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1. INTRODUCTION
In this note, we shall present results which will appear in the part $\Pi$

of the author’s joint project with Teruhiko Soma [10]. The aim of this
project is to give a topological and geometric classification of geometric
limits of finitely generated Kleinian groups. In the second part, we shall
define geometric limits of hierarchies of tight geodesics in the sense of
Masur-Minsky. Such limits may not be hierarchies in general, but as
we shall see, they have properties similar to hierarchies. We call such
objects bug-infested hierarchies. We shall then show that bug-infested
hierarchies give rise to model manifolds for geometric limits, via slices
and resolutions as in the case of surface Kleinian groups.

In this note, we shall restrict ourselves to bug-infested hierarchies
and their geometric limits without mentioning model manifolds.

2. BUG-INFESTED HIERARCHIE8

Before defining bug-infested hierarchies, we shall review some termi-
nologies on curve complexes defined by Masur-Minsky [6]. We shall use
the same notations in the definition below. Let $g=\{v_{i}\}_{\iota\epsilon I}$ , where $I$ is
either finite or $\mathbb{Z}^{-}$ or $\mathbb{Z}^{+}$ or $\mathbb{Z}$ , be a tight geodesic (segment or ray or
line) in the curve complex $C(X)$ for a domain $X$ (i.e., an open essential
subsurface) of $S$ connecting a vertex in the initial marking $I(g)$ to a
vertex in the terminal marking $T(g)$ or converging to $I(g)$ as $iarrow-$oo
or to $T(g)$ as $iarrow\infty$ in the compactification $C(X)\cup \mathcal{E}\mathcal{L}(X)$ . We say
that $X$ is the support of $g$ then and denote it by $D(g)$ . Recall that
each $v$; is not necessarily a vertex but a simplex in $C(X)$ except for the
first and the last ones. A $\infty mponent$ domain at a simplex $v_{j}$ of $g$ is
either a component of $X\backslash v_{j}$ or an open annulus which is a tubular
neighbourhood of a component of $v_{j}$ . For a simplex $v_{j}$ of $g$ , we define
its predecessor pred$(v_{j})$ to be $v_{j-1}$ if $j\neq 1$ , and $I(g)$ if $j=1$ . Similarly
we define the successor succ $(v_{j})$ . We denote pred$(v_{j})|Y$ by $I(Y, g)$ and
succ$(v_{j})|Y$ by $T(Y, g)$ . For a component domain $Y$ of a simplex $v$ of
$g$ , if $T(Y,g)\neq\emptyset$ , then we write $Y\backslash dg$ . Similarly we write $g\nearrow dY$

数理解析研究所講究録
第 1660巻 2009年 1-14 1



K. OHSHIKA

if $I(Y)g)\neq\emptyset$ . We also write $Y\backslash d(g, v)$ or $(g, v)/’dY$ if we need to
specify whose component domain $Y$ is. There is a case when $Y|I(g)$ or
$Y|T(g)$ is an element of $\mathcal{E}\mathcal{L}(D(g))$ . This corresponds to the case when
$Y$ supports a “solitary geodesic ray”in the definition of bug-infested
hierarchy below. In the expression $Y\backslash dg$ or $g\nearrow dY$ , we are assuming
implicitly that we think of $Y$ as a component domain at a simplex of
$g$ .

Since the same domain may appear as supports of distinct geodesics
in bug-infested hierarchies which will be defined below, when we say
that two domains are the same, we need to explicate whether we are
just regarding them as subsurfaces on $S$ or as component domains of
simplices. Therefore, we say that two domains are isotopic when we
regard them only $ss$ subsurfaces of $S$ . We regard two isotopic domains
as being the same only when they are component domains of simplices
belonging to the same geodesic. In spite of this distinction, as a con-
vention, for a domain $X$ and a simplex $v$ of a geodesic whose support
contains a surface $X$ ‘ isotopic to $X$ , we use the symbol $v|X$ to denote
$v|X’$ .

Deflnition 2.1 (Bug-infested hierarchy). A bug-infested hierarchy $H_{\infty}$

on $S$ is a system of possibly infinitely many finite tight geodesics (seg-

ments or rays or lines) on domains of $S$ related by $\nearrow d$ and $\backslash d$ , which
has the following properties. We should remark that the same geodesic
can appear more than once in the system, and that a bug-infested hi-
erarchy is not just a collection of geodesics but geodesics together with
the relation of subordination. We distinguish two appearances of the
same $geodesi_{d}c$ , and regard them as different geodesics. Also, if we have
relations $a_{1}\backslash a_{2}\backslash d\ldots\backslash da_{n}$ in the following, we shall write $a_{1}\backslash a_{n}$ .
We use similarly the symbol $\nearrow$ .

(1) There are two generalised markings $I(H_{\infty})$ and $T(H_{\infty})$ which
are unmeasured laminations on $S$ with (possibly empty) transver-
sals on closed leaves, and $H_{\infty}$ contains only one tight geodesic
supported on $S$ itself, which is called the main 9eodesic, which
may be a geodesic segment or a ray or a line. The main geodesic
connects a vertex in base $(I(H_{\infty}))$ to one in base $(T(H_{\infty}))$ if it
is a segment. When it is a ray or line, its open end tends to
base$(I(H_{\infty})$ or base $(T(H_{\infty}))$ in the Gromov compactification
$C(S)\cup \mathcal{E}\mathcal{L}(S)$ .

(2) Each geodesic $g$ in $H_{\infty}$ is either a tight geodesic segment in
$C(D(g))$ connecting a vertex in base$(I(g))$ to a vertex in base$(T(g))$
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or a tight geodesic ray in $C(D(g))$ starting from a vertex of
base$(I(g))$ or base$(T(g))$ , where $D(g)$ is a domain in $S$ , called
the support of $g$ , where $I(g)$ and $T(g)$ are markings on $D(g)$ .
We assume that $g_{H}\infty$ contains at least two simplices.

