
STABLE CURVES AND SCREENS ON FATGRAPHS
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ABSTRACT. The mapping class group invariant ideal cell decom-
position of the Teichm\"uller space of a punctured surface times an
open simplex has been used in a number of computations. This
paper answers a question about the asymptotics of this decompo-
sition, narnely, in a given cell of the decomposition, which curves
can be short? Screens are a new $\infty mbinatorial$ structure which
provide an answer to this question. The heart of the calculation
here involves Ptolemy transformations and the triangle inequalities
on lambda lengths.

1. INTRODUCTION
Throughout this paper, $F=F_{g}^{\delta}$ will denote a fixed $sm\infty lh$ oriented

surface of genus $g$ with $s\geq 1$ punctures, where $2g-2+s>0$ , with
mapping class group $MC(F)$ .

Let $\mathcal{T}(F)$ denote the Teichm\"uller space of $F=F_{g}^{\theta}$ and $\tilde{\mathcal{T}}(F)$ denote
the trivial $(R_{>0}^{\ell})$-bundle over it. Let $\mathcal{M}(F)=\mathcal{T}(F)/MC(F)$ denote
Riemann’s moduli space with its Deligne-Mumford compactification
$\overline{\mathcal{M}}(F)$ . $MC(F)$ also acts on $\tilde{\mathcal{T}}(F)$ by permuting the numbers assigned
to punctures.

There is a $MC(F)$-invariant ideal cell decomposition [7, 10, 15, 22]
of $\tilde{\mathcal{T}}(F)$ which has found wide application in geometry and physics

$[$ 1, 8, 9, 11, 12, 13, 14, 16]. Cells in this decomposition are in one-to-
one correspondence with homotopy classes of “fatgraph spines” of $F$ ,
that is, a homotopy class of embedded graph in $F$ in the usual sense
together with cyclic orderings on the half-edges about each vertex. (See
the next section for further precision.)
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Thus, to $eaA$ fatgraph spine $G$ of $F$ , there is a corresponding cell
$C(G)\subset\tilde{\mathcal{T}}(F)$ . In the interests of understanding $M(F)$ combinatori-
ally, it is natural ask:

Question 1.1. Given $G$ and given a collection $K$ of non-parallel and
non-puncture-parallel disjointly embedded and essential simple closed
curves in $F$ , when is there a sequence $(\tilde{\Gamma}_{n})\in C(G)$ , for $n\geq 1$ , so
that the hyperbolic lengths of the geodesic curves homotopic to the
components of $K$ tend to zero for large $n$ and all other lengths remain
bounded below? In other words, which multicurves can be short in
$C(G)$ ?

We give in this paper a complete answer to this question, as follows,
where we shall concentrate in this introduction on the case that $G$ is
trivalent for simplicity.

Let $E$ denote the set of edges of $G$ and consider any proper subset
$A\subset E$ . There is a smallest (not necessarily connected) subgraph $G_{A}$ of
$G$ containing $A$ , and we say that $A$ is “recurrent” if $G_{A}$ has no univalent
vertices. (Again, see the next section for a imre detailed discussion of
recurrence.) Suppose $A$ is recurrent and $G_{A}$ is connected, and get
rid of all bivalent vertices of $G_{A}$ in the usual way to produce either a
simple cycle in $G$ or another trivalent fatgraph $G’$ . A neighborhood of
$G_{A}\subset G$ in $F$ is a subsurface of $F$ , an annulus in the former case and a
punctured surface of negative Euler characteristic in the latter. Define
the ”relative boundary” of $A$ to be the edge-path in $G$ of the simple
cycle itself in the former case and those of the boundary components
of this subsurface in the latter case, where you discard any such cycles
that are puncture-parallel in $F$ itself.

The new combinatorial structure which provides the answer to Ques-
tion 1.1 (and was introduced in [19]), a “screen on a fatgraph $G$” is a
subset $A$ of the power set (i.e., the set cf subsets) of the set $E$ of edges
of $G$ with the following properties:

i $)$ $E\in \mathcal{A}$ ;

ii) each $A\in A$ is recurrent;

iii) if $A,$ $B\in A$ with $A\cap B\neq\emptyset$ , then either $A\subseteq B$ or $B\subseteq A$ ;

iv) for each $A\in \mathcal{A},$ $\cup$ {$B\in A$ : $B$ is a proper subset of $A$ } is a
proper subset of $A$ .
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Condition i) is simply a $\infty nvenient$ convention, conditions iii-iv) are
familiar from Fulton-MacPherson [5], and here we impose the further
condition ii) of recurrence. Notice that the properness condition iv)
and recurrence condition ii) together imply that if $G_{A}$ is a simple cycle
in $G$ , then for any screen $\mathcal{A}$ on $G$ with $A,$ $B\in A$ and $A\cap B\neq\emptyset$ ,
we must have $A\subseteq B$ , i.e., simple cycles are necessarily atomic in any
screen.

Each element $A\in \mathcal{A}$ other than $A=E$ has an immediate predecessor
$A’\in \mathcal{A}$ , and regarding $A$ as a set of edges in $G_{A’}$ in the natural way,
has its relative boundary $\partial_{A}A$ defined before. Finally, the “boundary”
of the screen itself is $\partial \mathcal{A}=\bigcup_{A\in A-\{E\}}\partial_{A}A$ .

Here is the answer to Question 1.1, our main result:

Theorem 1.2. For any fatgmph $G$ , the cell $C(G)$ admits as short
curv es a family $K$ of non-parallel and non-puncture pamllel disjointly
embedded and essential simple closed curves in $F$ if and only if $K=\partial \mathcal{A}$

for some screen $A$ on $G$ .

Let us immediately do several examples, where it is typically easiest
to study the quotient of $\tilde{\mathcal{T}}(F)$ by the natural $R_{>0}$-action, the projec-
tivized space, which we shall denote

$P\tilde{\mathcal{T}}(F)=\tilde{\mathcal{T}}(F)/\mathbb{R}>0\approx \mathcal{T}(F)\cross\Delta^{\epsilon-1}$ ,

where $\Delta^{p}$ denotes the open $r$dimensional simplex. In particular for a
once-puntured surface, we have $P\tilde{\mathcal{T}}(F)=\mathcal{T}(F)$ .

Figure 1 Screens for the once-punctured torus $\infty mspmd$

to ideal vertices in the decomposition of $P\tilde{T}(F_{1}^{1})$ .
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Example 1.3. For the once-punctured torus $F=F_{1}^{1}$ , the ideal cell
decomposition of $\mathcal{T}(F)$ is the Farey tesselation of the disk [15]. In
Figure 1 we depict a typical top-dimensiona12-ce11, which is indexed
by a non-planar fatgraph $G$ with two 3-valent vertices as is also illus-
trated. The codimension-one cells arise by $\infty 1lapsing$ any one of the
three edges shown as darkened in the figure, and the codimension-two
cells at infinity are indexed by the three possible recurrent subgraphs
of $G$ as likewise illustrated. In this example, the boundary of a screen
always $\infty nsists$ of a single curve.

Figure 2 A fatgraph for the four-punctured sphere.

Example 1.4. For the four-times punctured sphere $F=F_{0}^{4}$ , consider
the Mercedes sign fatgraph $G$ depicted in Figure 2. Both screens $A_{1}=$

$\{E, \{a, b, a’, \theta\}\}$ and $A_{2}=\{E, \{a, b, c, a’, b’\}, \{a, c, \mathcal{U}\}\}$ correspond to
pinching to zero the closed edge-path $a-b-a’-y$ , and both screens
have this same edge-path as boundary.

Figure 3 Typical exunpk.

