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ABSTRACT. In this paper, we determine the cokernel of the k-th Johnson homomor-
phisms of the automorphism group of afree metabelian group for $k\geq 2$ and $n\geq 4$ .
As acorollary, we obtain alower bound on the rank of the graded quotient of the
Johnson filtration of the automorphism group of afree group. Furthermore, by us-
ing the second Johnson homomorphism, we determine the image of the cup product
map in the rational second cohomoloy group of the IA-automorphism group of afree
metabelian group, and show that it is isomorphic to that of the IA-automorphism
group of afree group which is already determined by Pettet. Finally, by considering
the kernel of the Magnus representations of the automorphism group of afree group
and afree metabelian group, we show that there are non-trivial rational second coho-
mology claeses of the $IAarrow automorphism$ group of a $h\infty$ metabelian group which are
not in the image of the cup product map.

1. INTRODUCTION

Let $G$ be a group and $\Gamma_{G}(1)=G,$ $\Gamma_{G}(2),$
$\ldots$ its lower central series. We denote

by Aut $G$ the group of automorphisms of $G$ . For each $k\geq 0$ , let $\mathcal{A}_{G}(k)$ be the group
of automorphisms of $G$ which induce the identity on the quotient group $G/\Gamma_{G}(k+1)$ .
Then we obtain a descending central filtration

Aut $G=\mathcal{A}_{G}(0)\supset \mathcal{A}_{G}(1)\supset \mathcal{A}_{G}(2.)\supset\cdots$

of Aut $G$ , called the Johnson filtration of Aut $G$ . This filtration was introduced in 1963
with a pioneer work by S. Andreadakis [1]. For each $k\geq 1$ , set $\mathcal{L}_{G}(k)$ $:=\Gamma_{G}(k)/\Gamma_{G}(k+1)$

and $gr^{k}(\mathcal{A}_{G})=\mathcal{A}_{G}(k)/\mathcal{A}_{G}(k+1)$ . Let $G^{ab}$ be the abelianization of $G$ . Then, for each
$k\geq 1$ , an Aut $G^{ab}$-equivariant injective homomorphim

$\tau_{k}$ : $gr^{k}(\mathcal{A}_{G})arrow Hom_{Z}(G^{ab}, \mathcal{L}_{G}(k+1))$

is defined. (For definition, see Subsection 2.1.2.) This is called the k-th Johnson ho-
momorphism of Aut $G$ . Historically, the study of the Johnson homomorphism was
begun in 1980 by D. Johnson [17]. He studied the Johnson homomorphism of a map-
ping class group of a closed oriented surface, and determined the abelianization of the
Torelli group. (See [18].) There is a broad range of remarkable results for the Johnson
homomorphisms of a mapping class group. (For example, see [14] and [25].)
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Let $F_{n}$ be a free group of rank $n$ with basis $x_{1},$ $\ldots,$ $x_{n}$ , and $F_{n}^{M}$ the free metabelian
group of rank $n$ . Namely $F_{n}^{M}$ is the quotient group of $F_{n}$ by the second derived series
$[[F_{n}, F_{n}], [F_{n}, F_{n}]]$ of $F_{n}$ . Then both abelianizations of $F_{n}$ and $F_{n}^{M}$ are a free abelian
group of rank $n$ , denoted by $H$ . Fixing a basis of $H$ induced from $x_{1},$ $\ldots,$ $x_{n}$ , we
can identify Aut $G^{ab}$ with GL$(n, Z)$ for $G=F_{n}$ and $F_{n}^{M}$ . For simplicity, through-
out this paper, we write $\Gamma_{n}(k),$ $\mathcal{L}_{n}(k),$ $\mathcal{A}_{n}(k)$ and $gr^{k}(\mathcal{A}_{n})$ for $\Gamma_{F_{n}}(k),$ $\mathcal{L}_{F_{n}}(k),$ $\mathcal{A}_{F_{n}}(k)$

and $gr^{k}(\mathcal{A}_{F_{n}})$ respectively. Similarly, we write $\Gamma_{n}^{M}(k),$ $\mathcal{L}_{n}^{M}(k),$ $\mathcal{A}_{n}^{M}(k)$ and $gr^{k}(\mathcal{A}_{n}^{M})$ for
$\Gamma_{F_{n}^{M}}(k),$ $\mathcal{L}_{F_{n}^{M}}(k),$ $\mathcal{A}_{F_{n}^{M}}(k)$ and $gr^{k}(\mathcal{A}_{F_{n}^{M}})$ respectively. The first aim of the paper is
to determine the GL$(n, Z)$-module structure of the cokemel of the Johnson homomor-
phisms $\tau_{k}$ of Aut $F_{n}^{M}$ for $n\geq 4$ as follows:

Theorem 1. For $k\geq 2$ and $n\geq 4$ ,
$0arrow gr^{k}(\mathcal{A}_{n}^{M})arrow H^{*}\tau_{k}\otimes_{Z}\mathcal{L}_{n}^{M}(k+1)\prime S^{k}H\underline{Tr_{h_{\iota}}^{M}}arrow 0$

is $a$ GL$(n, Z)$ -equivariant exact sequence.

Here $S^{k}H$ is the symmetric product of $H$ of degree $k$ , and Tr$kM$ is a certain GL$(n, Z)-$

equivariant homomorphism called the Morita trace introdued by S. Morita [24]. (For
definition, see Subsection 3.2.)

From Theorem 1, we can give a lower bound on the rank of $gr^{k}(\mathcal{A}_{n})$ for $k\geq 2$

and $n\geq 4$ . The study of the Johnson filtration of Aut $F_{n}$ was begun in $1960$ ’s by
Andreadakis [1] who showed that for each $k\geq 1$ and $n\geq 2,$ $gr^{k}(\mathcal{A}_{n})$ is a free abelian
group of finite rank, and that $\mathcal{A}_{2}(k)$ coincides with the k-th lower central series of the
inner automorphism group Inn $F_{2}$ of $F_{2}$ . FMrthermore, he [1] computed $rank_{Z}gr^{k}(\mathcal{A}_{2})$

for all $k\geq 1$ . However, the structure of $gr^{k}(\mathcal{A}_{n})$ for general $k\geq 2$ and $n\geq 3$ is
much more complicated. Set $\tau_{k,Q}=\tau_{k}\otimes id_{Q}$ , and call it the k-th rational Johnson
homomorphism. For any Z-module $M$ , we denote $M\otimes_{Z}Q$ by the symbol obtained
by attaching a subscript $Q$ to $M$ , like $M_{Q}$ and $M^{Q}$ . For $n\geq 3$ , the GL$(n, Z)$-module
structure of $gr_{Q}^{2}(\mathcal{A}_{n})$ is completely determined by Pettet [31]. In our previous paper [33],
we determined those of $gr_{Q}^{3}(\mathcal{A}_{n})$ for $n\geq 3$ . For $k\geq 4$ , the GL$(n, Z)$-module structure
of $gr_{Q}^{k}(\mathcal{A}_{n})$ is not determined. Furthermore, even its dimension is also unknown.

Let $\nu_{n}$ : Aut $F_{n}arrow$ Aut $F_{n}^{M}$ be a natural homomorphism induced from the action of
Aut $F_{n}$ on $F_{n}^{M}$ . By notable works due to Bachmuth and Mochizuki [5], it is known that
$\nu_{n}$ is surjective for $n\geq 4$ . They [4] also showed that $\nu_{3}$ is not surjective. In Subsection
3.1, we see that the homomorphism $\overline{\nu}_{n_{i}k}:gr^{k}(\mathcal{A}_{n})arrow gr^{k}(\mathcal{A}_{n}^{M})$ induced from $\nu_{n}$ is also
surjective for $n\geq 4$ . Hence we have

Corollary 1. For $k\geq 2$ and $n\geq 4$ ,

$rank_{Z}(gr^{k}(\mathcal{A}_{n}))\geq nk(\begin{array}{ll}n+k -1k +1\end{array})-(\begin{array}{ll}n+k -1k \end{array})$ .

We should remark that in general, equality does not hold, since for instance $rank_{Z}$

$gr^{3}(\mathcal{A}_{n})=n(3n^{4}-7n^{2}-8)/12$ , which is not equal to the right hand side of the inequality
above.