(3) For any geodesic segment $b\in H_{\infty}$ that is not the main geodesic,
there are (finite or infinite) geodesics $a,$ $a’\in H_{\infty}$ and simplices

$v\in a,$ $v’\in a’$ such that $(a,v)\nearrow db$ and $b\backslash d(a’,v’)$ . For these,
$D(b)$ is isotopic to component domains $X$ at $v$ of $a$ and $X$‘ at $v’$

of $a’$ with $(a,v)\swarrow’Xd$ and $X$$‘\searrow d(a ‘, v ‘)$ , and $I(b)=I(X, a)$ and
$T(b)=T(X’, a’)$ . (It is possible that $(a,v)$ and $(a’,v’)$ , hence
$X$ and $X’$ coincide.) We say that $b$ is supported on $X$ and $X’$ .

(4) For any geodesic ray $b\in H_{\infty}$ that is not the main geodesic,

there are $a\in H_{\infty}$ and a simplex $v$ on $a$ with either $(a, v)\nearrow db$ or
$b\backslash d(a, v)$ . $($ Only one of the two can hold $)_{d}$ In either case, $D(b)$

is a component domain $X$ at $v$ of $a$ with $a/X$ or $X\backslash d$

$a$ holds
depending on whether $a\swarrow’db$ or $b\backslash da$ , and $I(b)=I(X, a)$ in
the former case and $T(b)=T(X, a)$ in the latter case. The ray
$b$ is called an upward ray in the former case, and a downward
ray in the latter case.

(5) Suppose that $X$ is a component domain at a simplex $v$ of some
geodesic $a\in H_{\infty}$ , and that $I(X, a)\neq\emptyset$ and $T(X, a)\neq\emptyset$ . Then
one and only one of the following holds.
(a) There is a unique finite tight geodesic $b\in H_{\infty}$ supported

on $X$ with $(a, v)\nearrow db\backslash d(a, v)$ .
(b) There is a unique pair, called a matching pair, of geodesic

rays $b^{-}$ and $b^{+}$ , called the lower ray and the upper ray of
the matching pair, both of which are supported on $X$ and
satisfy $(a,v)\nearrow b^{-}$ and $b^{+}\backslash d(a,\tau/)$ . (Note that a lower
ray is upward and an upper ray is downward.) For any
simplices $s^{-}\in b^{-}$ and $s^{+}\in b^{+}$ , we have $d_{X}(s^{-}, s^{+})\geq 3$ ,
and also $d_{X}(I(b^{-}),T(b^{+}))\geq 3$ .

(c) The domain $X$ is an annulus and there is a matching pair of
geodesic rays $C^{-}{}_{\rangle}C^{+}$ supported on some component domain
$Y$ of $v$ such that $(a, v)\swarrow’c^{-},c^{+}\backslash (a, v)$ and $X\cap\overline{Y}\neq\emptyset$

as domains on $S$ . In this case, $X$ supports no geodesics.
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Let $X$ and $X$‘ be distinct component domains at $v$ of $g$ and at $v’$ of $g’$

for $g,$ $g’\in H_{\infty}$ . Then, we say that $X$ is parallel up to $X’$ , and $X$‘ down
to $X$ when the following hold.

(i) $X$ and $X$ ‘ are isotopic, i.e., they are the same as domains on $S$ .
(ii) $T(X,g)=\emptyset$ and $I(X’,g’)=\emptyset$ .
(iii) In the case when $X$ is an annulus, there is no matching pair

$h^{-},$ $h^{+}$ with $D(h^{\pm})$ containing a core curve of $X$ such that either
$(g, v)\nearrow h^{-}$ or $h^{+}\backslash$ ($g’$ , Of).

When we need not to specify the positions of $X$ and $X’$ , we simply
say that $X$ and $X$‘ are parallel. We also call the geodesic $h$ above the
geodesic rcalising the parallelism between $X$ and $X$‘.

(6) Suppose that $X$ is a component domain with $\xi(X)\neq 3$ at the
last vertex $v$ of $a$ such that $I(X, a)\neq\emptyset$ , that $X’$ is a component
domain at the first vertex $v’$ of a geodesic $a’\in H_{\infty}$ such that
$T(X’, a’)\neq\emptyset$ , and that $X$ and $X’$ are pardlel. Then, one and
only one of the following holds.
(a) There is a unique finite tight geodesic $b\in H_{\infty}$ supported

$d$ $d$

on $X$ and $X$‘ with $(a,v)\nearrow b\backslash (a’, v’)$ .
(b) There is a unique pair of geodesic rays $b^{-}$ and $b^{+}$ , called the

lower ray and the upper ray of a matching pair also in this
case, such that $b^{-}$ is supported on $X$ and $(a, v)\nearrow db^{-}$ and
$b^{+}$ is supported on $X$‘ and $b^{+}\backslash d(a’, v’)$ . As in (5), for any
simplices $s^{-}\in b^{arrow}$ and $s^{+}\in b^{+}$ , we have $d_{X}(s^{-}, s^{+})\geq 3$ ,
and also $d_{X}(I(b^{-}),T(b^{+}))\geq 3$ .

(7) Suppose that there is either a finite geodesic or a matching pair
of geodesic rays is supported on $X$ and $X$‘ which are component
domains of distinct simplices $v$ at $b$ and $v’$ at $f$ . Then $X$ and
$X’$ are parallel.