Example 1.5. Consider the sub-fatgraph of a fatgraph $G$ with edges
$E$ depicted in Figure 3 and the screen

$A=\{E,$ $\{a, b, \ldots, k\},$ $\{a, b, \ldots,g\},$ $\{f,g\},$ $\{b,c,d, e\},$ $\{i,j, k\}\}$
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on $G$ . The boundary of $\mathcal{A}$ is comprised of the four edge-paths $f-g$ ,
$b-c-d-e,$ $h-i-j-k-h-f-g$, and $a-b-c-d-e-a-f-g$.

We shall rely on “lambda length” coordinates from [15] (recalled in
\S 3) on the decomted Teichmuller space $\tilde{\mathcal{T}}(F)$ , where the fiber over a
point is taken to be the set of all s-tuples of horocycles, one horocy-
cle about each puncture; one may take the hyperbolic lengths of the
distinguished horocycles as a convenient coordinate on the fiber.

In effect, we shall record the rates of divergence of lambda lengths
regarded as projective coordinates on $P\tilde{\mathcal{T}}(F)$ , and the crucial point is
that in the cell $C(G)$ , the lambda length $\infty ordinatae$ on $G$ must satisfy
all three strict triangle inequalities at each vertex of $G$ (cf. Lemma
3.6). This is what forces the recurrenoe $\infty ndition$ .

The proof of Theorem 1.2 depends upon the explicit calculation
of ho}onomies using “path-ordered products” of matrices (due to Bill
Thurston and Volodya Fock [3] independently and recalled in \S 3). The
proof further requires estimates on the absolute tr ns of the represent-
ing matrices. To this end, we find a condition weaker than the triangle
inequalities which satisfies two properties: 1) the condition is invariant
under certain “Whitehead moves” (see the next section for a definition)
sufficient to simplify the path-ordered product; and 2) the $\infty ndition$

guarantees the required estimates on the absolute traces. This is the
heart of the paper (in \S 5), and the techniques involve only “Ptolemy
transformations” (cf. Lemma 3. $1a$), path-ordered products, and the
triangle inequality.

Because the argument at heart only depends upon these formulae, we
are optimistic that the current paper may have ramifications more gen-
erally for cluster algebras [6] and cluster ensembles [4]. Since Wolpert
has recently announced [21] that lambda lengths are strictly convex
along Weil-Petersson geodesics, we are likewise optimistic about appli-
cations to the asymptotic WP geometry.

There is furthermore a program to extend the cell decomposition of
moduli space to the Deligne-Mumford compactification using screens,
which is already well underway (as discussed in the closing remarks
\S 7).

2. FATGRAPHS AND RECURRENCE

A gmph is a finite one-dimensional CW complex with no isolated
vertices whose l-cells are edges and whose 0-cells are vertices. The set
of edges of $G$ will be denoted $E(G)$ . A half-edge of an edge $e\in E(G)$
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is either one of the two components of the interior of $e$ with an interior
point removed, and the valence of a vertex is the number of half-edges
containing the vertex in their closures, said to be incident on the vertex.
A fatgraph is a graph together with a cyclic ordering on the half-edges
incident on each vertex. In particular, a finite CW decomposition of a
circle is an example of a fatgraph, as is a planar tree where the cyclic
ordering is induced by the $\infty unter$-clockwise orientation on the plane.

A fatgraph $G$ determines a punctured surface $F’(G)$ gotten by as-
signing to each k-valent vertex an oriented ideal k-gon, whose sides
correspond to the incident half-edges, and finally identifying in the
natural way pairs of sides of these polygons associated to pairs of half-
edges $\infty ntained$ in a common edge of $G$ .

The vertices of the ideal polygons are identified to the punctures
of $F’(G)$ . Each edge $e\in E(G)$ gives rise to its dual ideal arc $\alpha_{(G,e)}$

connecting punctures in $F’(G)$ .
An ideal triangulobon of $F_{g}^{\epsilon}$ is the homotopy class of a set of arcs

connecting punctures in $F_{g}^{s}$ , called ideal arcs, which $de\infty mpo\Re$ the
surface into a collection of triangles with vertices at the punctures.
More generally, an ideal cell decomposition is the homotopy class of
a subset of an ideal triangulation which decomposes the surface into
polygons.

Provided each vertex of $G$ has valence at least three, $\{\alpha_{(G,e)}$ : $e\in$

$E(G)\}$ is an ideal cell decomposition of $F’(G)$ said to be dual to $G$ .
Conversely, the Poincar\’e dual of an ideal cell decomposition of $F$‘ is
a fatgraph embedded in $F_{9}^{\ell}$ each of whose vertices hae valence at $1e^{g}ast$

three, where the cyclic ordering in the fatgraph structure is induced by
the clockwise order in the oriented surface $F_{g}^{s}$ .

A fatgraph $G$ also determines a corresponding oriented surface $F(G)$
with boundary $\infty nstructed$ by assigning to each k-valent vertex an
oriented $(2k)$-gon, whose alternating sides correspond to the incident
half-edges, and as before, identifying pairs of sides of these polygons
corresponding to pairs of half-edges contained in a common edge of $G$ .
The alternating unpaired edges of these polygons comprise the bound-
ary of $F(G)$ . We may regard $F(G)\subseteq F’(G)$ as a strong deformation
retraction in the natural way.

In particular, $G$ is a strong deformation retraction or spine of $F(G)$
or $F’(G)$ . It follows that any free homotopy class of essential curve in
$F(G)$ or $F’(G)$ gives rise to a closed edge-path in $G$ , which is uniquely
determined up to its starting point provided we demand that the edge-
path is efficient in the sense that it never consecutively traverses the
same edge of $G$ with opposite orientations.
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A closed edge-path in $G$ corresponding to a boundary $\infty mponent$

of $F(G)$ will be called a boundary component of $G$ itself. An efficient
boundary component of $G$ must have edges of $G$ incident on only one
side. Put another way for a trivalent fatgraph, an efficient edge-path
is a boundary $\infty mponent$ if and only if it consists entirely of left turns
or consists entirely of right turns.

Suppose that $G$ is a fatgraph with set $E=E(G)$ of edges and $\infty rr\triangleright$

sponding surface $F=F(G)$ . Any subset $A\subseteq E$ determines a subgraph
by including all vertices of $G$ on which edges in $A$ are incident. FUr-
thermore by restriction, the fattening on $G$ induces a fattening on this
subgraph, which thus determines a well-defined sub-fatgraph $G_{A}$ . We
may regard $F(G_{A})$ as a subsurface embedded in the interior of $F$ in
the natural way. Define the boundary of $A$ to be the collection $\partial A$

of (unoriented) efficient closed edge-paths in $G$ corresponding to the
relative boundary of $F(G_{A})$ in $F=F(G)$ , that is, the collection of
closed edge-paths $\infty rresponding$ to the components of the boundary
$\partial F(G_{A})$ which are not homotopic to boundary components of $F$ itself.
In particular, if $G_{A}$ is a circle, then $\partial A$ is the closed edge path of $G_{A}$ if
this circle is not boundary paralel in $F$ , and $\partial A$ is empty if this circle
is boundary parallel in $F$ .

We say that $A\subseteq E$ is recurre$nt$ if for every edge $a\in A$ , there is an
efficient closed edge-path $\gamma_{a}$ in $G$ so that $\gamma_{a}$ traverses $a$ and traverses
only edges in $A$ . Any subset $A\subseteq E$ has a (possibly empty, e,g,, in the
case of a planar tree) mascimal $oecur\epsilon nt$ subset $R(A)$ , namely, the set
of edges of $A$ traversed by an efficient closed edge-path in $G_{A}$ .