Next, we consider the second cohomology group of the IA-automorphism group of
the free metabelian group. Here the IA-automorphism group IA$(G)$ of a group $G$ is
defined to be a group which consists of automorphisms of $G$ which trivially act on

2

96



the abelianization of $G$ . By the definition, IA $(G)=\mathcal{A}_{G}(1)$ . We write $IA_{n}$ and $IA_{n}^{M}$

for IA $(F_{n})$ and IA $(F_{n}^{M})$ for simplicity. Let $H^{*}$ $:=Hom_{Z}(H, Z)$ be the dual group of
$H$ . Then we see that the first homology group of $IA_{n}^{M}$ for $n\geq 4$ is isomorphic to
$H^{*}\otimes_{Z}\Lambda^{2}H$ in the following way. Let $\nu_{n,1}$ : $IA_{n}arrow IA_{n}^{M}$ be the restriction of $\nu_{n}$ to
$IA_{n}$ . Bachmuth and Mochizuki [5] showed that $\nu_{n,1}$ is surjective for $n\geq 4$ . This fact
sharply contrasts with their previous work [4] which shows there are infinitely many
automorphisms of $IA_{3}^{M}$ which are not contained the image of $\nu_{3,1}$ . On the other hand,
by an independent works of Cohen-Pakianathan [9, 10], Farb [11] and Kawazumi [19],
$H_{1}(IA_{n}, Z)\cong H^{*}\otimes_{Z}\Lambda^{2}H$ for $n\geq 3$ . Since the kernel of $\nu_{n,1}$ is contained in the
commutator subgroup of IA$nM$ , we have $H_{1}(IA_{n}^{M}, Z)\cong H^{*}\otimes_{Z}\Lambda^{2}H$ for $n\geq 4$ . (See
Subsection 2.3.) In general, however, there are few results for computation of the
(co)homology groups of $IA_{n}^{M}$ of higher dimensions. In this paper we determine the
image of the cup product map in the rational second cohomology group of IA$nM$ , and
show that it is isomorphic to that of $IA_{n}$ , using the second Johnson homomorphism.
Namely, let $U_{Q}$ : $\Lambda^{2}H^{1}($IA$n’ Q)arrow H^{2}(IA_{n}, Q)$ and $\bigcup_{Q}^{M}$ : $\Lambda^{2}H^{1}(IA_{n}^{M}, Q)arrow H^{2}(IA_{n}^{M}, Q)$

be the rational cup product maps of IA$n$ and $IA_{n}^{M}$ respectively. In Subsection 4.2, we
show

Theorem 2. For $n\geq 4_{j}\nu_{n,1}^{*}$ : ${\rm Im}( \bigcup_{Q}^{M})arrow{\rm Im}(\bigcup_{Q})$ is an isomorphism.

Here we should remark that the GL$(n, Z)$-module structure of ${\rm Im}( \bigcup_{Q})$ is completely
determined by Pettet [31] for any $n\geq 3$ .

Now, for the study of the second cohomology group of IA$nM$ , it is also an important
problem to determine whether the cup product map $\bigcup_{Q}^{M}$ is surjective or not. For the
case of $IA_{n}$ , it is still not known whether $\bigcup_{Q}$ is surjective or not. In the last section, we
prove that the rational cup product map $\bigcup_{Q}^{M}$ is not surjective for $n\geq 4$ . by studying the
kemel $\mathcal{K}_{n}$ of the homomorphism $\nu_{n,1}$ . It is easily seen that $\mathcal{K}_{n}$ is an infinite subgroup
of IA$n$ since $\mathcal{K}_{n}$ contains the second derived series of the inner automorphism group
of a free group $F_{n}$ . The structure of $\mathcal{K}_{n}$ is, however, much complicated. For example,
(finitely or infinitely many) generators and the abelianization of $\mathcal{K}_{n}$ are still not known.
To clarify the structure of $\mathcal{K}_{n}$ , it is also important to study the obstruction for the
faithfulness of the Magnus representation of $IA_{n}$ since $\mathcal{K}_{n}$ is equal to the kernel, by a
result of Bachmuth [2]. (See Subsection 2.3.)

From the cohomological five-term exact sequence of the group extension
$1arrow \mathcal{K}_{n}arrow IA_{n}arrow IA_{n}^{M}arrow 1$ ,

it suffices to show the non-triviality of $H^{1}(\mathcal{K}_{n}, Q)^{IA_{n}}$ to show ${\rm Im}(U_{Q}^{M})\neq H^{2}(IA_{n}^{M}, Q)$ .
Set $\overline{\mathcal{K}}_{n}$ $:=\mathcal{K}_{n}/(\mathcal{K}_{n}\cap \mathcal{A}_{n}(4))\subset gr^{3}(\mathcal{A}_{n})$. Then $\overline{\mathcal{K}}_{n}$ naturally has a GL$(n, Z)$-module
structure, and the natural projection $\mathcal{K}_{n}arrow\overline{\mathcal{K}}_{n}$ induces an injective homomorphism
$H^{1}(\overline{\mathcal{K}}_{n}, Q)arrow H^{1}(\mathcal{K}_{n}, Q)^{IA_{n}}$ . In this paper, we determine the GL$(n, Z)$-module struc-
ture of $H_{1}(\overline{\mathcal{K}}_{n}, Q)$ using the rational third Johnson homomorphism of Aut $F_{n}$ . The
non-triviality of $H^{1}(\overline{\mathcal{K}}_{n}, Q)$ immediately follows from it. In Subsection 5.1, we show

Theorem 3. For $n\geq 4,$ $\tau_{3_{2}Q}(\overline{\mathcal{K}}_{n}^{Q})\cong H_{Q}^{[2,1]}\oplus(D\otimes_{Q}H_{Q}^{[3,2_{2}^{2}1^{n-4}]})$.

Here $H^{\lambda}$ denotes the Schur-Weyl module of $H$ corresponding to the Young diagram
$\lambda=[\lambda_{1}, \ldots, \lambda_{l}]$ , and $D$ $:=\Lambda^{n}H$ the one-dimensional representation of GL$(n, Z)$ given
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by the determinant map. Since $\tau_{3,Q}$ is injective, this shows that

$\overline{\mathcal{K}}_{n}^{Q}\cong H_{Q}^{[2,1]}\oplus(D\otimes_{Q}H_{Q}^{[3,2^{2},1^{narrow 4}]})$ .
As a corollary, we have

Corollary 2. For $n\geq 4_{f}$

$rank_{Z}(H_{1}(\mathcal{K}_{n}, Z))\geq\frac{1}{3}n(n^{2}-1)+\frac{1}{8}n^{2}(n-1)(n+2)(n-3)$ .

Finally, we obtain

Theorem 4. For $n\geq 4$ , the rational cup product

$\bigcup_{Q}^{M}:\Lambda^{2}H^{1}(IA_{n}^{M}, Q)arrow H^{2}(IA_{n}^{M}, Q)$

is not surjective, and

$\dim_{Q}(H^{2}(IA_{n}^{M}, Q))\geq\frac{1}{24}n(n-2)(3n^{4}+3n^{3}-5n^{2}-23n-2)$ .

In Section 2, we recall the IA-automorphism group of $G$ and the Johnson homo-
morphisms of the automorphism group Aut $G$ of $G$ for a group $G$ . In particular, we
concentrate on the case where $G$ is a free group and a free metabelian group. We also
review the definition of the Magnus representations of $IA_{n}$ and $IA_{n}^{M}$ . In Section 3, we
determine the cokernel of the Johnson homomorphisms of the automorphism group of a
free metabelian group. In Section 4, we show that the image of the cup product map $\bigcup_{Q}^{M}$

is isomorphic to that of $\bigcup_{Q}$ . Finally, in Section 5, we determine the GL$(n, Z)$-module
structure of $\overline{\mathcal{K}}_{n}^{Q}$ , and show that $\bigcup_{Q}^{M}$ is not surjective.
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2. PRELIMINARIES
In this section, we recall the definition and some properties of the associated Lie

algebra, the IA-automorphism group of $G$ , and the Johnson homomorphisms of the
automorphism group Aut $G$ of $G$ for any group $G$ . In Subsections 2.2 and 2.3, we
consider the case where $G$ is a free group and a free metabelian group.

2.1. Notation.
First of all, throughout this paper we use the following notation and conventions.

$\bullet$ For a group $G$ , the abelianization of $G$ is denoted by $G^{ab}$ .
$\bullet$ For a group $G$ , the group Aut $G$ acts on $G$ from the right. For any $\sigma\in$ Aut $G$

and $x\in G$ , the action of $\sigma$ on $x$ is denoted by $x^{\sigma}$ .
$\bullet$ For a group $G$ , and its quotient group $G/N$ , we also denote the coset class of

an element $g\in G$ by $g\in G/N$ if there is no confusion.
$\bullet$ For any Z-module $M$ , we denote $M\otimes_{Z}Q$ by the symbol obtained by attaching a

subscript $Q$ to $M$ , like $M_{Q}$ or $M^{Q}$ . Similarly, for any Z-linear map $f$ : $Aarrow B$ ,
the induced Q-linear map $A_{Q}arrow B_{Q}$ is denoted by $f_{Q}$ or $f^{Q}$ .

$\bullet$ For elements $x$ and $y$ of a group, the commutator bracket $[x, y]$ of $x$ and $y$ is
defined to be $[x, y]:=xyx^{-1}y^{-1}$ .

2.1.1. Associated Lie algebra of a group.
For a group $G$ , we define the lower central series of $G$ by the rule

$\Gamma_{G}(1)$ $:=F_{n}$ , $\Gamma_{G}(k)$ $:=[\Gamma_{G}(k-1), G]$ , $k\geq 2$ .
We denote by $\mathcal{L}_{G}(k)$ $:=\Gamma_{G}(k)/\Gamma_{G}(k+1)$ the graded quotient of the lower central series
of $G$ , and by $\mathcal{L}_{G}$ $:=\oplus_{k>1}\mathcal{L}_{G}(k)$ the associated graded sum. The graded sum $\mathcal{L}_{G}$

naturally has a graded Lie algebra structure induced from the commutator bracket on
$G$ , and called the accosiated Lie algebra of $G$ .

For any $g_{1},$ $\ldots,$
$g_{t}\in G$ , a commutator of weight $k$ type of

$[[\cdots[[g_{i_{1}}, g_{i_{2}}], g_{i_{3}}], \cdots], g_{i_{k}}]$ , $i_{j}\in\{1, \ldots, t\}$

with all of its brackets to the left of all the elements occuring is called a simple k-fold
commutator among the components $g_{1},$ $\ldots,$

$g_{t}$ , and we denote it by

$[g_{i_{1}}, g_{i_{2}}, \cdots, g_{i_{k}}]$

for simplicity. Then we have

Lemma 2.1. If $G$ is generated by $g_{1},$
$\ldots,$

$g_{t}$ , then each of the graded quotients $\Gamma_{G}(k)/\Gamma_{G}(k+$

1 $)$ is generated by the simple k-fold commutators
$[g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{h}}]$ , $i_{j}\in\{1, \ldots, t\}$ .