We say that a $\infty mponent$ domain $X$ is a $tem\iota inal$ domain if there is a
descending sequence $(g_{n}, w_{n})\nearrow d(g_{n-1},w_{narrow 1})\nearrow d\ldots/d(g_{1},w_{1})\nearrow dX$ in
$H_{\infty}$ such that $w_{j}$ is the last vertex of $g_{j}$ for $j=1,$ $\ldots,$

$n$ , the geodesic $g_{n}$

is the main geodesic, and $T(X, g_{1})=\emptyset$ . Similarly, we say that $X$ is an
initial domain if there is a descending sequence $X\backslash d(g_{1},w_{1})\backslash d\ldots\backslash d$

$(g_{n},w_{n})$ in $H_{\infty}$ such that $w_{j}$ is the first vertex of $g_{j}$ for $j=1,$ $\ldots,n$ ,
the geodesic $g_{n}$ is the main geodesic, and $I(X,g_{1})=\emptyset$ .

(8) Suppose that $b^{-}$ is a lower ray supported on a $\infty mponent$ do-
main $X$ at a simplex $v$ of $a$ , which is not a terminal domain,
and that $a\nearrow db^{arrow}$ Then there exists a unique downward ray
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$b^{+}$ such that $b^{-}$ and $b^{+}$ constitute a matching pair. Similarly,
suppose that $b^{+}$ is a downward ray supported on a component
domain $X$ ‘ at a simplex $v’$ of $a’$ , which is not an initial domain,
and that $b^{+}\backslash da$ . Then there exists a unique upward ray $b^{-}$

such that $b^{-}$ and $b^{+}$ constitute a matching pair.
(9) A geodesic ray $g$ which is neither the main geodesic nor a part of

a matching pair, which we call solitary, must be either a down-
ward one satisfying $g\backslash (g_{H_{\infty}}, v)$ for the first vertex $v$ of $g_{H_{\infty}}$

and $I(g)\in \mathcal{E}\mathcal{L}(D(g))$ or an upward one satisfying $(g_{H_{\infty}}, w)$ for
the last vertex $w$ of $g_{H_{\infty}}$ and $T(g)\in \mathcal{E}\mathcal{L}(D(g))$ . A component
domain $Y$ of the last (resp. the first) vertex of $g_{H_{\infty}}$ supports a
solitary ray $g$ if and only if $T(H_{\infty})|Y$ $($resp. $I(H_{\infty})|Y)$ is con-
tained in $\mathcal{E}\mathcal{L}(Y)$ . In this case, we have $T(g)=T(H_{\infty})|Y$ (resp.
$I(g)=I(H_{\infty})|Y)$ .

3. SLICES IN A BUG-INFESTED HIERARCHY

To define the geometric convergence of hierarchies to an bug-infested
hierarchy, we need to fix some slice in the main geodesic for each hier-
archy as a basepoint and allow each domain to be twisted when viewed
from the base point.

We first recall the definition of (saturated) slice from Minsky [8],
which can be used also for a bug-infested hierarchy. In this paper,
when we refer to a slice, we always assume that it is saturated in the
sense of [7].

Deflnition 3.1 (Slice). A slice $\sigma$ of a bug-infested hierarchy $H_{\infty}$ is a
non-empty set of pairs $(g,v)$ for a geodesic $g$ in $H_{\infty}$ and a simplex $v$

on $g$ with the following properties.
(1) A geodesic appears in pairs of $\sigma$ at most once.
(2) If $(g,v)$ is a pair $\infty ntained$ in $\sigma$ and $g$ is not the main geodesic

of $H_{\infty}$ , then there is $(g’,v’)\in\sigma$ such that $D(g)$ is parallel to a
component domain of $v’$ .

(3) If $(g,v)$ is contained in $\sigma$ , for any component domain $D$ of $v$

supporting a geodesic in $H_{\infty}$ , there is $(g’, v’)\in\sigma$ such that
$D(g’)$ is parallel to $D$ .

For a simplex $v\in g_{H_{\infty}}$ , we define the bottom slice at $v$ to be a slice $\sigma$

containing $(g_{H},v)$ such that for any $(g,w)\in\sigma$ , the geodesic $g$ is either
a segment or an upward ray and $w$ is the first vertex of $g$ .

Note that by the definition of bug-infested hierarchies, if $v$ is not the
first vertex of $g_{H_{\infty}}$ , the bottom slioe at $v$ always exists. From now on,
when we $\infty nsider$ the bottom slice at some simplex of $g_{H}\infty$ ’ we assume
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the simplex is not the first vertex. Since we assumed in Definition 2.1
that $g_{H_{\infty}}$ contains at least two simplices, $g_{H_{\infty}}$ always contains a simplex
which has bottom slice.

We shall define the twisting operation below which is necessary for
the definition of the geometric convergence of hierarchies. For speci-
fying where we should twist, we need to define some terms concerning
the position of a component domain in a bug-infested hierarchy first.
Deflnition 3.2. Let $H$ be a bug-infested hierarchy and $\sigma$ a slice of $H$ .
A geodesic $g$ in $H$ , its domain $D(g)$ and its simplices are said to be
situated before $\sigma$ when one of the following two conditions holds.

(1) There are a geodesic $g’$ such that $g\backslash (g’, w)\sim$ and a simplex $v$ on
$f$ with $w<v$ and $(g’, v)\in\sigma$ .

(2) There is a downward ray $h$ such that $g\backslash (h,w)\sim$ such that the
upward ray $h’$ , which is the other half of $h$ , has a simplex $w’$

with $(h’, w’)\in\sigma$ .
Similarly we define $g,$ $D(g)$ and the simplices on $g$ to be situated after
$\sigma$ when one of the following two conditions holds.

(1) There are a geodesic $g’$ such that $(g’,w)\nearrow^{\sim}g$ and a simplex $v$ on
$\phi$ with $w>v$ and $(g’, v)\in\sigma$ .