Lemma 2.1. Suppose that $G$ is a fatgraph and $A\subseteq E=E(G)$ . Then
the folloutng are equivalent:

i $)$ $A$ is recument;

ii) there is a hnction $\mu$ : $Earrow \mathbb{Z}_{\geq 0}$ whose support is $A$ so that for
each vertex of $G$ with incident half-edges $e_{1},$ $\ldots,$

$e_{k}$ and extending the
function $\mu$ to be defind on half-edges in the natural way, we have
that $\sum_{i=1}^{k}\mu(e_{i})$ is even, and the genemlized weak triangle inequalities
$hou$, i. e., for each $j=1,$ $\ldots,$

$k$ ,

$\mu(e_{j})\leq\sum_{i\neq j}\mu(e_{i})$
;

iii) every vertex of $G_{A}$ has valence at least two.
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Proof. First suppose that $A$ is recurrent, and let $\mu_{a}(e)$ be the number
of times that a chosen $\gamma_{a}$ traverses $e$ for each $a\in A$ and $e\in E$ . Each
$\mu_{a}$ : $Earrow \mathbb{Z}_{\geq 0}$ satisfies the restrictions of condition (ii), henoe so too
does their sum $\mu=\sum_{a\in A}\mu_{a}$ , which has full support on $A$ . Thus, (i)
implies (ii). (In fact, we shall prove that (ii) implies (i) implies (iii)
implies (ii), so (i) implies (ii) is actually a consequence of the following
argument.)

Conversely, suppose that $\mu$ is a function supported on $A$ satisfying
the properties of condition (ii). For each k-valent vertex of $G$ , there
is a dual ideal k-gon in the $\infty rresponding$ punctured surface $F’(G)$ ,
and we shall construct a family of arcs properly embedded in this k-
gon realizing the values of $\mu$ on the dual edges of $G$ as the geometric
intersection numbers. These arc families in the k-gons then combine
uniquely to produce disjointly embedded curves in the natural way,
whose component simple closed curves in $F$ have corresponding edge-
paths which satisfy the required properties.

The construction in each k-gon proceeds by induction on $k\geq 2$ with
notation for incident edges as in condition (ii). In case $k=2$ , simply
take a $\infty 1lection$ of $\mu(e_{1})=\mu(e_{2})$ arcs crossing the bigon. For the case
$k=3$ , take

$\frac{1}{2}[\mu(e_{i_{1}})+\mu(e_{i_{2}})-\mu(e_{i_{8}})]=\frac{1}{2}[\mu(e_{t_{1}})+\mu(e_{i_{2}})+\mu(e_{i_{3}})-2\mu(e_{t_{3}})]\in \mathbb{Z}_{\geq 0}$

parallel copies of the arc joining edges $e_{i_{1}}$ to $e_{i_{2}}$ , where $\{i_{1}, i_{2}, i_{3}\}=$

$\{1,2,3\}$ . For the induction step, take a consecutive pair of edges $e_{i},$ $e_{\mathfrak{i}+1}$

so that $\mu(e_{i})+\mu(e_{i+1})$ is least among all $\infty nsecutive$ pairs of edges,
here taking the indices modulo $n$ so that $e_{n+1}=e_{1}$ . Cutting along
the diagonal separating $e_{i}$ and $e_{i+1}$ from the rest decomposes the k-gon
into a $(k-1)$-gon and a triangle. Extend $\mu$ to a function defined on the
edges of these regions by taking value $\mu(e_{i})+\mu(e_{i+1})$ on the diagonal, so
the generdized triangle inequalities hold on each region by our choice of
consecutive edges, and the parity condition holds by construction. By
the inductive hypothesis, appropriate arc families exist in each region,
and they $\infty mbine$ in the natural way to give the required arc family in
the k-gon itself. It follows that (i) is equivalent to (ii).

If $G_{A}$ has a univdent vertex, say with incident edge $a\in A$ , then there
can be no efficient edge-path in $G_{A}$ traversing $a$ , so (i) implies (iii). To
see that (iii) implies (ii), define $\mu$ to take value 2 on the edges in $A$ and
vanish otherwise, and note that $\mu$ satisfies condition (ii) provided $G_{A}$

has no univalent vertices.
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Suppose that $e$ is an edge of a fatgraph $G$ with distinct endpoints.
We may collapse $e$ to a vertex to produoe a new fatgraph $G’$ , where the
cyclic ordering at the resulting vertex arises by combining the cyclic
orderings on the half-edges incident on the endpoints of $e$ in the natural
way. Dually, one removes the ideal arc $\alpha_{(G)\epsilon)}$ from the dual ideal cell
decomposition.

If $G$ is a trivalent fatgraph and $e$ is an edge of $G$ with distinct end-
points, then a Whitehead move on $e$ is the fatgraph that results by
collapsing $e$ and then un-collapsing the resulting four-valent vertex in
the unique distinct manner. A Whitehead move along an edge $e$ is
depicted in Figure 4, which furthermore indicates the notation near an
edge $e$ which we shall adopt in many of the calculations of this paper.

Figure 4 Standard notation for Whitehead moves.

Using the characterization Lemma 2.liii), it follows directly that
recurrence is invariant under Whitehead moves on trivalent fatgraphs
and is furthermore in any case invariant under collapse of edges $e$ with
distinct endpoints neither of which is univalent.

3. COORDINATES
The reader is referred to [15] or the more recent treatment [20] for

proofs and further details on the material which is recalled in this
section. We begin with several formulae on horocycles in the hyperbolic
plane.

If $h,$ $h’$ are horocycles in the hyperbolic plane with distinct centers
in the circle at infinity, then consider the unique geodesic $\gamma(h, h’)$ con-
necting their centers. The horocycles $h,$ $h’$ truncate $\gamma(h, h’)$ to a ge-
odesic segment of some finite signed length $\delta$ taken to be positive if
and only if $h$ and $h’$ are disjoint. Define the lambda length of $h,$ $h’$ to
be $\lambda(h, h’)=\sqrt{\exp\delta}$ . (This is a different normalization for lambda
lengths than in [15], for instance, where the lambda length is taken as
$\sqrt{2\exp\delta}\}$ cf. [20]. $)$
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Lemma 3.1. Suppose $h_{1},$ $h_{2},$ $h_{3},$ $h_{4}$ are horocycles utth distinct centers
occurring in this clockwise order in the c\’ircle at infinity, and let $\lambda_{ij}=$

$\lambda(h_{i}, h_{j})$ for distinct $i,j\in\{1,2,3,4\}$ . Then:

a$)$ [Ptolemy’s equation] $\lambda_{13}\lambda_{24}=\lambda_{12}\lambda_{84}+\lambda_{14}\lambda_{23}$ ;

b$)$ [Cross Ratios] the Mobius transformation that takes the centers of
$h_{3},$ $h_{2},$ $h_{1}$ respectively to $0,1,$ $\infty$ also maps the center of $h_{4}to_{\lambda_{12}\lambda_{84}}^{\lambda\lambda}- 3\lrcorner A$ ;

c $)$ [h-lengths] the hyperbolic length of the horocyclic segment in $h_{i}$

utth endpoints $h_{i}\cap\gamma(h_{i}, h_{j})$ and $h_{i}\cap\gamma(h_{i}, h_{k})$ is given by $\frac{\lambda_{jk}}{\lambda_{ij}\lambda_{ik}}f$

where $\{i,j, k\}=\{1,2,3\}$ ;

d $)$ [Affine duality] tabng the upper sheet ua of the hyperboloid in
Minkowski 3-space as the model for the hyperbolic plane, there is
a unique isotropic vector $u_{i}$ with positive z-coordinate so that $h_{i}=$