Let $\rho_{G}$ : Aut $Garrow$ Aut $G^{ab}$ be the natural homomorphism induced from the abelian-
ization of $G$ . The kemel IA$(G)$ of $\rho c$ is called the IA-automorphism group of $G$ . Then
the automorphism group Aut $G$ naturally acts on $\mathcal{L}_{G}(k)$ for each $k\geq 1$ , and IA$(G)$ acts
on it trivially. Hence the action of Aut $G/$IA $(G)$ on $\mathcal{L}_{G}(k)$ is well-defined.

5

99



2.1.2. Johnson homomorphisms.

For $k\geq 0$ , the action of Aut $G$ on each nilpotent quotient $G/\Gamma_{G}(k+1)$ induces a
homomorphism

$\rho_{G}^{k}$ : Aut $Garrow$ Aut $(G/\Gamma_{G}(k+1))$ .
The map $\rho_{G}^{0}$ is trivial, and $\rho_{G}^{1}=\rho_{G}$ . We denote the kemel of $\rho_{G}^{k}$ by $\mathcal{A}_{G}(k)$ . Then the
groups $\mathcal{A}_{f}(k)$ define a descending central filtration

Aut $G=\mathcal{A}_{G}(0)\supset \mathcal{A}_{G}(1)\supset \mathcal{A}_{G}(2)\supset\cdots$

of Aut $G$ , with $\mathcal{A}_{G}(1)=$ IA $(G)$ . (See [1] for details.) We call it the Johnson filtration
of Aut $G$ . For each $k\geq 1$ , the group Aut $G$ acts on $\mathcal{A}_{G}(k)$ by conjugation, and it
naturally induces an action of Aut $G/IA(G)$ on $gr^{k}(\mathcal{A}_{G})$ . The graded sum gr $(\mathcal{A}_{G})$ $:=$

$\oplus_{k>1}gr^{k}(\mathcal{A}_{G})$ has a graded Lie algebra structure induced from the commutator bracket
on IA$(G)$ .

To study the Aut $G/$IA$(G)$-module structure of each graded quotient $gr^{k}(\mathcal{A}_{G})$ , we
define the Johnson homomorphisms of Aut $G$ in the following way, For each $k\geq 1$ , we
consider a map $\mathcal{A}_{G}(k)arrow Hom_{Z}(G^{ab}, \mathcal{L}_{G}(k+1))$ defined by

$\sigma\mapsto(g\mapsto g^{-1}g^{\sigma})$ , $x\in G$ .
Then the kernel of this homomorphism is just $\mathcal{A}_{C}(k+1)$ . Hence it induces an injective
homomorphism

$\tau_{k}=\tau_{G_{1}k}:gr^{k}(\mathcal{A}_{G})\mapsto Hom_{Z}(G^{ab}, \mathcal{L}_{G}(k+1))$ .
The homomorphsim $\tau_{k}$ is called the k-th Johnson homomorphism of Aut $G$ . It is easily
seen that each $\tau_{k}$ is an Aut $G/IA(G)$-equivariant homomorphism. Since each Johnson
homomorphism $\tau_{k}$ is injective, to determine the cokernel of $\tau_{k}$ is an important problem
for the study of the structure of $gr^{k}(\mathcal{A}_{G})$ as an Aut $G/IA(G)$-module.

Here, we consider another descending filtration of IA$(G)$ . Let $\mathcal{A}_{G}’(k)$ be the k-th
subgroup of the lower central series of IA$(G)$ . Then for each $k\geq 1,$ $\mathcal{A}_{G}’(k)$ is a subgroup
of $\mathcal{A}_{G}(k)$ since $\mathcal{A}_{G}(k)$ is a central filtration of IA$(G)$ . In general, it is not known whether
$\mathcal{A}_{G}’(k)$ coincides with $\mathcal{A}_{C}(k)$ or not. Set $gr^{k}(\mathcal{A}_{G}’)$ $:=\mathcal{A}_{G}’(k)/\mathcal{A}_{G}’(k+1)$ for each $k\geq 1$ .
The restriction of the homomorphism.$\mathcal{A}_{G}(k)arrow Hom_{Z}(G^{ab}, \mathcal{L}_{G}(k+1))$ to $\mathcal{A}_{G}’(k)$ induces
an Aut $G/$IA $(G)$-equivariant homomorphism

$\tau_{k}’=\tau_{G,k}’:gr^{k}(\mathcal{A}_{G}’)arrow Hom_{Z}(G^{ab}, \mathcal{L}_{G}(k+1))$ .
In this paper, we also call $\tau_{k}’$ the k-th Johnson homomorphism of Aut $G$ .

For any $\sigma\in \mathcal{A}_{G}(k)$ and $\tau\in \mathcal{A}_{G}(l)$ , we give an example of computation of $\tau_{k+l}([\sigma, \tau])$

using $\tau_{k}(\sigma)$ and $\tau_{l}(\tau)$ . For $\sigma\in \mathcal{A}_{G}(k)$ and $g\in G$ , set $s_{g}(\sigma);=g^{-1}g^{\sigma}\in\Gamma_{G}(k+1)$ .
Then, $\tau_{k}(\sigma)(g)=s_{g}(\sigma)\in \mathcal{L}_{G}(k+1)$ . For any $\sigma\in \mathcal{A}_{G}(k)$ and $\tau\in \mathcal{A}_{G}(l)$ , by an easy
calculation, we have

$s_{g}([\sigma, \tau])=(s_{g}(\tau)^{-1})^{\tau^{-1}}(s_{g}(\sigma)^{-1})^{\sigma^{arrow 1}\tau^{arrow 1}}s_{g}(\tau)^{\sigma^{arrow 1}\tau^{-1}}s_{g}(\sigma)^{\tau\sigma^{-1}\tau^{-1}}$ ,
(1)

$\equiv s_{g}(\sigma)^{-1}s_{g}(\sigma)^{\tau}\cdot(s_{g}(\tau)^{-1}s_{g}(\tau)^{\sigma})^{-1}$ $(mod \Gamma_{G}(k+l+2))$ .
Using this fomula, we can easily compute $s_{g}([\sigma, \tau])$ from $s_{g}(\sigma)$ and $s_{g}(\tau)$ . For example,
if $s_{g}(\sigma)$ and $s_{g}(\tau)$ is given by

(2) $s_{g}(\sigma)=[g_{1},g_{2}, \ldots, g_{k+1}]\in \mathcal{L}_{G}(k+1)$ , $s_{g}(\tau)=[h_{1}, h_{2}, \ldots, h_{l+1}]\in \mathcal{L}_{G}(l+1)$ ,
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then we obtain

$s_{g}([ \sigma, \tau])=(\sum_{i=1}^{k+1}[g_{1}, \ldots, s_{g_{i}}(\tau), \ldots, g_{k+1}])-(\sum_{j=1}^{l+1}[h_{1}, \ldots, s_{h_{j}}(\sigma), \ldots, h_{l+1}])$

in $\mathcal{L}_{G}(k+l+1)$ .

2.2. Free groups.
In this section we consider the case where $G$ is a free group of finite rank.

2.2.1. Free Lie algebra.

For $n\geq 2$ , let $F_{n}$ be a free group of rank $n$ with basis $x_{1},$ $\ldots,$ $x_{n}$ . We denote the
abelianization of $F_{n}$ by $H$ , and its dual group by $H^{*}$ $:=Hom_{Z}(H, Z)$ . If we fix the
basis of $H$ as a free abelian group induced from the basis $x_{1},$ $\ldots,$ $x_{n}$ of $F_{n}$ , we can
identify Aut $F_{n}^{ab}=$ Aut $(H)$ with the general linear group GL$(n, Z)$ . Furthermore, it is
classically well known that the map $\rho_{F_{n}}$ : Aut $F_{n}arrow$ GL $(n, Z)$ is surjective. (See [21],
proposition 4.4.) Hence we also $identi\phi$ Aut$(H)/IA(F_{n})$ with GL$(n, Z)$ . In this paper,
for simplicity, we write $\Gamma_{n}(k),$ $\mathcal{L}_{n}(k)$ and $\mathcal{L}_{n}$ for $\Gamma_{F}.(k),$ $\mathcal{L}_{F}.(k)$ and $\mathcal{L}_{F_{n}}$ respectively.

The associated Lie algebra $\mathcal{L}_{n}$ is called the free Lie algebra generated by H. (See
[32] for basic material conceming free Lie algebra.) It is classically well known due to
Witt [34] that each $\mathcal{L}_{n}(k)$ is a GL$(n, Z)$ -equivariant free abelian group of rank

(3) $r_{n}(k):= \frac{1}{k}\sum_{d|k}\mu(d)n^{k}z$

where $\mu$ is the M\"obius function.
Next we consider the GL$(n, Z)$-module structure of $\mathcal{L}_{n}(k)$ . For example, for $1\leq k\leq 3$

we have

$\mathcal{L}_{n}(1)=H$ , $\mathcal{L}_{n}(2)=\Lambda^{2}H$ ,
$\mathcal{L}_{n}(3)=(H\otimes_{Z}\Lambda^{2}H)/\langle x\otimes y\wedge z+y\otimes z\wedge x+z\otimes x\wedge y|x,$ $y,$ $z\in H\rangle$ .