(2) There is a lower ray ray $h$ of a matching pair such that $(h, w)/’g\sim$

such that the upper ray $h’$ , which is the other half of $h$ , has a
simplex $w’$ with $(h’, w^{f})\in\sigma$ .

We say that $g$ is hanging on $\sigma$ if it is situated neither before nor after
$\sigma$ .
Deflnition 3.3. We say that a simplex $v$ on a geodesic $g$ is situated
before a slioe $\sigma$ when either $g$ is situated before $\sigma$ or $g$ is hanging on $\sigma$

and contains $(g,p)$ with $v<p$ . Similarly, we define the condition that
$v1s$ situated after $\sigma$ by reversing the directions of the subordinacy and
the order.
3.1. $\delta$-distance, descending paths and twisting systems. We
next define the distance between a slice of $H$ and a simplex $w\infty n-$

tained in some geodesic in $H$ .
Deflnition 3.4 ( $\delta$-distance). Let $H$ be a bug-infested hierarchy, and $w$

a simplex on a geodesic $g\in H$ . We first $\infty nsider$ the case when $g$ is sit-
uated after $\sigma$ . We consider a sequence of simplices $w_{0}=w,$ $w_{1},$ $\ldots,$ $w_{k}$

such that
(1) $w_{j}$ is a vertex in $g_{j}\in H$ for each $j=0,$ $\ldots k$ , and for $j<k$

there is no simplex $u_{j}$ with $(g_{j}, u_{j})\in\sigma$ ,
(2) there is a simplex $u_{k}$ such that $(g_{k},u_{k})\in\sigma$ , and
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(3) for each $j=0,$ $\ldots,$ $k-1$ , we have $(g_{j+1},w_{J+1})/dg_{j}’\simeq g_{j}$ .
Let if be the first vertex of $g_{j}’$ and $v_{\infty}^{j}$ the last vertex of $g_{j}$ . Then we
define $\delta_{j}$ to be $\min\{d_{D(g_{j}’)(\dot{p}_{0}),d_{D(g_{j})}(w_{j},cP_{\infty})\}}w_{j},$$c+\epsilon_{j}+1$ , where the
distance between simplices belonging to different rays in the matching
pair is set to be $\infty$ and $\epsilon_{i}$ is set to be $0$ if the vertex, $\tau j_{0}$ or $\dot{\theta}_{\infty}$ realising
the minimum is equal to $I(g_{j})$ or $T(g_{j})$ , and to be 1 otherwise. We say
that $w_{j}$ lies in the first half if the minimum is attained by $d_{D(g_{j}’)}(w_{j},$ $(j_{0})$

including the case when the two terms in $\min$ are equal, and in the
second half otherwise. We need to introduce another tem $\eta_{j}$ which is
defined to be $0$ when both $w_{j}$ and $w_{j+1}$ lie in the same half, the first
or the second, and to be 1 if they lie in different halves. Let $v$ be the
simplex of $g_{H}$ such that $(g_{H},v)\in\sigma$ . Then by summing up distances,
we let $\delta(w,\sigma)=\sum_{j=0}^{k-1}\delta_{j}+\eta_{j}+d_{S}(w_{k},u_{k})$ .

Similarly, we define $\delta$ in the case when $g$ is situated before $\sigma$ as
follows. We consider a sequence of vertices $w_{0}=w,$ $w_{1},$ $\ldots,w_{k}$ such
that

(4) $w_{j}$ is a vertex in $g_{j}\in h$ , and for $j<k$ there is no simplex $u_{j}$

with $(g_{j}, u_{j})\in\sigma$ ,
(5) there is $u_{k}$ such that $(g_{k}, u_{k})\in\sigma$ , and
(6) for each $j=0,$ $\ldots$ , $k-1$ , we have $g_{j}\simeq g_{j}’\backslash d(g_{j+1},w_{j+1})$ .

Then we let $\delta_{j}=\min\{d_{D(g_{j})}(w_{j}, if), d_{D(g_{j}’)}(w_{j}, v_{\infty}^{J’})\}+1+\epsilon_{j}$, where $d_{0}$

is the first vertex and $\dot{\theta}_{\infty}$ is the last vertex of $g_{f}’$ and $\epsilon_{j}$ is defined in
the same way as above. Having defined $\delta_{j}$ , the rest of the definition is
the same as the previous case.

Finally, suppose that $g$ is hanging on $\sigma$ . Then there is $v$ on $g$ such
that $(g,v)\in\sigma$ by Lemma ??, We set $\delta(w, \sigma)$ to be $d_{D(g)}(v,w)$ .

This definition of the distance may appear asymmetric. We adopt
this definition because of its $\infty nvenience$ in defining twisting systems
below and then the geometric convergence of hierarchies. It will tum
out later in \S ?? that in fact this $\delta$-distance is within uniformly bounded
error from a symmetric distance which should be used geometric con-
vergence for model manifolds.

Let $Y$ be a component domain of a simplex in a hierarchy $h$ (an
ordinary one, not bug-infested), which supports a geodesic $\gamma$ , and $v$ a
simplex of the main geodesic. We associate each $Y$ with a homeomor-
phism $f_{Y}$ : $Sarrow S$ fixing $S\backslash Y$ and call $\{f_{Y}\}$ a twisting system and
each of its elements a twisting map. Twisting maps are necessary to
control geometric convergence for geodesics in hierarchies whose lengths
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go to infinity. For geodesics other than these, the twisting maps will
be defined to be the identity.

