (i)’ correspondmg to the
simplices contained in 7(2)init Slmllarly we define v(i)__ to be
a subsegment in J(3)". Then_v(z)mn is contained in the lower

ray supported on D’ and (i), in the upper ray supported on
on D', where ¥ denotes the geodesic obtained by reversing the
direction of v, both as subsegments beginning from the starting
points of the rays.

(6) Let w be a simplex of a geodesic v € H,, contained in U, (K).
Then for every large i, there exist a geodesic g; € h; and a
simplex w; € g; such that D(v) = f*(D(g:)), and fi(w;) = w
if 7y is either a finite geodesic or a upward ray and fi(w;) = w
if g is a downward ray. Also, the descending sequence from
w; to o; corresponds to that of w to o, and at each direct
subordination in the descending sequence of w;, the simplex to
which the previous term is subordinate is located at the same
position of a geodesic (counting from the first vertex or the last
vertex) as that of the corresponding simplex in the descending
sequence of w.

In (3)-(5) above, we also say that the geodesics «; in H; correspond
under twistings to a geodesic or a matching pair of geodesics in Ho, to
which they are mapped by the twistings in (4) or into which they are
embedded in (5).

The main result of this note is the following:

Theorem 3.8. Let {(H;,v:)} be a sequence of internally complete hier-
archies on S with base simplices such that each of their main geodesics
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9H,, has more than one simplices. Then there is a subsequence of
{(H;,v:)} which converges geometrically to an internally complete bug-
infested hierarchy Ho, with a base simplex v .
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