In general, the irreducible decomposition of $\mathcal{L}_{n}^{Q}(k)$ as a GL$(n, Z)$ -module is completely
determined. For $k\geq 1$ and any Young diagram $\lambda=[\lambda_{1}, \ldots, \lambda_{l}]$ of degree $k$ , let $H^{\lambda}$

be the Schur-Weyl module of $H$ corresponding to the Young diagram $\lambda$ . For example,
$H^{[k]}=S^{k}H$ and $H^{[1^{k}]}=\Lambda^{k}H$ . (For details, see [12] and [13].) Let $m(H_{Q}^{\lambda}, \mathcal{L}_{n}^{Q}(k))$ be
the multiplicity of the Schur-Weyl module $H_{Q}^{\lambda}$ in $\mathcal{L}_{n}^{Q}(k)$ . Bakhturin [6] gave a formula
for $m(H_{Q}^{\lambda}, \mathcal{L}_{n}^{Q}(k))$ using the character of the Specht module of $H_{Q}$ corresponding to
the Young diagram $\lambda$ . However, its character value had remained unknown in general.
Then Zhuravlev [35] gave a method of calculation for it. Using these facts, we can give
the explicit irreducible decomposition of $\mathcal{L}_{n}^{Q}(k)$ . For example,

(4) $\mathcal{L}_{n}^{Q}(3)\cong H_{Q}^{[2,1]}$ , $\mathcal{L}_{n}^{Q}(4)\cong H_{Q}^{[3,1]}\oplus H_{Q}^{[2_{I}1,1]}$ .
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2.2.2. IA-automorphism group of a free group.

Now we consider the IA-automorphism group of $F_{n}$ . We denote IA $(F_{n})$ by $IA_{n}$ .
It is well known due to Nielsen [27] that $IA_{2}$ coincides with the inner automorphsim
group Inn $F_{2}$ of $F_{2}$ . Namely, $IA_{2}$ is a free group of rank 2. However, $IA_{n}$ for $n\geq 3$

is much larger than Inn $F_{n}$ . Indeed, Magnus [22] showed that for any $n\geq 3$ , the
IA-automorphism group $IA_{n}$ is finitely generated by automorphisms

$K_{ij}:\{\begin{array}{ll}x_{i} \mapsto x_{j}^{-1}x_{i}x_{j}, x_{t} \mapsto x_{t}, (t\neq i)\end{array}$

for distinct $i,$ $j\in\{1,2, \ldots, n\}$ and

$K_{ijk}:\{\begin{array}{l}x_{i} \mapsto x_{i}x_{j}x_{k}x_{J^{-1}}x_{k}^{-1},x_{t} \mapsto x_{t}, (t\neq i)\end{array}$

for distinct $i,$ $j,$ $k\in\{1,2, \ldots, n\}$ such that $j<k$ .
For any $n\geq 3$ , although a generating set of $IA_{n}$ is well known as above, any pre-

sentation for $IA_{n}$ is still not known. For $n=3$, Krsti\v{c} and McCool [20] showed that
$IA_{3}$ is not finitely presentable. For $n\geq 4$ , it is also not known whether $IA_{n}$ is finitely
presentable or not.

Andreadakis [1] showed that the first Johnson homomorphism $\tau_{1}$ of Aut $F_{n}$ is sur-
jective by computing the image of the generators of $IA_{n}$ above. Furthermore, recently,
Cohen-Pakianathan [9, 10], Farb [11] and Kawazumi [19] inedepedently showed that
$\tau_{1}$ induces the abelianization of IA$n$ . Namely, for any $n\geq 3$ , we have
(5) $IA_{n}^{ab}\cong H^{*}\otimes_{Z}\Lambda^{2}H$

as a GL $(n, Z)$-module.

2.2.3. Johnson homomorphisms of Aut $F_{n}$ .
Here, we consider the Johnson homomorphisms of Aut $F_{n}$ . Throughout this paper, for

simplicity, we write $\mathcal{A}_{m}(k),$ $\mathcal{A}_{n}’(k),$ $gr^{k}(\mathcal{A}_{n})$ and $gr^{k}(\mathcal{A}_{n}’)$ for $\mathcal{A}_{F_{n}}(k),$ $\mathcal{A}_{F_{n}}’(k),$ $gr^{k}(\mathcal{A}_{F_{n}})$

and $gr^{k}(\mathcal{A}_{F_{n}}’)$ respectively. Pettet [31] showed

(6) $rank_{Z}gr^{2}(\mathcal{A}_{n})=\frac{1}{6}n(n+1)(2n^{2}-2n-3)$ ,

and in our previous paper [33], we showed

$rank_{Z}$ gr3 $( \mathcal{A}_{n})=\frac{1}{12}n(3n^{4}-7n^{2}-8)$ .
In general, for any $n\geq 3$ and $k\geq 4$ the rank of $gr^{k}(\mathcal{A}_{n})$ is still not known. One of the
aims of this paper is to give a lower bound on $rank_{Z}gr^{k}(\mathcal{A}_{n})$ by studying the Johnson
filtration of the automorphism group of a free metabelian group.

Next, we mention the relation between $\mathcal{A}_{n}’(k)$ and $\mathcal{A}_{n}(k)$ . Since $\tau_{1}$ is the abelian-
ization of IA$n$ as mentioned above, we have $\mathcal{A}_{n}’(2)=\mathcal{A}_{n}(2)$ . FMrthermore, Pettet [31]
showed that $\mathcal{A}_{n}’(3)$ has at most finite index in $\mathcal{A}_{m}(3)$ . Although it is conjectured that
$\mathcal{A}_{n}’(k)=\mathcal{A}_{n}(k)$ for $k\geq 3$ , there are few results for the difference between $\mathcal{A}_{n}’(k)$ and
$\mathcal{A}_{n}(k)$ for $n\geq 3$ .
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Let $H^{*}$ be the dual group $Hom_{Z}(H, Z)$ of $H$ . For the standard basis $x_{1},$ $\ldots,$ $x_{n}$ of $H$

induced from the generators of $F_{n}$ , let $x_{1}^{*},$
$\ldots,$

$x_{n}^{*}$ be its dual basis of $H^{*}$ . Then identify-
ing $Hom_{Z}(H, \mathcal{L}_{n}(k+1))$ with $H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)$ , we obtain the Johnson homomorphism

$\tau_{k}:gr^{k}(\mathcal{A}_{n})\mapsto H^{*}\otimes_{Z}\mathcal{L}_{n}(k+1)$

of Aut $F_{n}$ . Here we give some examples of computation $\tau_{k}(\sigma)$ for $\sigma\in \mathcal{A}_{n}(k)$ . For the
generators $K_{ij}$ and $K_{ijk}$ of $\mathcal{A}_{m}(1)=IA_{n}$ , we have

$s_{x_{1}}(K_{ij})=\{\begin{array}{ll}1, l\neq i,[x_{1}^{-1}, x_{j}^{-1}], l=i,\end{array}$

in $\Gamma_{n}(2)$ . Hence

$s_{x_{l}}(K_{ijk})=\{\begin{array}{ll}1, l\neq i,[x_{j}, x_{k}], l=i\end{array}$

(7) $\tau_{1}(K_{ij})=x_{i}^{*}\otimes[x_{i},x_{j}]$ , $\tau_{1}(K_{ijk})=x_{i}^{*}\otimes[x_{j}, x_{k}]$

in $H^{*}\otimes_{Z}\mathcal{L}_{n}(2)$ . Then using (1) and (7), we can recursively compute $\tau_{k}(\sigma)=\tau_{k}’(\sigma)$ for
$\sigma\in \mathcal{A}_{n}^{l}(k)$ . These computations are perhaps easiest explained with examples, so we
give two here. For distinct $a,$ $b,$ $c$ and $d$ in $\{$ 1, 2, $\ldots,$

$n\}$ , we have
$\tau_{2}’([K_{ab}, K_{bac}])=x_{a}^{*}\otimes([s_{x_{O}}(K_{bac}), x_{b}]+[x_{a}, s_{x_{b}}(K_{bac})])$

$-x_{b}^{*}\otimes([s_{x_{a}}(K_{ab}), x_{c}]+[x_{a}, s_{x_{e}}(K_{ab})])$ ,
$=x_{a}^{*}\otimes[x_{a}, [x_{a}, x_{c}]]-x_{b}^{*}\otimes[[x_{a}, x_{b}], x_{c}]$

and
$\tau_{3}’([K_{ab},K_{bac}, K_{ad}])$

$=x_{a}^{*}\otimes([s_{x_{a}}(K_{ad}), [x_{a}, x_{c}]]+[x_{a}, [s_{x_{a}}(K_{ad}),x_{c}]]+[x_{a}, [x_{a}, s_{x_{c}}(K_{ad})]])$,
$-x_{b}^{*}\otimes([[s_{x_{a}}(K_{ad}), x_{b}], x_{c}]+[[x_{a}, s_{x_{b}}(K_{ad})],x_{c}]+[[x_{a}, x_{b}], s_{x_{c}}(K_{ad})])$

$-x_{a}^{*}\otimes([s_{x_{a}}([K_{ab}, K_{bac}]), x_{d}]+[x_{a}, s_{x_{d}}([K_{ab}, K_{bac}])])$ ,
$=x_{a}^{*}\otimes[[x_{a}, x_{d}], [x_{a},x_{c}]]+x_{a}^{*}\otimes[x_{a}, [[x_{a}, x_{d}], x_{c}]]$

$-x_{b}^{*}\otimes[[[x_{a}, x_{d}], x_{b}], x_{c}]$

$-x_{a}^{*}\otimes[[x_{a}, [x_{a},x_{c}]],x_{d}]$ .
2.3. Free metabelian groups.