$\{w\in \mathbb{H}:w\cdot u_{i}=-2^{-\frac{1}{2}}\}_{f}$ for $i=1,2,3,4$ where . denotes the pairing
utth quadratic fonn $x^{2}+y^{2}-z^{2}$ , and $\lambda_{ij}=\sqrt{-u_{i}u_{j}}$ for distinct
$i,j\in\{1,2,3,4\}$ ;

e$)$ [Simplicial coordinates] in the notation of part $d$), the signed
volume of the $EucMmn$ tetmhedron in Minkowski S-space spanned
by $u_{1},$ $u_{2},$ $u_{3},$ $u_{4}$ is given by $2\sqrt{2}\lambda_{12}\lambda_{23}\lambda_{34}\lambda_{14}$ times

$\frac{\lambda_{12}^{2}+\lambda_{23}^{2}-\lambda_{13}^{2}}{\lambda_{12}\lambda_{23}\lambda_{18}}+\frac{\lambda_{14}^{2}+\lambda_{84}^{2}-\lambda_{13}^{2}}{\lambda_{14}\lambda_{u}\lambda_{13}}$ ,

where the sign is positive if and only if the edge of the tetrahedron
connecting $u_{1},$ $u_{3}$ lies below the $\ovalbox{\tt\small REJECT} ge$ connecting $u_{2},$ $u_{4}$ .
f $)$ [Ellipticity] in the notation of part $d)_{f}$ the affine plane containing
$u_{1},$ $u_{2},$ $u_{3}$ determines an elliptic conic section if and only if $\lambda_{12},$ $\lambda_{13},$ $\lambda_{23}$

satisfy the three strtct triangle inequalities.

Given a point $\tilde{\Gamma}\in\tilde{\mathcal{T}}(F)$ and given the homotopy class of an ideal
arc $\alpha$ in $F$ , we may straighten $\alpha$ to the geodesic for the underlying
hyperbolic structure and truncate this geodesic by cutting it at the
horocycles centered at its endpoints coming from the decoration. This
geodesic segment has a signed hyperbolic length $\delta$ taken with a positive
sign if and only if the horocycles are disjoint. The basic $\infty ordinate$ of
an ideal arc in a decorated hyperbolic surfaoe is the lambda length
(also sometimes called the “Penner coordinate”) defined by $\lambda(\alpha;\tilde{\Gamma})=$

$\sqrt{\exp\delta}$ .
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Theorem 3.2. Fix any trivalent fatgmph G. Then the assignment of
lambda lengths

$\tilde{\mathcal{T}}(F’(G))arrow \mathbb{R}_{>0}^{E(G)}$

$\tilde{\Gamma}\mapsto(e\mapsto\lambda(\alpha_{(G,e)};\tilde{\Gamma}))$

is a mal-analytic homeomorphism onto.

For $\infty nvenienoe$ when the fatgraph $G$ is fixed or understood, we shall
refer to the lambda length of an edge $e$ of $G$ rather than that of its dual
arc $\alpha_{(G,e)}$ . We shall also often identify an arc with its lambda length
for $\infty nvenience$ .

Suppose that $G$ is a trivalent fatgraph. Consider an edge $e$ of $G$ and
adopt the notation of Figure 4, where $e$ has distinct endpoints with
incident half-edges $a,$ $b$ and $c,$ $d$ occurring in the alphabetic clockwise
order about $e$ . (If $e$ does not have distinct endpoints or if $a,$ $b,$ $c,$ $d$ are
not distinct, then adopt the corresponding notation for nearby edges
in the universaJ $\infty ver.$ ) Dual to each vertex of $e$ is an ideal triangle,
and each such triangle has three vertioes, denoted by Greek letters in
Figure 4. To each such triangle/vertex pair is naturally associated a
sector of $G$ , that is, a pair of $\infty nsecutive$ half-edges of $G$ incident on
a $\infty mmon$ vertex, namely, the pair of half.edges adjacent to the given
vertex in the given triangle.

In fact, one can conveniently calculate the holonomies of based closed
curves in $F’(G)$ as foUows. Define the matrices

$R=(\begin{array}{ll}1 1-1 0\end{array}),$ $L=(\begin{array}{l}0-111\end{array})\in PSL_{2}(R)$ .

According to Lemma 3. $1b$), the cross ratio of the ideal quadrilateral
with edges $\alpha(G_{1}a),$ $\alpha(G,b),$ $\alpha_{(G_{i}c)},$ $\alpha_{(G_{2}d)}$ is given by $-M/ac$, where we
have identified an edge of $G$ with its lambda length for $\infty nvenience$ ,
and we further define the matrix

$X_{e}=(_{-\sqrt{M/ac}}0\sqrt{ac/bd}0)$ .

Choosing a vertex of $G$ as basepoint, consider a closed edge-path
$\gamma$ in $G$ representing an essential based closed curve in $F$ . We may
as well assume that $\gamma$ is efficient (though this is not neoessary since
$RL=R^{3}=L^{3}=X_{e}^{2}=1\in PSL_{2}(R))$ , so that it altemately traverses
edges and sectors of $G$ and makes turns, right or left, at each sector.
Suppose that $\gamma$ serially makes tums $t_{i}$ at the sectors, then traverses
edges $e_{i}$ , for $i=1,$ $\ldots,n$ , and associate the pathordered product

$M=T_{1}X_{e_{1}}T_{2}\cdots X_{e_{\hslash}}$
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of matrices, where $T_{i}=R$ or $L$ if $t_{i}$ is a right or left tum respectively.
The matrix $M\in PSL_{2}(R)$ gives the holonomy of the based curve $\gamma$ .
Of course by conjugacy invarianoe of trace, the absolute value of the
trace of $M$ is independent of the basepoint. We shall use these path-
ordered products to detect the short curves that occur on a path in
$C(G)\subseteq\tilde{\mathcal{T}}(F’(G))$ .

The quadrilateral in Figure 4 is realized as a geodesic ideal quadri-
lateral with horocycles oentered at each vertex. We define the h-length
of a sector of $G$ to be the hyperbolic length of the corresponding horo-
cyclic segment. According to Lemma 3.lc), the h-length of a sector is
the opposite lambda length divided by the product of adjacent lambda
lengths.

Furthermore in the notation of Figure 4, we define the simpli cial
coordinate cf the edge $e$ to be the quantity

$\frac{a^{2}+b^{2}-e^{2}}{\ }+\frac{c^{2}+d^{2}-e^{2}}{cde}=\frac{a}{be}+\frac{b}{ae}-\frac{e}{ab}+\frac{c}{de}+$ $o_{e}^{d}- \frac{e}{cd}$ .

According to Lemma 3. $1e$), the simplicial coordinate is a multiple of
the signed volume of the corresponding tetrahedron, and by inspection,
it is a linear $\infty mbination$ of the nearby h-lengths. From the definition,
the simplicial coordinate is the sum of two terms each of which is
associated to a vertex of the $\infty rresponding$ edge.

Consider a trivalent fatgraph $G$ with set $E$ of edges for the surface
$F_{g}^{s}$ together with an assignment of lambda lengths $\lambda$ : $Earrow \mathbb{R}_{>0}$ . We
say that $\lambda$ satisfies the no vanishing cycle condition provided that all
the corresponding simplicial coordinates are non-negative and there is
no cycle in $G$ all of whose simplicial coordinates vanish.

Theorem 3.3. For any surface $F=F_{9}^{l}$ wzth $s\geq 1$ , there is a $MC(F)-$

invariant ideal cell decomposition of $\tilde{\mathcal{T}}(F)$ , where the cells in this de-
composition are in $\sigma ne$-to-one correspondence with homotopy classes of
embeddings of fatgmph spines of $F$ each of whose vertices has valence
at least thtee. The face relation in this cell decomposition is genemted
by Whitehead colkpse.