Suppose that $w$ is a simplex on a geodesic $g$ in a hierarchy $h$ , and
that $\sigma$ is a slice. We have a simplex $v’$ with $(g_{m}, v’)\in\sigma$ and a descend-
ing sequence $g=g_{0}\backslash d(g_{1},w_{1})\backslash d(g_{2},w_{2})\backslash d$ . . . $\backslash d(g_{m},w_{m})$ with

$d$ $d$ $d$

$w_{m}<v’$ or $(g_{m}, w_{m})\nearrow\ldots\swarrow’(g_{1}, w_{1})\nearrow g_{0}=g$ with $v’<w_{m}$ as in
Definition 3.4, where we regard $m$ as $0$ if $g_{m}$ is hanging on $\sigma_{v}$ . Since we
are considering an ordinary hierarchy, we do not need to consider the
relation $\simeq$ in this sequence. Note that this sequenoe is uniquely deter-
mined. We call this sequence the descending sequence from $w$ to $\sigma$ . Let
$d_{0}$ be the first vertex of $g_{j}$ and $v_{N_{j}}^{j}$ the last one, where $N_{j}$ is the length
of $g_{j}$ . For $j=0,$ $\ldots m-1$ , we connect $w_{j}$ to one of vl and $v_{N_{j}}^{j}$ which is
nearer a geodesic path, regarding $w$ as $w_{0}$ by a sub-geodesic $G$ on $g_{i}$ .
If the distances from $w_{j}$ to if and $v_{N_{j}}^{j}$ are the same, then we connect
$w_{j}$ to $v_{0}^{j}$ in the case when the descending sequenoe is forward and to
$ij_{N_{j}}$ otherwise. We define $\circ n$ to be the geodesic path on $g_{m}$ connecting
$w_{m}$ to $v’$ . Denote the simplices of the path $c_{j}$ by $w_{j}=X’i,$ $\ldots,\dot{d}_{k}.$ . We
concatenate these paths $q,$ $\ldots,c_{m}$ first. Then in the case when $w_{j}^{f}$ lies
in the first half, we interpose $I(g_{j})$ just after $\dot{d}_{k_{j}}$ if $\epsilon_{j}=1$ and $T(g_{j})$

before $\dot{d}_{1}^{+1}$ if $\eta_{j}=1$ . (Refer to Definition 3.4 for the definition of $\epsilon_{j}$

and $\eta_{j}.)$ In the case when $w_{j}$ lies in the $se\infty nd$ half, we interpose $T(g_{j})$

after $x_{k_{j}}$ if $\epsilon_{j}=1$ and $I(g_{j})$ if $\eta_{j}=1$ . We call a sequenoe of positions
thus obtained a descending path from $w$ to $\sigma$ and the paths $q,$ $\ldots$ , $q_{n}$

its constituent paths. A constituent path is called forward or $backwa\prime d$

depending on it lies on a forward geodesic or a backward geodesic. We
should note that the length of a descending path from $w$ to $\sigma$ , which
is the number of positions contained in the path minus 1, is equal. to
$\delta(w, \sigma)$ by our definition of descending path.

Deflnition 3.5. We say that the descending path from $w$ to $\sigma$ passes a
component domain $T$ of $h$ if one of the following conditions is satisfied.

(a) $T$ is the support of some constituent path $g_{j}$ for which both
$I(g_{j})$ and $T(g_{j})$ are in the descending path.

(b) There is subordinacy $(g_{j}, y_{1})\nearrow T\backslash (g_{j}, y_{2})$ with both $y_{1}$ and
$y_{2}$ being among the simplices $\dot{d}_{1},\dot{d}_{2},$

$\ldots,$
$d_{k_{j}}$ of a $\infty nstituent$

path such that $y_{1}\neq x_{1}^{j}$ if the path is backward and $y_{2}\neq\dot{d}_{1}$ if
it is forward.
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(c) There is subordinacy $(g_{j}, I(g_{j}))\nearrow T\backslash (g_{j},\dot{d}_{k_{j}})$ for the case
when $\dot{d}_{k_{j}}$ is the first vertex of $g_{j}$ or $(g_{j}, d_{\acute{k}_{j}})\nearrow T\backslash (g_{j}, T(g_{j}))$

for the case when $\dot{d}_{k_{j}}$ is the last vertex of $g_{j}$ .
(d) There is subordinacy $(g_{J\iota},y_{1})/T\backslash (g_{j_{2}}, y_{2})$ such that one of

$y_{1}$ and $y_{2}$ is the first or last vertex of a constituent path and the
other appears in another constituent path coming after that.

(e) In the case when $w$ is situated before $\sigma$ , there is subordinacy
$(g_{j_{1}},y_{1})/T\backslash (g_{j_{2}},y_{2})$ such that $y_{1}$ appears in a constituent
path and $(g_{j_{2}}, z_{2})\in\sigma$ for some $z_{2}\leq y_{2}$ . In the case when $w$ is
situated before $\sigma$ , there is the same subordinacy such that $y_{2}$

appears in a constituent path and $(g_{j_{1}}, z_{1})\in\sigma$ for some $z_{1}\geq y_{1}$ .
Evidently, a component domain can satisfy at most one of the above
four conditions.

We say that $T$ is outermost when in addition, the following hold.
(1) $f_{T}$ is not the identity.
(2) The domain $T$ is not subordinate to another domain $T’$ which

the descending path passes with $f_{T’}\neq id$.
We say that $T$ is subordinate to the constituent path on $g_{j}$ in the
cases (b) and (c), and to one of the two constituent paths related
to $T$ which appears later in the descending path, the one either on
$g_{j_{1}}$ or $g_{j_{2}}$ depending on which appears later in the case (d). In the
case (e), we say that $T$ is forward subordinate to $\sigma$ and backward
subordinate to the constituent path containing $y_{1}$ if $(g_{j},,y_{2})\in\sigma$ , and
backward subordinate to $\sigma$ and forward subordinate to the $\infty nstituent$

path containing $y_{2}$ if $(g_{J\iota},y_{1})\in\sigma$ .
We call the constituent path on which $y_{1}$ as above lies the front leg

of $T$ and the one on which $y_{2}$ lies the back leg in the cases (b), (c) and
(d). In the case (a), we define $I(g_{j})$ to be the back leg and $T(g_{j})$ the
front leg.