In this section we consider the case where a group $G$ is a free metabelian group of
finite rank.

2.3.1. Free metabelian Lie algebra.
Let $F_{n}^{M}=F_{n}/F_{n}’’$ be a free metabelian group of rank $n$ where $F_{n}’’=[[F_{n}, F_{n}], [F_{n}, F_{n}]]$

is the second derived group of $F_{n}$ . Then we have $(F_{n}^{M})^{ab}=H$ , and hence Aut $(F_{n}^{M})^{ab}=$

Aut$(H)=$ GL$(n, Z)$ . Since the surjective map $\rho_{F_{n}}$ : Aut $F_{n}arrow$ GL$(n, Z)$ factors through
Aut $F_{n}^{M}$ , a map $\rho_{F_{n}^{M}}$ : Aut $F_{n}^{M}arrow$ GL$(n, Z)$ is also surjective. Hence we identify
Aut $F_{n}^{M}/IA(F_{n}^{M})$ with GL$(n, Z)$ . In this paper, for simplicity, we write $\Gamma_{n}^{M}(k),$ $\mathcal{L}_{n}^{M}(k)$

and $\mathcal{L}_{n}^{M}$ for $\Gamma_{F_{n}^{M}}(k),$ $\mathcal{L}_{F_{n}^{M}}(k)$ and $\mathcal{L}_{F_{n}^{M}}$ respectively.

The associated Lie algebra $\mathcal{L}_{n}^{M}$ is called the free metabelian algebra generated by $H$ .
We see that $\mathcal{L}_{n}(k)=\mathcal{L}_{n}^{M}(k)$ for $1\leq k\leq 3$ . It is also classically well known due to Chen
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[8] that each $\mathcal{L}_{n}^{M}(k)$ is a GL $(n, Z)$-equivariant free abelian group of rank

(8) $r_{n}^{M}(k):=(k-1)(\begin{array}{ll}n+k -2k \end{array})$ .

2.3.2. IA-automorphism group of a free metabelian group.
Here we consider the IA-automorphism group of $F_{M}$ . Let $IA_{n}^{M};=$ IA$(F_{n}^{M})$ . We

denote by $\nu_{n}$ : Aut $F_{n}arrow$ Aut $F_{n}^{M}$ the natural homomorphism induced from the action
of Aut $F_{n}$ on $F_{n}^{M}$ . Restricting $\nu_{n}$ to $IA_{n}$ , we obtain a homomorphism $\nu_{n,1}$ : IA$narrow IA_{n}^{M}$ .
Bachmuth and Mochizuki [4] showed that $\nu_{3,1}$ is not surjective and $IA_{3}^{M}$ is not finitely
generated. They also showed that in [5], $\nu_{n,1}$ is surjective for $n\geq 4$ . Hence IA$nM$

is finitely generated for $n\geq 4$ . It is, however, not known whether IA$nM$ is finitely
presented or not for $n\geq 4$ .

From now on, we consider the case where $n\geq 4.$ . Set $\mathcal{K}_{n}$ $:=Ker(\nu_{n})$ . Since $\mathcal{K}_{n}\subset IA_{n}$ ,
we have an exact sequence

(9) $1arrow \mathcal{K}_{n}arrow IA_{n}arrow IA_{n}^{M}arrow 1$ .
Furthermore, observing $\mathcal{K}_{n}\subset \mathcal{A}_{n}(2)=[IA_{n}, IA_{n}]$ , we obtain

(10) $(IA_{n}^{M})^{ab}\cong IA_{n}^{ab}\cong H^{*}\otimes_{Z}\Lambda^{2}H$,

and see that the first Johnson homomorphism $\tau_{1}$ of Aut $F_{n}^{M}$ is an isomorphism.

2.3.3. Johnson homomorphisms of Aut $F_{n}^{M}$ .
Here we consider the Johnson homomorphisms of Aut $(F_{n}^{M})$ . We denote $\mathcal{A}_{F_{n}^{M}}(k)$ and

$gr^{k}(\mathcal{A}_{F_{n}^{M}})$ by $\mathcal{A}_{n}^{M}(k)$ and $gr^{k}(\mathcal{A}_{n}^{M})$ respectively. FMrthermore, we also denote $\mathcal{A}_{F_{n}^{M}}’(k)$

and $gr^{k}(\mathcal{A}_{F_{n}^{M}}’)$ by $\mathcal{A}_{n}^{M}’(k)$ and $gr^{k}(\mathcal{A}_{n}^{M})$
’ respectively.

For each $k\geq 1$ , restricting $\nu_{n}$ to $\mathcal{A}_{n}(k)$ , we obtain a homomorphism $\nu_{n_{2}k}$ : $\mathcal{A}_{m}(k)arrow$

$\mathcal{A}_{n}^{M}(k)$ . Since $\tau_{1}$ : $gr^{1}(\mathcal{A}_{n}^{M})’arrow H^{*}\otimes_{Z}\Lambda^{2}H$ is an isomorphism, we see that $\mathcal{A}_{n}^{M}(2)=$

$\mathcal{A}_{n}^{M}(2)/$ , and hence $\nu_{n_{2}2}$ is surjective. However it is not known whether $\nu_{n,k}$ is surjective
or not for $k\geq 3$ .

Now, the main aim of the paper is to determine the GL$(n, Z)$-module structure of
the cokernel of the Johnson homomorphisms of Aut $F_{n}^{M}$ . In this paper, we give an
answer to this problem for the case where $k\geq 2$ and $n\geq 4$ . We remark that by an
argument similar to that in Subsection 2.2, we can recursively compute $\tau_{k}(\sigma)=\tau_{k}’(\sigma)$

for $\sigma\in \mathcal{A}_{n^{M}}^{l}(k)$ , using $\tau_{1}(\nu_{n,1}(K_{1j}))=x;\otimes[x_{i}, x_{j}]$ and $\tau_{1}(\nu_{n,1}(K_{ijk}))=x_{i}^{*}\otimes[x_{j}, x_{k}]$ .

2.4. Magnus representations.

In this subsection we recall the Magnus representation of Aut $F_{n}$ and Aut $F_{n}^{M}$ . (For
details, see [7]. $)$ For each $1\leq i\leq n$ , let

$\frac{\partial}{\partial x_{i}}:Z[F_{n}]arrow Z[F_{n}]$
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be the Fox derivation defined by

$\frac{\partial}{\partial x_{i}}(w)=\sum_{j_{arrow}^{-1}}^{r}\epsilon_{j}\delta_{\mu_{j},i}x_{\mu_{1}}^{\epsilon 1\ldots B^{(\epsilon_{j}-1)}}x_{\mu_{j}}^{1}\in Z[F_{n}]$

for any reduced word $w=x_{\mu_{1}}^{\epsilon_{1}}\cdots x_{\mu_{\Gamma}^{r}}^{\epsilon}\in F_{n},$ $\epsilon_{j}=\pm 1$ . Let $a:F_{n}arrow H$ be the abelianiza-
tion of $F_{n}$ . We also denote by $a$ the ring homomorphism $Z[F_{n}]arrow Z[H]$ induced from
$a$ . For any $A=(a_{1j})\in$ GL $(n, Z[F_{n}])$ , let $A^{a}$ be the matrix $(a_{ij}^{a})\in$ GL$(n, Z[H])$ . The
Magnus representation rep: Aut $F_{n}arrow$ GL$(n, Z[H])$ of Aut $F_{n}$ is defined by

$\sigma\mapsto(\frac{\partial x_{i^{\sigma}}}{\partial x_{j}})^{a}$

for any $\sigma\in$ Aut $F_{n}$ . This map is not a homomorphism but a crossed homomorphism,
Namely,

$\overline{rep}(\sigma\tau)=(\overline{rep}(\sigma))^{\tau^{*}}\cdot\overline{rep}(\tau)$

where $(\overline{rep}(\sigma))^{\tau^{*}}$ denotes the matrix obtained from $\overline{rep}(a)$ by applying the automor-
phism $\tau^{*}$ : $Z[H]arrow Z[H]$ induced from $\rho(\tau)\in$ Aut $(H)$ on each entry. Hence by
restricting rep to IA$n$ ’ we obtain a homomorphism rep: $IA_{n}arrow$ GL$(n, Z[H])$ . This is
called the Magnus representation of IA$n$ .

Next, we consider the Magnus representation of $IA_{n}^{M}$ . Let rep$M$ : $IA_{n}^{M}arrow$ GL$(n, Z[H])$
be a map defined by

$\sigma\mapsto(\frac{\partial(x_{1}^{\sigma})}{\partial x_{j}})^{a}$

for any $\sigma\in IA_{n}^{M}$ where we consider any lift of the element $x_{i^{\sigma}}\in F_{n}^{M}$ to $F_{n}$ . Then we see
rep$M$ is a homomorphism and rep $=$ rep$M_{O\nu_{n,1}}$ , and call it the Magnus representation
of $IA_{n}^{M}$ . Bachmuth [2] showed that rep$M$ is faithful, and determined the image of rep$M$

in GL$(n, Z[H])$ . The faithfulness of the Magnus representation rep$M$ shows that the
kemel of the Magnus representation rep is equal to $\mathcal{K}_{n}$ .

3. THE COKERNEL OF THE JOHNSON HOMOMORPHISMS

In this section, we determine the cokemel of the Johnson homomorphism $\tau_{k}$ of
Aut $F_{n}^{M}$ for $k\geq 2$ and $n\geq 4$ .
3.1. Upper bound on the rank of cokernel of $\tau_{k}$ .