In pantcular, if $G$ is a trivalent fatgmph spine of $F$ , then the closed
cell $C(G)\subseteq\tilde{\mathcal{T}}(F)$ corrtesponding to it is described in lambda length
coordinates with respect to $G$ by the no vanishing cycle condition.

Furthermore, suppose $G’$ arises from $G$ by collapsing to a point each
component of a forest in G. Then the corresponding closed cell $C(G’)\subseteq$

$C(G)\subseteq\tilde{\mathcal{T}}(F)$ is described by taking all simplicial coordinates on edges
in the forest to vanish. Finally, any assignment of non-negative real
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numbers to the edges of $G’$ with no vanishing cycles is realized as the
simplicial coordinates of a uniquely determined collection of positive
lambda lengths on $G$ .

$Coro1lary\sim 3.4$ . There is a $MC(F)- inva\dot{n}ant$ ideal cell decomposition
of $P\mathcal{T}(F)$ for any surface $F=F_{g}^{s}$ with $s\geq 1$ , where the cells in this
decomposition are in one-to-one correspondence with homotopy cksses
of embeddings of fatgmph spines of $F$ whose vertices have valence at
least three.

Proof. This follows immediately from the previous theorem and $homc\succ$

geneity of the formula for simplicial coordinates. $\square$

Lemma 3.5. Suppose that $\gamma$ is an efficient edge-path in $G$ serially
tmversing edges $e_{i}$ alternating urith sectors $t_{i_{f}}$ for $i=1,$ $\ldots,$

$n$ . Let $E_{i}$

denote the simplicial coordinate of $e_{i}$ and $\alpha_{i}$ the h-length of the sector
$t_{i}$ . Then $\sum_{i=1}^{n}E_{i}=2\sum_{i=1}^{n}\alpha_{i}$ .

Proof The proof follows Rom the definition of simplicial coordinates
in terms of h-lengths.

Lemma 3.6. [15] The no vanishing cycle condition implies that the
lambda lengths at any vertex of $G$ satisfy the three strict triangle in-
e4ualities.

Proof. Adopt the notation of Figure 4 for the half-edges near an edge
$e$ (again, in the universal $\infty ver$ if the edges $a,b,$ $c,d$ are not distinct
or if $e$ does not have distinct endpoints). If $c+d\leq e$ , then $c^{2}+$

$d^{2}-e^{2}\leq-2cd$ , so the non-negativity of the simplicial $\infty ordinate$

$E$ of $e$ gives $0\leq cd[(a-b)^{2}-e^{2}]$ , and we find a $se\infty nd$ vertex so
that the triangle inequality fails. This is a basic algebraic fact about
simplicial coordinates. It follows that if there is any such vertex so
that the triangle inequalities do fail for the lambda lengths of incident
half-edges, then there must be an efficient closed edge-path $\gamma$ passing
through such triangles. Letting $e_{i}$ denote the consecutive edges of $G$

serially traversed by $\gamma$ and $b_{i}$ denote the half-edge of $G$ incident on the
$\infty mimn$ endpoint of $e_{i}$ and $e_{i+1}$ , we find $e_{j+1}\geq b_{j}+e_{j}$ , for $j=1,$ $\ldots n$.
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Upon summing and canceling like terms, we find $0 \geq\sum_{j=1}^{n}b_{j}$ , which
is absurd sinoe lambda lengths are positive. $\square$

4. SCREENS
Suppose that $G$ is a trivalent fatgraph with set $E$ of edges and corre-

sponding surfaoe $F$ , and suppose that $\lambda_{t}$ : $Earrow \mathbb{R}_{>0}$ , i.e., $\lambda_{t}\in R>0$
’ is a

continuous one-parameter family of lambda lengths for $t\geq 0$ . We shall
typically apply Theorem 3.2 to regard such a one-parameter family as
a path in $\mathcal{T}(F’(G))$ itself. There is an induoed $\overline{\lambda}_{t}\in P(R_{>0}^{E})$ , where $P$

denotes projectivization, and by $\infty mpactness$ of the $(|E|-1)$-simplex
$PR_{\geq 0}^{E})$ , there is an accumulation point of $\lim_{tarrow\infty}\overline{\lambda}_{t}$ in $P(R_{>0}^{E})$ .

Say that $\lambda_{t}$ is stable if is there is a unique such limit $po\tilde{in}t$ denoted
$\lambda_{\infty}\in P(R_{\succeq 0}^{E})$ . If $\lambda_{t}$ is any path, then any accumulation point of $\overline{\lambda}_{t}$ is
also the limit of some stable path sinoe decorated Teichm\"uller spaoe is
path connected.

Suppose that $\lambda_{t}\in P(\mathbb{R}_{>0}^{E})$ is stable with limit $\overline{\lambda}_{\infty}\in P(R_{>0}^{E})$ . Set
$E^{0}=E$ and m&e the following recursive definition for $k\geq 1$ :

$E^{k}=\{f\in E^{k-1}:$ ョ$e\in E^{k-1}$ with $\lambda_{t}(f)/\lambda_{t}(e)arrow\infty$ as $tarrow\infty\}$ .
Thus, $E=E^{0}\supsetneq E^{1}\supsetarrow\cdots\sim\supset E^{N}\neq\emptyset$ is a well-defined nested sequenoe
of finite length $N$ of proper non-empty subsets, and we set $E^{N+1}=\emptyset$

for convenienoe.
Now, suppose that $\lambda_{t}$ stays for all finite $t\geq 0$ in the closed oell $C(G)$

corresponding to $G$ , i.e., the lambda lengths satisfy the no vanishing
cycle condition by Theorem 3.3. Define

$A(\lambda_{t})=$ { $A\subseteq E:$ $A$ is the set of edges of a component of some $E^{k}$ },

a subset of the power set of $E$ .

Proposition 4.1. For any connected tnvalent fatgmph $G$ with set $E$

of edges and any continuous stable one-parameter family $\lambda_{t}\in R_{>0;}^{E}$

for $t\geq 0$ , which stays for all finite $t$ in the cell $C(G)\subseteq\tilde{\mathcal{T}}(F(G))$

coroesponding to $G$ , the collection $\mathcal{A}=A(\lambda_{t})$ satisfies the folloutng
properties:

i $)$ $E\in \mathcal{A}$;

ii) each $A\in \mathcal{A}$ is recurrent;

iii) $\iota’fA,$ $B\in A$ utth $A\cap B\neq\emptyset_{l}$ then either $A\subseteq B$ or $B\subseteq A$ ;
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iv) for each $A\in \mathcal{A},$ $\cup$ { $B\in \mathcal{A}$ : $B$ is a proper subset of $A$} is a
proper subset of $A$ .

A subset of the power set of $E$ satisfying properties i-iv) is called a
screen on $G$ for any (not necessarily trivalent) recurrent fatgraph $G$

with set $E$ of edges.

Proof The first $\infty ndition$ holds since $G$ is $\infty nnected$ and $E=ffl.$
Recursively applying Lemmas 2.1 and 3.6, we $\infty nclude$ that $E^{k}$ is a
proper recurrent set in the possibly disconnected fatgraph $G_{E^{k-1}}$ , for
$k=1,$ $\ldots$ , $N$ , so the second condition holds as well. The third condition
holds sinoe two $\infty mponents$ of a topological spaoe either coincide or
are disjoint, and the fourth follows sinoe each inclusion $E^{k}\subseteq E^{k-1}$ is
proper.