Now we shall give an order among the domains that the descending
path passes. Let $T_{1},T_{2}$ be outermost domains which the descending
path $homw$ to $\sigma$ passes, and suppose that they support geodesics
$g_{T_{1}},g_{h}$ respectively in $h$ . We state the definition of the ordering under
the assumption that $w$ is situated after $\sigma$ , and explain how to modify
it in the case when $w$ is situated before $\sigma$ . after that.

Deflnition 3.6 (Path-ordering). Let $\gamma$ be a desoending path from $w$ ,
which is situated after $\sigma$ , to $\sigma$ . We define $T_{1}$ to be greater than $T_{2}$ in
the path ordering on $\gamma$ and write $T_{1}\succ_{\gamma}T_{2}$ when the following hold.

9
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(1) Both $T_{1}$ and $T_{2}$ are subordinate to the same forward constituent
path and there is a time-ordering $T_{1}\prec_{t}T_{2}$ .

(2) Both $T_{1}$ and $T_{2}$ are subordinate to the same backward con-
stituent path and there is a time-ordering $T_{1}\succ_{t}T_{2}$ .

(3) $T_{1}$ is subordinate to a $\infty nstituent$ path appearing earlier (i.e.
in a geodesic with a smaller subscript) in the descending path
than the one to which $T_{2}$ is subordinate.

(4) Both $T_{1}$ and $T_{2}$ are subordinate to the same forward $\infty nstituent$

path, and one of the following two conditions holds:
(a) $T_{1}\subset T_{2}$ and $T_{1}$ is forward subordinate to $(g_{T_{2}}, z_{2})$ for the

first vertex $z_{2}$ of $g_{T_{2}}$ , whereas $T_{1}$ is not backward subordi-
nate to $g_{T_{2}}$ .

(b) $T_{1}\supset T_{2}$ and $T_{2}$ is backward subordinate to $(g_{T_{1}}, z_{1})$ for the
last vertex $z_{1}$ of $g_{T_{1}}$ , whereas $T_{2}$ is not forward subordinate
to $\Psi_{1}$ .

(5) Both $T_{1}$ and $T_{2}$ are subordinate to the same backward con-
stituent path and one of the following two conditions holds:
(a) $T_{2}\subset T_{1}$ and $T_{2}$ is forward subordinate to $(g_{T_{1}}, z_{1})$ for the

first vertex $z_{1}$ of $g_{T_{1}}$ , whereas $T_{2}$ is not backward subordi-
nate to $g_{T_{1}}$ .

(b) $T_{2}\supset T_{1}$ and $T_{1}$ is backward subordinate to $(g_{T_{2}},z_{2})$ for the
last vertex $z_{2}$ of $9\tau_{2}$ , whereas $T_{1}$ is not forward subordinate
to $9\tau_{2}$ .

(6) $T_{2}$ is backward subordinate to $\sigma$ and one of the following holds:
(a) $T_{2}$ is forward subordinate to $(g\tau_{1}, z_{1})$ for the first vertex $z_{1}$ .
(b) $T_{2}\prec tT_{1}$ .

(7) The front and back legs of $T_{1}$ are $I(g_{j})$ and $T(g_{j}))$ and $T_{2}$ is sub-
ordinate to a constituent path appearing later than $I(g_{j})$ and
$T(g_{j})$ or the front and back legs of $T_{2}$ are initial and terminal
markings appearing later than $I(g_{j})$ and $T(g_{j})$ .

(8) The front and back legs of $T_{2}$ are $I(g_{j})$ and $T(g_{j})$ , and $T_{1}$ is sub-
ordinate to a $\infty nstituent$ path appearing earlier than $I(g_{j})$ and
$T(g_{j})$ or the front and back legs of $T_{1}$ are initial and terminal
markings appearing earlier than $I(g_{j})$ and $T(g_{j})$ .

In the case when $w$ is situated before $\sigma$ , we need to change the
condition (6) as follows.

(6)’ $T_{2}$ is forward subordinate to $\sigma$ and one of the following holds.
(a) $T_{2}$ is backward subordinate to $(9\tau_{1}, z_{1})$ for the first vertex

of $9\tau_{1}$ .
(b) $T_{1}\prec tT_{2}$ .

10
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Now we return to our hierarchy $h$ with twisting system $\{f_{Y}\}$ for
component domains $Y$ of $h$ . Let $v$ be a base simplex on the main
geodesic $g_{h}$ , and $Y$ a component domain of a simplex $w$ which supports
a geodesic $g\in h$ . Recall that there is a bottom slioe $\sigma_{v}$ for $v$ . Consider
all the outermost domains $S_{1},$

$\ldots,$
$S_{l_{j}}$ that the desoending path, denoted

by $\gamma$ , from $w$ to $\sigma_{v}$ passes, and their twisting maps $f_{S_{1}},$
$\ldots,$ $f_{S_{l_{j}}}$ arrayed

according to the path-ordering of the domains so that a smaller one
comes before a greater one: if $S_{k}\prec_{\gamma}S_{l}$ , then $k<l$ . When two domains
have no relation in path-ordering, by Lemma ??, their twisting maps
commute each other and the order does not matter. We define the
initial twisting of $Y$ as the composed map $f_{inlt}(g)=(f_{S}\circ f_{S_{1}}^{\epsilon_{1}}\circ\cdots 0$

$f_{S_{l}}^{\epsilon\iota})|Y$ , where $\epsilon_{i}$ is defined to be 1 when either $S_{i}$ is subordinate to
a backward constituent path or is subordinate to no $\infty nstituent$ path
and supports a backward constituent path, and-l otherwise. On the
other hand, the terminal twisting $f_{t\alpha m}(g)$ is defined to be $f_{\ln it}\circ f_{Y}(g)$ .
We also use the symbols $f_{init}(Y)$ and $f_{term}(Y)$ putting the domain $Y$

of $g$ into the parenthesis instead of $g$ . When we use these notations,
we need not assume that $Y$ supports a geodesic. Since our choices of
the desoending path is unique, the initial and the terminal twistings
are uniquely determined.