First we give an upper bound on the rank of the cokemel of $\tau_{k}$ by reducing its set
of generators. By Lemma 2.1, we see that elements type of $x_{i}^{*}\otimes[x_{i_{1}},x_{i_{2}}, . . , , x_{i_{k+1}}]$

generate $H^{*}\otimes_{Z}\mathcal{L}_{n}^{M}(k+1)$ . First we prepare some lemmas. Let $\mathfrak{S}_{1}$ be the symmetric
group of degree $l$ . Then we have

Lemma 3.1. Let $l\geq 2$ and $n\geq 2$ . For any element $[x_{i_{1}}, x_{i_{2}}, x_{j_{1}}, \ldots, x_{j_{l}}]\in \mathcal{L}_{n}^{M}(l+2)$

and any $\lambda\in \mathfrak{S}_{l}$ ,
$[x_{i_{1}}, x_{i_{2}}, x_{j_{1}}, \ldots, x_{j_{l}}]=[x_{i_{1}},x_{i_{2}},x_{j_{\lambda(1)}}\ldots, x_{j_{\lambda(l)}}]$.

Lemma 3.2. Let $k\geq 1$ and $n\geq 4$ . For any $i$ and $i_{1},$ $i_{2},$
$\ldots,$

$i_{k+1}\in\{1,2\ldots, n\}$ , if
$i_{1},$ $i_{2}\neq i$ ,

$x_{i}^{*}\otimes[x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+1}}]\in{\rm Im}(\tau_{k}’)$.
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Lemma 3.3. Let $k\geq 1$ and $n\geq 4$ . For any $i$ and $i_{1},$ $i_{2},$
$\ldots,$

$i_{k}\in\{1,2\ldots, n\}$ such that
$i_{1},$ $i_{2}\neq i$ , and any $\lambda\in 6_{k}$ ,

$x_{i}^{*}\otimes[x_{i}, x_{i_{1}}, \ldots,x_{i_{k}}]-X_{1}^{*}\otimes[x_{i}, x_{i_{\lambda(1)}}, \ldots, x_{i_{\lambda(k)}}]\in{\rm Im}(\tau_{k}^{!})$ .
Lemma 3.4. Let $k\geq 1$ and $n\geq 4$ . For any $i_{2},$

$\ldots,$
$i_{k+1}\in\{1,2, \ldots, n\}$ , we have

$x_{i}^{*}\otimes[x_{i},x_{i_{2}}, \ldots, x_{i_{k+1}}]-x_{j}^{*}\otimes[x_{j}, x_{i_{2}}, \ldots, x_{i_{k+1}}]\in{\rm Im}(\tau_{k}’)$

for any $i\neq i_{2}$ and $j\neq i_{2},$ $i_{k+1}$ .

Using the lemmas above, we can reduce the generators of Coker $(\tau_{k})$ . We remark that
${\rm Im}(\tau_{k}’)\subset{\rm Im}(\tau_{k})$ .
Proposition 3.1. For $k\geq 2$ and $n\geq 4$ , Coker $(\tau_{k})$ is generated by $(\begin{array}{l}n+k-1k\end{array})$ elements.

3.2. Lower bound on the rank of the cokernel of $\tau_{k}$ .
In this subsection we give a lower bound on the rank of Coker $(\tau_{k})$ by using the Magnus

representation of Aut $F_{n}^{M}$ . To do this, we use trace maps introduced by Morita [24] with
pioneer and remarkable works. Recently, he showed that there is a symmetric product
of $H$ of degree $k$ in the cokemel of the Johnson homomorphism of the automorphism
group of a free group using trace maps. Here we apply his method to the case for
Aut $F_{n}^{M}$ . In order to define the trace maps, we prepare some notation of the associated
algebra of the integral group ring. (For basic materials, see [30], Chapter VIII.)

For a group $G$ , let $Z[G]$ be the integral group ring of $G$ over Z. We denote the
augmentation map by $\epsilon$ : $Z[G]arrow Z$ . The kemel $I_{G}$ of $\epsilon$ is called the augmentation
ideal. Then the powers of $I_{G}^{i}$ for $i\geq 1$ provide a descending filtration of $Z[G]$ , and the
direct sum

$?_{G}:= \bigoplus_{k>1,arrow}I_{G}^{k}/I_{G}^{k+1}$

naturally has a graded algebra structure induced from the multiplication of $Z[G]$ . We
call $\sigma_{G}$ the associated algebra of the group ring $Z[G]$ .

For $G=F_{n}$ a free group of rank $n$ , write $I_{n}$ and $2_{n}$ for $I_{F_{n}}$ and $x_{F_{n}}$ respectively.
It is classically well known due to Magnus [23] that each graded quotient $I_{n}^{k}/I_{n}^{k+1}$ is a
free abelian group with basis $\{(x_{i_{1}}-1)(x_{i_{2}}-1)\cdots(x_{i_{k}}-1)|1\leq i_{j}\leq n\}$ , and a map
$I_{n}^{k}/I_{n}^{k+1}arrow H^{\otimes k}$ defined by

$(x_{i_{1}}-1)(x_{t_{2}}-1)\cdots(x_{i_{k}}-1)\mapsto x_{i_{1}}\otimes x_{i_{2}}\otimes\cdots\otimes x_{i_{k}}$

induces an isomorphism from $r_{n}$ to the tensor algebra

$T(H):= \bigoplus_{k\geq 1}H^{\Phi k}$

of $H$ as a graded algebra. We identify $I_{n}^{k}/I_{n}^{k+1}$ with $H^{\emptyset k}$ via this isomorphism.

It is also well known that each graded quotient $I_{H}^{k}/I_{H}^{k+1}$ is a free abelian group with
basis $\{(x_{i_{1}}-1)(x_{i_{2}}-1)\cdots(x_{i_{k}}-1)|1\leq i_{1}\leq i_{2}\leq\cdots\leq i_{k}\leq n\}$ , and the associated
graded algebra $X_{H}$ of $H$ is isomorphic to the symmetric algebra

$S(H):= \bigoplus_{k\geq 1}S^{k}H$
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of $H$ as a graded algebra. (See [30], Chapter VIII, Proposition 6.7.) We also identify
$I_{H}^{k}/I_{H}^{k+1}$ with $S^{k}H$ . Then a homomorphism $I_{n}^{k}/I_{n}^{k+1}arrow I_{H}^{k}/I_{H}^{k+1}$ induced from the
abelianization $a:F_{n}arrow H$ is considered as the natural projection $H^{\otimes k}arrow S^{k}H$ .

Now, we define trace maps. For any element $f\in H^{*}\otimes_{Z}\mathcal{L}_{n}^{M}(k+1)$ , set

$\Vert f\Vert:=(\frac{\partial(x_{i^{f}})}{\partial x_{j}})^{u}\in M(n, S^{k}H)$

where we consider any lift of the element
$x_{i^{f}}\in \mathcal{L}_{n}^{M}(k+1)=\Gamma_{n}(k+1)/(\Gamma_{n}(k+2)\cdot\Gamma_{n}(k+1)\cap F_{n}^{li})$

to $\Gamma_{n}(k+1)$ . Then we define a map $Tr_{k}^{M}:H^{*}\otimes_{Z}\mathcal{L}_{n}^{M}(k+1)arrow S^{k}H$ by

TJ$kM(f)$ $:=$ trace $(\Vert f\Vert)$ .
It is easily seen that Tr$kM$ is a GL$(n, Z)$ -equivariant homomorphism. The maps Tr$kM$ are
called the Morita trace maps. We show that Tr$kM$ is surjective and Tr$kM_{O\mathcal{T}_{k}}=0$ for
$k\geq 2$ and $n\geq 3$ . By a direct computation, we obtain

Lemma 3.5. For $f=x_{i}^{*}\otimes[x_{i_{1}},x_{i_{2}}, \ldots,x_{i_{k+1}}]\in H^{*}\otimes_{Z}\mathcal{L}_{n}^{M}(k+1)$, we have
$Tr_{k}^{M}(f)=(-1)^{k}\{\delta_{i_{1}i}x_{i_{2}}x_{i_{3}}\cdots x_{i_{k+1}}-\delta_{i_{2}i}x_{i_{1}}x_{i_{\theta}}\cdots x_{i_{k+1}}\}$

where $\delta_{ij}$ is the Kronecker delta.

Lemma 3.6. For any $k\geq 1$ and $n\geq 2_{f}Tr_{k}^{M}$ is surjective.

Before showing TJ$kM_{o\tau_{k}}=0$ , we consider a relation between the Magnus repre-
sentation and the Johnson homomorphism. For each $k\geq 1$ , composing the Mag-
nus representation rep$M$ restricted to $\mathcal{A}_{n}^{M}(k)$ with a homomorphism GL$(n, Z[H])arrow$

GL$(n, Z[H]/I_{H}^{k+1})$ induced from a natural projection $Z[H]arrow Z[H]/I_{H}^{k+1}$ , we obtain a
homomorphism $rep_{k}^{M}$ : $\mathcal{A}_{n}^{M}(k)arrow$ GL $(n, Z[H]/I_{H}^{k+1})$ . By the definition of the Magnus
representation and the Johnson homomorphism, we obtain
(11) rep$kM(\sigma)=I+\Vert\tau_{k}(\sigma)\Vert$

where $I$ denotes the identity matrix. (See also [24].)

Proposition 3.2. For $k\geq 2$ and $n\geq 3,$ $Tr_{k}^{M}$ vanishes on the image of $\tau_{k}$ .