If $\mathcal{A}$ is a screen, then each $A\in \mathcal{A}-\{E\}$ has an immediate predecessor
$A’$ , i.e., $A\subseteq A’$ and if $B\in A$ and $A\subseteq B\subseteq A’$ , then $B=A$ or $B=A’$.
The maximum length of a chain $A\subseteq A’\subseteq\cdots\subseteq E$ of immediate
predeoessors in $\mathcal{A}$ is called the depth of $A$ in $A$ , and the depth of $e\in E$

in $\mathcal{A}$ is the maximum depth of $A\in A$ with $e\in A$ .

$Lemma4.2arrow$ . Every screen $\mathcal{A}$ on every trivalent fatgmph $G$ arises as
$\mathcal{A}=\mathcal{A}(\lambda_{t})$ for some stable $\lambda_{t}\in R_{>0}^{E}$ lying in $C(G)$ .

Proof. For any screen $\mathcal{A}$ on any trivalent fatgraph $G$ , define a one-
parameter family of lambda lengths by taking $\lambda_{t}(e)=t^{d_{e}}$ , where $d_{e}$ is
the depth of $e$ in $A$. For any vertex $v$ of $G$ , the maximum degree of
the incident (half-)edges is achieved either twice or thrioe by recurrence
of ekments of $A$ . Thus, the contribution from $v$ to each of the three
possible simplicial coordinates of edges incident on $v$ is positive by
Lemma 3. $1e$), and so the simplicial coordinate of each edge of $G$ for $\lambda_{t}$

is also positive; $\lambda_{t}$ thus lies in $C(G)$ by Theorem 3.3, and $A(\overline{\lambda}_{t})=\mathcal{A}$

by $\infty nstruction$ . Cl

Let $\partial_{A}A$ denote the relative boundary of $F(G_{A})$ in $F(G_{A’})$ , where
$A’$ is the immediate predecessor of $A$ in $\mathcal{A}$ , and define the boundary of
$\mathcal{A}$ itself to be

$\partial \mathcal{A}=\bigcup_{A\epsilon A-\{E\}}\partial_{A}A$
.

76



R. C. PENNER AND GREG MCSHANE

Lemma 4.3. For any trivalent fatgraph $G$ with set $E$ of edges and
stable $\lambda_{t}\in \mathbb{R}_{>0}^{E}$ lying in $C(G)$ , each edge-path in $\partial A(\overline{\lambda}_{t})$ is homotopic
to a curve in $F’(G)$ whose hyperbolic length tends to zero as $t$ tends
to infinity. Furthermore, these are the only such asymptotically short
$cun)es$ for $\lambda_{t}$ .

Proof. Let $K$ be a component of $\partial \mathcal{A}$ , so $K\subseteq\partial_{\mathcal{A}}A$ for some $A\in A-\{E\}$

with immediate predecessor $A’$ . Orient $K$ with the subsurface $F(G_{A})$

on its left. Consider the universal cover $\tilde{F}$ of $F=F(G)$ , let $\tilde{G},\tilde{G}_{A}$ ,
$a_{\sim}nd\tilde{G}_{A’}$ respectively denote the full pre-images of $G,$ $G_{A}$ , and $G_{A’}$ in
$F$ , and choose a lift $\tilde{K}$ of $K$ to $\tilde{F}$ . We shall refer to lambda lengths of
edges of $\tilde{G}$ , by which we mean the value of $\lambda_{t}$ on the projection of the
edge to $F\sim$

’ and we will as usual denote by the same symbol both an
edge of $G$ and its lambda length for $\infty nvenienoe$ .

On the right of $\tilde{K}$ sinoe $K$ is homotopic to a boundary $\infty mponent$

of $F(G_{A})$ , there are no edges of $\tilde{G}_{A}$ , and sinoe $K$ is not homotopic to a
boundary component of $F(G_{A’})$ , there is at least one edge of $\tilde{G}_{A’}$ not
in $\tilde{G}_{A}$ on the right. Fhrthermore on the left of $\tilde{K}$ , there is at least one
edge of $\tilde{G}_{A’}$ again sinoe $K$ is not homotopic to a boundary component
of $F(G_{A’})$ .

Sinoe $\lambda_{t}$ corresponds to points in $C(G)$ , it follows that the triangle
inequalities hold on lambda lengths at each vertex of $\tilde{G}$ by Lemma 3.6.
We claim that the following further properties of lambda lengths follow
from these facts, where all limits are taken as $tarrow\infty$ :

1 $)$ if $x$ is an edge on the right of $\tilde{K}$ and $y$ is an edge of $\tilde{K}$ , then we
have $\frac{x}{y}arrow 0$ ;

2$)$ if $x$ is an edge on the right of $\tilde{K},$
$y_{0}$ is an edge on the left of

$\tilde{K}$ , and $y_{1},$ $y_{2}$ are edges of $\tilde{K}$ so that $y_{0},$ $y_{1},$ $y_{2}$ are all incident at a
common vertex in $\tilde{K}$ , then $\overline{v}^{A_{\frac{0}{2}}}x1larrow 0$ ;

3 $)$ if $m,$ $y_{1}$ are consecutive edges of $\tilde{K}$ with $x$ an edge on the right
of $\tilde{K}$ incident on their $\infty mmon$ endpoint, then $\infty y_{1}arrow 1$ .

The first property follows from the definition of $K$ as a relative
boundary component of $F(G_{A})$ in $F(G_{A’})$ and the definition of the
screen $A(\lambda_{t})$ . For property 2, $\Re,$ $y_{1},$ $y_{2}$ satisfy the triangle inequal-
ity ZIb $<y_{1}+y_{2}$ , so dividing by $y_{1}y_{2}$ and multiplying by $x$ , we find
$\frac{x}{y_{1}}lL\gamma z<\frac{x}{y_{1}}+\frac{x}{y_{2}}$ ; the right hand side tends to zero by property 1. Finally
for property 3 again by the triangle inequdities, we have $u$) $<y_{1}+x$
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and $y_{1}<y0+x$ . Upon dividing the first by $y_{1}$ and the second by $y_{0}$

and applying property 1, we conclude $1 \leq\lim_{y_{1}}^{K}\leq 1$ , as required.
The first key point about properties 1-3) is that they are invari-

ant under oertain Whitehead moves. In each case, we shall perform a
Whitehead move along an edge $e\in K$ , where one vertex of $e$ has inci-
dent half-edges $a,$ $b$ and the other vertex has incident half-edges $c,$ $d$ , and
where the edges $a,$ $b,$ $c,$ $d$ occur in this counter-clockwise order about $e$ .
We shall refer to properties 1-3) for the fatgraph before the Whitehead
move and the corresponding properties $1’- 3’$ ) for the resulting fatgraph,
and we shall let $f= \frac{ac+id}{e}$ denote the edge and lambda length of the
edge resulting from $e$ under the Whitehead move in accordanoe withe
Ptolemy’s equation Lemma 3. $1a$).

The first case of utility is when $b,$ $c,$ $e$ lie in $\tilde{K}$ and $a,$ $d$ lie on the
right of $\tilde{K}$ . The properties for this fatgraph respectively imply that:
1 $)$

$\frac{x}{y}arrow 0$ for $x\in\{a,d\}$ and $y\in\tilde{K};2$) does not involve the vertices of
$e$ ; and 3) $\frac{b}{e}arrow 1$ and $\frac{e}{c}arrow 1$ . Property $3’$ ) requires $\frac{b}{c}arrow 1$ , which follows
from property 3). Furthemore by the Ptolemy equation,

$\frac{f}{a}=\frac{ac+M}{ae}=\frac{c}{e}+\frac{b}{e}\frac{d}{a}arrow 1+\frac{d}{a}$ ,

$\frac{f}{d}=\frac{ac+M}{de}=\frac{b}{e}+\frac{c}{e}\frac{a}{d}arrow 1+\frac{a}{d}$ ,

sinoe $\frac{c}{e}arrow 1$ and $\frac{b}{e}arrow 1$ . Thus, at least one of $\angle,$$\angle ad$ has a finite limit,
henoe $\angle y=\angle a^{\frac{a}{y}}=\angle d^{\frac{d}{y}}arrow 0$ for any $y\in\tilde{K}$ by property 1) proving property
$1’)$ and likewise for property $2’$), where $f$ plays the role of $x$ .