The initial and the terminal twistings of the main geodesic should be
defined separately. Let $v_{\sigma}$ be the simplex of $g_{\hslash}$ such that $(g_{h},v_{\sigma})\in\sigma$ .
We consider all the domains $T$ such that either we have $(g_{h},w_{1})/T\backslash$

$(g_{h},w_{2})$ with $v_{\sigma}<w_{1}$ or $T$ is backward subordinate to $\sigma$ , and denote
the set of such domains by $T_{+}$ . Similarly, we define $\mathcal{T}_{arrow}$ to be the set of
domains $T$ that either satisfy $(g_{h},w_{1})\nearrow T\backslash (g_{h},w_{2})$ with $v_{\sigma}>w_{2}$

or are forward subordinate to $\sigma$ . Compose all the twistings $f_{T}$ with
$T\in \mathcal{T}_{+}$ so that a smaller one in the order $\prec_{\gamma}$ comes before a greater
one, letting $\gamma$ be the sub-geodesic of $g_{h}\infty nsisting$ of simplices coming
after $v_{\sigma}$ with the orientation reversed, and post$\infty mposef_{S}$ , then we
get the terminal twisting for the main geodesic. Similarly, we get the
initial twisting of the main geodesic by composing all the twistings $f_{T}^{-1}$

with $T\in \mathcal{T}_{-}$ in the order of $\prec_{\gamma}$ and then postcomposing $f_{S}$ ,

Next we define the internal tutsting of a geodesic. Let $g$ be a geodesic
in a hierarchy $h$ supported on $T$ , and $v_{0}^{g},$

$\ldots,v_{n_{l}}^{g}$ its simplioes, where $n_{g}$

is the length of $g$ . For each $v_{j}^{g}$ , we can consider the path $v_{j}^{g},v_{j-1}^{g},$
$\ldots,$ ae

and regard it as a descending path. This is in fact a descending path
from $v_{j}^{g}$ to a slioe $\infty ntaining(g,v_{0}^{g})$ such that its restriction to $D(g)$ is
the bottom slioe at $v_{0}^{g}$ . As before, we array all the outermost domains
$Y_{1},$ $\ldots,Y_{p}$ that the descending path passes in such a way that if $Y_{\epsilon}\prec_{\gamma_{j}}$

$Y_{t}$ , then $s<t$ . (By Lemma ?? the order between domains without

11
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time-ordering does not matter.) We consider the composition $f_{inlt}(g)0$

$f_{Y_{1}^{\circ\cdots\circ}}f_{Y_{p}}$ and let it be $f(g)_{j}$ . We define $f(g)_{j}$ to be the identity
if there are no domains which the descending path passes. Now, we
define the intemal twisted geodesic $g^{f}$ to be a geodesic (segment or ray)
whose j-th simplex is $f(g)_{j}(\iota_{j}^{\rho})$ . It is easy to check that this is really a
geodesic, by observing the domains of the twisting maps composed to
$f(g)_{j}$ to get $f(g)_{j+1}$ are all disjoint from $v_{j+1}$ .

To deal with the case when the geodesics with basepoint at the termi-
nal vertex converge to a geodesic ray, we need to introduoe the intemal
twisting upside down. Let $\sigma_{g}^{ud}$ be a slioe $\infty ntaining(g,v_{n_{9}}^{g})$ such that
for every $(k,w)\in\sigma_{g}^{ud}$ with $D(k)\subset D(g)$ , we have $k\backslash g$ and the sim-
plex $w$ is the last vertex. For$-eachj$ , we consider the descending path
from $?j_{n_{9}-j}^{g}$ to $\sigma_{g}^{ud}$ . We define $f(g)_{j}$ to be $f_{t\propto m}(g)\circ(f_{Y_{1}})^{-1}\circ\cdots o(f_{Y_{p}})^{-1}$ ,
where $Y_{1},$ $\ldots Y_{p}$ are all the domains that the descending path passes,
arrayed in such a way that if $Y_{s}\prec_{\vec{\gamma}_{j}}Y_{t}$ , then $s<t$ . Then we define the
reversed intemally twisted geodesic $\overline{g}^{f}$ to be a geodesic ray whose j-th
simplex is $\overline{f}(g)_{j}(v_{n_{9}-j}^{g})$ .

To simplify symbols, for a simplex $v$ of a geodesic $g_{f}$ we denote by
$f(v)$ the image of $v$ under the internal twisting and by $\overline{f}(v)$ that under
the intemal twisting upside down.

Deflnition 3.7 (Geometric convergenoe of hierarchies). We say that
hierarchies $H_{\mathfrak{i}}$ with base simplices $v_{i}$ at the main geodesics converge
geometrically to a bug-infested hierarchy $H_{\infty}$ with a vertex $v_{\infty}\in g_{H_{\infty}}$

when there is a twisting system $\{f_{\gamma}^{i}\}$ for $H_{\mathfrak{i}}$ with the following proper-
ties.