As a corollary, we have
Corollary 3.1. For $k\geq 2$ and $n\geq 3_{f}$

$rank_{Z}$ (Coker $(\tau_{k})$ ) $\geq(\begin{array}{ll}n+k -1k \end{array})$ .

Combining this corollary with Proposition 3.1, we obtain

Theorem 3.1. For $k\geq 2$ and $n\geq 4$ ,

$0 arrow gr^{k}(\mathcal{A}_{n}^{M})arrow H^{*}\tau_{k}\otimes_{Z}\mathcal{L}_{n}^{M}(k+1)\frac{Tr_{k_{t}}^{M}}{r}S^{k}Harrow 0$

is $a$ GL$(n, Z)$ -equivariant exact sequence.

From (8), we obtain
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Corollary 3.2. For $k\geq 2$ and $n\geq 4$ ,

$rank_{Z}(gr^{k}(\mathcal{A}_{n}^{M}))=nk(\begin{array}{ll}n+k -lk +1\end{array})-(\begin{array}{ll}n+k -1k \end{array})$ .

Let $\overline{\nu}_{n_{2}k}$ : $gr^{k}(\mathcal{A}_{n})arrow gr^{k}(A_{n}^{M})$ be the homomorphism induced from $\nu_{n,k}$ . By the
argument above, we see that ${\rm Im}(\tau_{k}0\overline{\nu}_{n_{1}k})={\rm Im}(\tau_{k})$ . Since $\tau_{k}$ is injective, this shows
that $\overline{\nu}_{n,k}$ is surjective. Hence
Corollary 3.3. For $k\geq 2$ and $n\geq 4$ ,

$rank_{Z}(gr^{k}(\mathcal{A}_{n}))\geq nk(\begin{array}{ll}n+k -1k +1\end{array})-(\begin{array}{ll}n+k -1k \end{array})$ .

As mentioned before, in the inequality above, equality does not hold in general. Since
$rank_{Z}gr^{3}(\mathcal{A}_{n})=n(3n^{4}-7n^{2}-8)/12$, which is not equal to the right hand side of the
inequality.

4. THE IMAGE OF THE CUP PRODUCT IN THE SECOND COHOMOLOGY GROUP

In this section, we consider the rational second (co)homology group of IA$nM$ . In
particular, we determine the image of the cup product map

$\bigcup_{Q}^{M}$ : $\Lambda^{2}H^{1}(IA_{n}^{M}, Q)arrow H^{2}(IA_{n}^{M}, Q)$ .
4.1. A minimal presentation and second cohomology of a group.

In this subsection, we consider detecting non-trivial elements of the second cohomol-
ogy group $H^{2}(G, Z)$ if $G$ has a minimal presentation. For a group $G$ , a group extension

(12) $1arrow Rarrow Farrow^{\varphi}Garrow 1$

is called a minimal presentation of $G$ if $F$ is a free group such that $\varphi$ induces an
isomorphism

$\varphi_{*}:H_{1}(F, Z)arrow H_{1}(G, Z)$ .
This shows that $R$ is contained in the commutator subgroup $[F, F]$ of $F$ . In the fol-
lowing, we assume that $G$ has a minimal presentation defined by (12), and fix it.
Furthermore we assume that the rank $m$ of $F$ is finite. We remark that considering
the Magnus generators of $IA_{n}$ and $IA_{n}^{M}$ , we see that each of $IA_{n}$ and $IA_{n}^{M}$ has a such
minimal presentation. From the cohomological five-term exact sequence of (12), we see

$H^{2}(G, Z)\cong H^{1}(R, Z)^{G}$

Set $\mathcal{L}_{F}(k)=\Gamma_{F}(k)/\Gamma_{F}(k+1)$ for each $k\geq 1$ . Then $\mathcal{L}_{F}(k)$ is a free abelian group of
rank $r_{m}(k)$ by (3). Let $\{R_{k}\}_{k>1}$ be a descending filtration defined by $R_{k}$ $:=R\cap\Gamma_{F}(k)$

for each $k\geq 1$ . Then $R_{k}=R$ for $k=1$ , and 2. For each $k\geq 1$ , let
$\varphi_{k}:\mathcal{L}_{F}(k)arrow \mathcal{L}_{G}(k)$

be a homomorphism induced from the natural projection $\varphi$ : $Farrow G$ . Observing
$R_{k}/R_{k+1}\cong(R_{k}\Gamma_{F}(k+1))/\Gamma_{F}(k+1)$ , we have an exact sequence

(13) $0arrow R_{k}/R_{k+1}arrow\iota_{k}\mathcal{L}_{F}(k)arrow^{\varphi_{h}}\mathcal{L}_{G}(k)arrow 0$ .
This shows each graded quotient $R_{k}/R_{k+1}$ is a free abelian group.
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Set $\overline{R}_{k}$ $:=R/R_{k}$ . The natural projection $Rarrow\overline{R}_{k}$ induces an injective homomorphism
$\psi^{k}$ : $H^{1}(\overline{R}_{k}, Z)arrow H^{1}(R, Z)$ .

Considering the right action of $F$ on $R$, defined by
$r\cdot x$ $:=x^{-1}rx$ , $r\in R,$ $x\in F$,

we see $\psi^{k}$ is an G-equivariant homomorphism. Hence it induces an injective homomor-
phism, also denoted by $\psi^{k}$ ,

$\psi^{k}$ : $H^{1}(\overline{R}_{k}, Z)^{G}arrow H^{1}(R, Z)^{G}$.
For $k=3,$ $H^{1}(\overline{R}_{3}, Z)^{G}=H^{1}(\overline{R}_{3}, Z)$ since $G$ acts on $\overline{R}_{3}$ trivially. Here we show that
the image of the cup product $\cup:\Lambda^{2}H^{1}(G, Z)arrow H^{2}(G, Z)$ is contained in $H^{1}(\overline{R}_{3}, Z)$ .
Lemma 4.1. If $G$ has a minimal presentation as above, the image of the cup product

$\cup:\Lambda^{2}H^{1}(G, Z)arrow H^{2}(G, Z)$

is isomorphic to the image of $\iota_{2}^{*}:$ $H^{1}(\mathcal{L}_{F}(2), Z)arrow H^{1}(\overline{R}_{3}, Z)$ .

Here we remark that if $gr^{2}(\mathcal{A}_{G}’)$ is free abelian group, ${\rm Im}(\cup)=H^{1}(\overline{R}_{3}, Z)$ . Further-
more if we consider the rational cup product $\bigcup_{Q}$ : $\Lambda^{2}H^{1}(G, Q)arrow H^{2}(G, Q)$ , Since $Q$

is a Z-injective module, the induced homomorphism $\iota_{2}^{*}:H^{1}(\mathcal{L}_{F}(2), Q)arrow H^{1}(\overline{R}_{3}, Q)$ is
surjective. Hence the image of the rational cup product $\bigcup_{Q}$ is equal to $H^{1}(\overline{R}_{3}, Q)$ .
4.2. The image of the rational cup product $\bigcup_{Q}^{M}$ .

In this subsection, we determine the image of the rational cup product
$\bigcup_{Q}^{M}$ : $\Lambda^{2}H^{1}(IA_{n}^{M}, Q)arrow H^{2}(IA_{n}^{M}, Q)$ .

First, we should remark that the image of the cup product $\bigcup_{Q}$ : $\Lambda^{2}H^{1}(IA_{n}, Q)arrow$

$H^{2}(IA_{n}, Q)$ is completely determined by Pettet [31] who gave the GL$(n, Q)$-irreducible
decomposition of it. Here we show that the restriction of $\nu_{n,1}^{*}$ : $H^{2}(IA_{n}^{M}, Q)arrow$

$H^{2}(IA_{n}, Q)$ to ${\rm Im}(U_{Q}^{M})$ is an isomorphism onto ${\rm Im}( \bigcup_{Q})$ .
To do this, we prepare some notation. Let $F$ be a free group on $K_{ij}$ and $K_{ijk}$ which

are corresponding to the Magnus generators of $IA_{n}$ . Namely, $F$ is a free group of rank
$n^{2}(n-1)/2$ . Then we have a natural surjective homomorphism $\varphi$ : $Farrow$ IA$n$ ’ and a
minimal presentation

(14) $1arrow Rarrow Farrow^{\varphi}IA_{n}arrow 1$

of $IA_{n}$ where $R=Ker(\varphi)$ . From a result of Pettet [31], we have
Lemma 4.2. For $n\geq 3,$ $\overline{R}_{3}$ is a free abelian group of rank

$\alpha(n)$ $:= \frac{1}{8}n^{2}(n-1)(n^{3}-n^{2}-2)-n(n\vec{6}1+1)(2n^{2}-2n-3)$ .