The second case of utility is when $b,d,$ $e$ lie in $\tilde{K}$ with $a$ on the right
and $c$ on the left of $\tilde{K}$ . The properties for this fatgraph imply that: 1)
$\frac{a}{y}arrow 0$ for any $y$ in $\tilde{K};2$ ) $\frac{xc}{de}arrow 0$ for any $x$ on the right; and $3$ ) $\frac{b}{e}arrow 1$ .
Property $3’$ ), namely, $\vec{f}darrow 1$ , follows from

$\frac{f}{d}=\frac{ac+u}{de}=\frac{ac}{de}+\frac{b}{e}arrow 1$

using properties 2-3). Property $1’$ ) follows from this and property 1).
Finally, since

$\frac{bf}{xc}=\frac{(ac+bd)b}{xoe}=\frac{b}{e}\frac{a}{x}+\frac{b^{2}}{e^{2}}\frac{de}{xc}arrow\infty$

for any $x$ incident on the right of $\tilde{K}$ , property 2’) holds as well using
the Ptolemy equation and properties $2rightarrow 3$).

Applying these two types of Whitehead moves along edges in $K$ ,
we may alter $G’$ to arrange that the edge-path for $K$ in the resulting
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graph makes exactly one left tum and some number $n\geq 0$ of right
turns. Furthermore as we have just proved, properties 1-3) continue to
hold for the resulting graph.

We shall complete the proof by calculating that the absolute value of
the trace of the holonomy of the edge-path $K$ is asymptotic to 2, and
the second key point about properties 1-3) is that they are sufficient to
guarantee this. To this end, let us adopt the notation that $K$ traverses
the consecutive edges $y_{1},$ $\ldots,y_{n+1}$ , the unique half-edge on the right
is $x_{0}$ , which is incident on the common endpoint of $y_{n+1},$ $y_{1}$ , and the
consecutive half-edges on the left are $x_{1},$ $\ldots,x_{n}$ , where $x_{k}$ has common
endpoint in $K$ with $y_{k},$ $y_{k+1}$ , for $k=1,$ $\ldots,$

$n$ . As usual identifying an
edge or a half-edge with its lambda length, which depends upon the
parameter $t$ , let us define

$\zeta_{1}^{2}=\frac{y_{2}y_{n+1}}{x_{1}x_{0}},$ $\zeta_{n+1}^{2}=\frac{x_{0}x_{n}}{y_{1}y_{n}}$ , and $\zeta_{k}^{2}=\frac{y_{k+1}x_{k-1}}{x_{k}y_{k-1}}$ , for $k=2,$ $\ldots,$
$n$ ,

so the cross ratio of edge $y_{k}$ , which is given by Lemma 3. $1b$ ), is $-\zeta_{k}^{-2}$ ,
for $k=1,$ $\ldots,$ $n+1$ . The path-ordered product of matrices to compute
the holonomy of $K$ beginning $h\cdot om$ the unique left tum is given (up to
an overall sign) by

$L(\begin{array}{ll}0 \zeta_{1}-\zeta_{1}^{-l} 0\end{array})R(\begin{array}{ll}0 \zeta_{2}-\zeta_{2}^{-l} 0\end{array})\cdots R(\begin{array}{ll}0 \zeta_{n+1}-\zeta_{n+1}^{-1} 0\end{array})$

$=$ $(_{-\zeta_{1}^{-1}}\zeta_{1}^{-1}$ $\zeta_{1}0)(\zeta_{2,0}^{-1}$ $-((22)\cdots(\zeta_{n_{0}+1}^{-1}$ $-\zeta_{n+1}\zeta_{n+1})$

$=$ $(_{-\zeta_{1}^{-1}}\zeta_{1}^{-1}$ $\zeta_{1}0)((\zeta_{2}\cdots\zeta_{n+1})^{-1}0$ $- \zeta_{2}\cdots\zeta_{n+1,\zeta_{2}}.\sum_{\zeta_{n+}}n\prod_{1}J=2\zeta_{j}^{-2}k)$ ,

so the traoe is found to be
$n$ $k$

$( \zeta_{1}\zeta_{2}\cdots(_{n+1})+(\zeta_{1}\zeta_{2}\cdots\zeta_{n+1})^{-1}+\zeta_{1}^{\sim 2}(\zeta_{1}\zeta_{2}\cdots\zeta_{n+1})\sum\prod\zeta_{j}^{arrow 2}$ ,
$k=1j=2$

where the last temi vanishes for $n=0$ . Finally, direct calculation
shows that the product telescopes, and

$( \zeta_{1}\zeta_{2}\cdots\zeta_{n+1})=\frac{y_{n+1}}{y_{1}}arrow 1$

sinoe $Ay,.1-+1arrow 1$ by property 3). Furthermore,

$(_{1}^{-2}= \frac{x_{0}x_{1}}{y_{2}y_{n+1}}\sim\frac{x_{0}x_{1}}{y_{1}y_{2}}arrow 0$
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by properties 2-3), and indeed, the general term in the sum also tele-
scopes

$\zeta_{1}^{-2}\zeta_{2}^{-2}\cdots\zeta_{k}^{-2}=\frac{y_{1}}{y_{n+1}}\frac{x_{0}x_{k}}{y_{k}y_{k+1}}\sim\frac{x_{0}x_{k}}{y_{k}y_{k+1}}arrow 0$ , for $k=2,$ $\ldots,$
$n$ ,

again by properties 2-3). The absolute value of the traoe is thus in-
deed asymptotic to 2. Sinoe the absolute value of the traoe is twioe
the hyperbolic cosine of half the hyperbolic length, the cuive $K$ is
asymptotically short as $tarrow\infty$ .

For the final assertion of Lemma 4.3, we must show that the edge-
path of an essential short curve $K$ for $\lambda_{t}$ lies in $\partial \mathcal{A}$ . We shall use the
Collar Lemma [2] that an essential simple closed curve of hyperbolic
length $\ell$ has an embedded $\infty 1lar$ of width at least the logarithm of the
hyperbolic cotangent of $\frac{\ell}{2}$ . Sinoe the dual of $G$ is an ideal triangulation
and the short curveK is essential, it thus follows that if $K$ traverses
an edge $e$ of $G$ , then the lambda length of (the ideal arc dual to) $e$ has
divergent lambda length, where the rate of divergenoe is proportional
to the geometric intersection number of $K$ and $e$ . It follows that $K$

shares an edge with $E^{k}$ , for some $k\geq 1$ . Sinoe two essential short
curves cannot intersect, again by the Collar Lemma, we conclude that
$K$ cannot cross $\partial A(\lambda_{t})$ for large $t_{\rangle}$ so in fact the edge-path for $K$ is
contained in $E^{k}$ .