First of all, we have $f_{S}^{i}(v_{i})=v_{\infty}$ exoept for finitely many $i$ .
Let $\sigma_{\infty}$ and $\sigma_{t}$ be the bottom slices in $H_{\infty}$ and $H_{i}$ containing $v_{\infty}$ and

$v_{i}$ respectively. For any $K\in N$ , let $U_{\infty}(K)$ be the set of simplioes of
$H_{\infty}$ which either lie on geodesic segments whose first vertioes are within
the distanoe $K$ from the bqttom slioe $\sigma_{\infty}\infty ntainingv_{\infty}$ or are situated
within the $\delta$-distanoe $K$ from $\sigma_{0}$ and lie on geodesic rays. Then there
exist $i_{0}$ and a set $U_{i}(K)$ for $i\geq i_{0}$ including the K-neighbourhoods in
$H_{i}$ of the bottom slioe containing $v_{i}$ such that the following hold for
any $i\geq i_{0}$ .

(1) For any geodesic $\gamma$ in $H_{i}$ such that all the vertices of $\gamma$ are in
$U_{i}(K)$ , the twisting $f_{D(\gamma)}^{\}$ is the identity.

(2) Otherwise $\gamma\cap U_{1}(K)$ consists of two geodesic segments $\gamma_{InIt}$ and
$\gamma_{\iota\propto m}$ such that the first vertex is lies in $\gamma i_{1}i_{t}$ and the last vertex
lies in $\gamma_{urm}$ .

12
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(3) For any geodesic $\gamma_{i}\in H_{i}$ with $\xi(D(\gamma))\geq 4$ or $\xi(D(\gamma))=2$

and $w_{H_{i}}(D(\gamma))<K$ such that $\gamma_{i}\cap U_{i}(K)$ is not empty, $f_{inIt}^{i}(\gamma)$

takes $D(\gamma)$ to a component domain $D’$ of $H_{\infty}$ supporting a
$d$

geodesic segment or two geodesic rays such that if $d(g, v)/$
$D(\gamma)$ for the j-th simplex $v$ , then $(g^{f^{i}}, f^{i}(g)_{j}(v))/D’$ or
$(\overline{g}^{f^{i}},\overline{f}^{i}(g)_{|g|-j}(v))\nearrow dD’$ , and if $D(\gamma)\backslash d(g,v)$ , then $D’\backslash d$

$(g^{f^{i}}, f^{i}(g)_{j}(v))$ or $D’\backslash d(\overline{g}^{f^{:}},\overline{f}^{i}(g)_{|g|-j}(v))$ . In this situation,
we denote $D’=f^{i}(D(\gamma_{i}))$ .

(4) If $U_{i}(K)\supset\gamma_{i}$ , then $D’=\dot{\Gamma}(D(\gamma_{i}))$ supports a geodesic segment
equal to $\gamma_{i}^{f^{i}}$

(5) Suppose that $U_{i}(K)\cap\gamma_{i}$ consists of two geodesic segments $\gamma(i)_{1nIt}$

and $\gamma(i)_{t\alpha m}$ and that either $\xi(D(\gamma_{i}))\geq 4$ or $\xi(D(\gamma_{i}))=2$ and
$w_{H_{:}}(D(\gamma_{i}))<K$ . We define $\gamma(i)_{inIt}^{f}$

:
to be a geodesic subsegment

in the intemally twisted geodesic $\gamma(i)^{f^{i}}$ corresponding to the
simplioes contained in $\gamma(i)_{1nit}$ . Similarly we define $\gamma(i)_{t\epsilon-}^{f_{i}}$ to be
a subsegment in $\overline{\gamma}(i)^{f^{i}}$ Then $\gamma(i)_{init}^{f^{1}}$ is contained in the lower
ray supported on $D$‘ and $\gamma(i)_{t\alpha m}^{f^{i}}$ in the upper ray supported on
on $D’$ , where $\overline{\gamma}$ denotes the geodesic obtained by reversing the
direction of $\gamma$ , both as subsegments beginning from the starting
points of the rays.

(6) Let $w$ be a simplex of a geodesic $\gamma\in H_{\infty}$ contained in $U_{\infty}(K)$ .
Then for every large $i$ , there exist a geodesic $g_{i}\in h_{i}$ and a
simplex $w_{i}\in g_{i}$ such that $D(\gamma)=f(D(g_{i}))$ , and $fl(w_{i})=w$
if $\gamma$ is either a finite geodesic or a upward ray and $\overline{f}^{i}(w_{i})=w$

if $g$ is a downward ray. Also, the descending sequenoe from
$w_{i}$ . to $\sigma_{i}$ corresponds to that of $w$ to $\sigma_{\infty}$ and at each direct
subordination in the descending sequenoe of $w_{i}$ , the simplex to
which the previous term is subordinate is located at the same
position of a geodesic $(\infty unting$ from the first vertex or the last
vertex) as that of the corresponding simplex in the descending
sequenoe of $w$ .

In (3)$-(5)$ above, we also say that the geodesics $\gamma_{i}$ in $H_{i}$ correspond
under twistings to a geodesic or a matching pair of geodesics in $H_{\infty}$ to
which they are mapped by the twistings in (4) or into which they are
embedded in (5).

The main result of this note is the following:
Theorem 3.8. Let $\{(H_{i}, v_{i})\}$ be a sequence of intemally complete hier-
archies on $S$ with base simplices such that each of their main geodesics
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$g_{H_{\infty}}$ has more than one simplices. Then there is a subsequence of
$\{(H_{i}, v_{i})\}$ which converges geometrically to an internally complete bug-
infested hierarchy $H_{\infty}$ utth a base simplex $v_{\infty}$ .
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