If $K$ is not homotopic to a boundary $\infty mponent$ of $G_{E^{k}}$ , then its
edge-path must make both right and left turns in $G_{E^{k}}$ . Without loss,
we may assume that there is a left tum followed by a right tum and
adopt the following notation. Suppose that the edge-path for $K$ serially
traverses edges $\infty,$ $\ldots,\Re+1$ in $K$ with half-edge $x_{j}$ incident on the
$\infty mmon$ endpoint of $y1,y_{j+1}$ for $j=1,$ $\ldots,$

$n$ , where $x_{0}\in E^{k}$ lies on the
right and $x_{n}\in E^{k}$ lies on the left of $K$ and where $y_{0}$ and $y_{n+1}$ project
to the same edge of $G_{E^{k}}$ . For $n=0,$ $K$ is a boundary $\infty mponent$

of $G_{E^{k}}$ . In the case that $n=1$ , the dual arcs to $x_{0,n},$ $x_{1,\hslash}\in E^{k}$

are the consecutive edges of an ideal quadrilateral whose cross ratio is
bounded near one by Lemma 3.1 sinoe the lambda lengths $X_{0},X_{1},\infty,y_{2}$

are comparable, i.e., the limit of the ratio of any pair is finite and non-
zero (and the lambda lengths $W$ and $y_{2}$ coincide). The arcs dual to
ZJb and $y_{2}$ are therefore a bounded distanoe apart, contradicting that
$K$ is short. This extreme case gives a lower bound to the distanoe
between the arcs dual to $W$ and $y_{n+1}$ , so in any case, $K$ cannot be
short. This $\infty ntradiction$ establishes the final assertion and $\infty mpletes$

the proof.
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5. PROOF OF MAIN RESULT

Theorem 5.1. The cell $C(G)$ in decomted Teichmuller space corre-
sponding to the fatgmph $G$ is asymptotic to a stable curve with pinch
curwes $K$ if and only if $K$ is homotopic to the collection of edge-paths

$\partial \mathcal{A}$ for some scoeen $\mathcal{A}$ on $G$ .

Proof First consider the case of a trivalent fatgraph $G$ , and suppose
that $\lambda_{t}\in \mathbb{R}_{>0}^{0}$ is a path of lambda lengths in $C(G)$ whose projectiviza-
tion $\overline{\lambda}_{t}$ accumulates at some point of $P(R_{>0}^{E})$ . Sinoe $C(G)$ is path
connected, there is a stable path, still denoted $\lambda_{t}$ , whose limit point is
this accumulation point. By Lemma 4.3, the short curves for this limit
point are the multicurves represented by edge-paths in $\partial A(\lambda_{t})$ .

Conversely for any trivalent fatgraph $G$ and any screen $A$ on $G$ ,
Lemma 4.2 shows that $\partial \mathcal{A}$ is realized as the set of short curves for a
stable path in $C(G)$ . This completes the proof for trivalent fatgraphs.

For a general not necessarily trivalent fatgraph, we require a further
ingredient, namely:

Theorem 5.2. [15] For any cyclically otdeid tuple $x_{1},$ $\ldots,x_{n}$ of pos-
itive real numbers satisfying the genemlized stnct triangle inequalities
$x_{j}< \sum_{i\neq j}x_{i},$ $f\sigma rj=1,$

$\ldots,$ $n_{l}$ there is a cyclic Euclidean planar poly-
gon (i.e., the $p\sigma lygon$ inscri $bes$ in a circle) unique up to orientation-
preserWing isometry of the plane which realizes these numbers as its
consecutive edge lengths.

To apply this result, let $L^{+}$ denote the collection of isotropic vectors
in Minkowski spaoe with positive z-coordinate. Given a collection of
$\infty planar$ points in $L+$ lying in an affine plane determining an elliptic
conic section, we may apply a Minkowski isometry to arrange that
the plane containing these points is horizontal. The restriction of the
Minkowski pairing to this horizontal plane is a multiple of the Euclidean
metric induced on the plane, so the projectivized lambda lengths of
pairs of these points agree with the projectivized Euclidean lengths in
the horizontal plane. Furthermore, the intersection of the horizontal
plane with $L^{+}$ is a round circk in this Euclidean structure.

Now, given any fatgraph $G$‘ with vertices at least trivalent and any
screen $A’$ on $G’$ , again define lambda lengths on the edges of $G$‘ by
$\lambda_{t}’(e)=\mu$ , where $d_{\epsilon}$ is the depth of $e$ in $\mathcal{A}’$ as in Lemma 4.2. $Ac\infty rding$

to Theorem 5.2, the previous paragraph, and Theorem 3.2, this does
indeed determuine a path in $C(G‘)$ with $A’=A(\lambda_{t}’)$ .
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Choose any trivalent fatgraph $G$ which collapses to $G’$ and consider
any path $\lambda_{t}’$ in $C(G)$ . The lambda lengths on the edges of $G-G’$ are
thus given by the Euclidean lengths of the diagonals of the correspond-
ing cyclic polygon again provided by Theorem 5.2, the lambda lengths
on the edges of $G’$ have already been specified, so $\lambda_{t}’$ determines a path
$\lambda_{t}$ of lambda lengths on the edges of $G$ .

It is not difficult to see that there is a unique screen $A$ on $G$ which
restricts to $\mathcal{A}’$ in the natural sense with corresponding lambda kngths
$\lambda_{t}$ on $G$ , and satisfying $\partial A’=\partial \mathcal{A}$ as multicurves. Lemma 4.3 applies
to $\lambda_{t}$ to conclude that the $\infty mponents$ of $\partial \mathcal{A}$ are precisely the short
curves for $\lambda_{t}$ . $\square$

6. CLOSING REMARKS

In Lemma 3.le), we have seen that simplicial $\infty ordinates$ are given
explicitly in terms of lambda lengths, and the no vanishing cycle con-
dition is necessary and sufficient to guarantee that these formulae are
uniquely invertibk as in the last part of Theorem 3.3. Writing the
inverse explicitly is the basic “arithmetic problem” in $de\infty rated$ Te-
ichm\"uller theory [17].

One ingredient, which is related to the asymptotics of this arithmetic
problem, towards describing the Deligne-Mumford compactification is:

Theorem 6.1. [18] Suppose that $\lambda_{t}$ is a stable one-pammeter family
of lambda lengths on the fatgmph $G$ with no vanishing cycles of corre-
sponding simplicial coordinates $X_{t}\geq 0$ . Define $I=\{e\in E:\lambda_{4}(e)arrow$

$\infty\}$ and $J=\{e\in E:X_{t}(e)arrow 0\}$ . Then $I\subseteq J$ and $R(G_{J})=G_{I_{f}}$

where $R(X)$ denotes the maximal recument subset of $X$ .

This result in tandem with Theorem 1.2 has interesting $\infty nsequenoes$ :
Take a straight-line path in the natural affine structure of simplicial co-
ordinates on $C(G)$ for some fatgraph $G$ which limits to a point that
fails to satisfy the no vanishing cyck $\infty ndition$ . Let $E_{1}\subseteq E(G)$ denote
the subset of edges of $G$ whose simplicial coordinates vanish, and let
$R_{1}\subseteq E_{1}$ denote its maximal recurrent subset. Depending upon the
affine path, certain lambda lengths of edges in $R_{1}$ diverge at various
rates, i.e., a screen magically pops out as determined by the arithmetic
problem.

There is a natural cell $\infty mplex$ whose oells are screens on isotopy
classes of fatgraph spines $G$ for fixed $F_{9}^{s}=F(G)$ , where the face re-
lation is induoed by inclusion of arc fanuilies and of screens. As will
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be described in a forthcoming paper, this cell complex is naturally iso-
morphic to a real blow-up of the augmented Teichm\"uller space of $F_{9}^{\epsilon}$ ,
and there follows a corresponding quotient cell complex isomorphic to
a real blow-up of the Deligne-Mumford compactification. As will also
be described in a forthcoming paper by the first-named author with
V. Fock, there is another proof of a generalization of the main result
of this paper based on calculations in the tropical semi-ring [4] which
prove the analogue of Theorem 1.2 for general measured foliations as
opposed to multicurves.
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