Next, we consider the second cohomology groups of IA$M$ . From now on, we assume
$n\geq 4$ . We recall that the natural homomorphism $\nu_{n,1}$ : $IA_{n}arrow IA_{n}^{M}$ is surjective, and
$\nu_{n,1}$ induces an isomorphism $IA_{n}^{ab}\cong(IA_{n}^{M})^{ab}\cong H^{*}\otimes_{Z}\Lambda^{2}H$ for $n\geq 4$ . Then we have a
surjective homomorphism $\varphi^{M}:=\nu_{n_{1}1}0\varphi:Farrow IA_{n}^{M}$ , and a minimal presentation

(15) $1 arrow R^{M}arrow F\frac{\varphi_{\iota}^{M}}{r}IA_{n}^{M}arrow 1$
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of $IA^{M}$ where $R^{M}=Ker(\varphi)$ . Observe a sequence
$gr_{Q}^{2}(\mathcal{A}_{n}’)arrow gr_{Q}^{2}(\mathcal{A}_{n}^{M})/arrow gr_{Q}^{2}(\mathcal{A}_{\mathfrak{n}}^{M})$

of surjective homomorphisms. Since $\mathcal{A}_{m}(3)/\mathcal{A}_{n}’(3)$ is at most finite abelian group due
to Pettet [31], we see

$\dim_{Q}(gr_{Q}^{2}(\mathcal{A}_{n}’))=\dim_{Q}(gr_{Q}^{2}(\mathcal{A}_{n}))=\frac{1}{6}n(n+1)(2n^{2}-2n-3)$

$=\dim_{Q}(gr_{Q}^{2}(\mathcal{A}_{n}^{M}))$

by (6), and hence $gr_{Q}^{2}(\mathcal{A}_{n}^{M}’)\cong gP_{Q}(\mathcal{A}_{n}^{M})$ . Thus,

Lemma 4.3. For $n\geq 4,$ $\overline{R_{3}^{M}}$ is a free abelian group of rank $\alpha(n)$ .
Therefore, from the functoriality of the spectral sequence, we obtain commutativity

of a diagram
$0arrow H^{1}(\overline{R_{3}^{M}}, Q)arrow H^{2}(IA_{n}^{M}, Q)$

$\simeq\downarrow$ $\downarrow\nu_{\mathfrak{n},1}^{*}$

$0arrow H^{1}(\overline{R_{3}}, Q)arrow H^{2}(IA_{n}, Q)$

and

Theorem 4.1. For $n\geq 4,$ $\nu_{n,1}^{*}$ : ${\rm Im}(U_{Q}^{M})arrow{\rm Im}(U_{Q})$ is an isomorphism.

In the subsection 5.2, we will show that the rational cup product $\bigcup_{Q}^{M}$ : $\Lambda^{2}H^{1}(IA_{n}^{M}, Q)arrow$

$H^{2}(IA_{n}^{M}, Q)$ is not surjective.

5. ON THE KERNEL OF THE MAGNUS REPRESENTATION OF $IA_{n}$

In this section, we study the kemel $\mathcal{K}_{n}$ of the Magnus representation of $IA_{n}$ for $n\geq 4$ .
Set $\overline{\mathcal{K}}_{n}$ $:=\mathcal{K}_{n}/(\mathcal{K}_{n}\cap \mathcal{A}_{n}(4))\subset gr^{3}(\mathcal{A}_{n})$ . Since $[\mathcal{K}_{n}, \mathcal{K}_{n}]\subset \mathcal{A}_{n}(6)$ , we see $H_{1}(\overline{\mathcal{K}}_{n}, Z)=\overline{\mathcal{K}}_{n}$ .
Here we determine the GL$(n, Z)$-module structure of $\overline{\mathcal{K}}_{n}^{Q}$ . As a corollary, we see that
the rational cup product $\bigcup_{Q}^{M}:\Lambda^{2}H^{1}(IA_{n}^{M}, Q)arrow H^{2}(IA_{n}^{M}, Q)$ is not surjective.

5.1. The irreducible decompositon of $\overline{\mathcal{K}}_{n}^{Q}$ .
First, we consider the irreducible decomposition of the target $H_{Q}^{*}\otimes_{Q}\mathcal{L}_{n}^{Q}(4)$ of the

rational third Johnson homomorphism $\tau_{3,Q}$ of Aut $F_{n}$ . Let $B$ and $B’$ be subsets of $\mathcal{L}_{n}(4)$

consisting of
$[[[x_{i},x_{j}], x_{k}], x_{l}],$ $i>j\leq k\leq l$

and
$[[x_{i}, x_{j}], [x_{k}, x_{l}]],$ $i>j,$ $k>l,$ $i>k$ ,
$[[x_{i}, x_{j}], [x_{i},x_{l}]],$ $i>j,$ $i>l,$ $j>l$

respectively. Then $B\cup B’$ forms a basis of $\mathcal{L}_{n}(4)$ due to Hall [15]. Let $\mathcal{G}_{n}$ be the
GL$(n, Z)$-equivariant submodule of $\mathcal{L}_{n}(4)$ generated by elements type of $[[x_{i}, x_{j}], [x_{k}, x_{l}]]$

for $1\leq i,j,$ $k,$ $l\leq n$ . Then $B^{t}$ is a basis of $\mathcal{G}_{n}$ and the quotient module of $\mathcal{L}_{n}(4)$ by
$\mathcal{G}_{n}$ is isomorphic to $\mathcal{L}_{n}^{M}(4)$ . Observing that $\mathcal{G}_{n}^{Q}$ is a GL$(n, Z)$ -equivariant submodule of
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$\mathcal{L}_{n}^{Q}(4)\cong H_{Q}^{[3_{2}1]}\oplus H_{Q}^{[2,1,1]}$ , and $\dim_{Q}(\mathcal{G}_{n}^{Q})=n(n^{2}-1)(n+2)/S$, we see $\mathcal{G}_{n}^{Q}\cong H_{Q}^{[2_{1}1,1]}$ and
$\mathcal{L}_{n,Q}^{M}(4)\cong H_{Q}^{[3,1]}$ . Let $D$ $:=\Lambda^{n}H$ be the one-dimensional representation of GL$(n, Z)$

given by the determinant map. Then considering a natural isomorphism $H_{Q}^{*}\cong(D\otimes_{Q}$

$\Lambda^{n-1}H_{Q})$ as a GL$(n, Z)$-module, and using Pieri’s formula (See [13].), we obtain

Lemma 5.1. For $n\geq 4_{f}$

(i) $H_{Q}^{*}\otimes z\mathcal{G}_{n}^{Q}\cong H_{Q}^{[1^{3}]}\oplus H_{Q}^{[2,1]}\oplus(D\otimes_{Q}H_{Q}^{[3,2^{2},1^{n-4}]})$ ,
(ii) $H_{Q}^{*}\otimes_{Z}\mathcal{L}_{n,Q}^{M}(4)\cong H_{Q}^{[3]}\oplus H_{Q}^{[2,1]}\oplus(D\otimes_{Q}H_{Q}^{[4_{2}2,1^{n-\}]})$ .

Now it is clear that $\tau_{3,Q}(\overline{\mathcal{K}}_{n}^{Q})\subset H_{Q}^{*}\otimes_{Z}\mathcal{G}_{n}^{Q}$ . On the other hand, in our previous
paper [33], we showed that the cokemel of the rational Johnson homomorphism $\tau_{3,Q}$

is given by Coker $(\tau_{3_{2}Q})=H_{Q}^{[3]}\oplus H_{Q}^{[1^{3}]}$ . Hence we see that $\tau_{3_{)}Q}(\overline{\mathcal{K}}_{n}^{Q})$ is isomorphic to
a submodule of $H_{Q}^{[2,1]}\oplus(D\otimes_{Q}H_{Q}^{[3_{2}2^{2},1^{n-4}]})$ . In the following, we show $\tau_{3,Q}(\overline{\mathcal{K}}_{n}^{Q})\cong$

$H_{Q}^{[2,1]}\oplus(D\otimes_{Q}H_{Q}^{[3,2^{2},1^{n-4}]})$ .
To show this, we prepare some elements of $\mathcal{K}_{n}$ . First, for any distinct $p,$ $q,$ $r,$ $s\in$

$\{1,2, \ldots, n\}$ such that $p>q,$ $r$ and $q>r$ , set

$T(s,p, q, r):=[[K_{sp}^{-1}, K_{sr}^{-1}], K_{sqp}]\in IA_{n}$ .
Since $T(s,p, q, r)$ satisfies

$x_{t}\mapsto\{\begin{array}{ll}x_{s}[[x_{p}, x_{q}], [x_{p}, x_{r}]], if t=s,x_{t}, if t\neq s,\end{array}$

$T(s,p, q, r)\in \mathcal{K}_{n}$ and $\tau_{3}(T(s,p, q, r))=x_{s}^{*}\otimes[[x_{p}, x_{q}], [x_{p}, x_{r}]]\in H^{*}\otimes z\mathcal{G}_{n}$ . Next, for
any distinct $p,$ $q,$ $r,$ $s\in\{1,2, \ldots, n\}$ such that $p>s$ , set

$E(s,p, q, r):=[[K_{sr}, K_{spq}], K_{rsq}](K_{rs}^{-1}[[K_{rs}, K_{spq}]^{-1}, K_{rq}^{-1}]K_{rs})\in IA_{n}$ .
Then we have

Lemma 5.2. For any $n\geq 4$ ,
(i) $\tau_{3}(E(s,p, q, r))=x_{\epsilon}^{*}\otimes[[x_{p}, x_{q}], [x_{s}, x_{q}]]\in H^{*}\otimes_{Z}\mathcal{G}_{n}$ .
(ii) $E(s,p, q, r)\in \mathcal{K}_{n}$ .

Theorem 5.1. For $n\geq 4,$ $\tau_{3_{1}Q}(\overline{\mathcal{K}}_{n}^{Q})\cong H_{Q}^{[2_{t}1]}\oplus(D\otimes_{Q}H_{Q}^{[3_{2}2^{2},1^{\mathfrak{n}-4}]})$ .

Since $\tau_{3_{:}Q}$ is injective, this shows that

$\overline{\mathcal{K}}_{n}^{Q}\cong H_{Q}^{[2,1]_{\oplus()}}D\otimes_{Q}H_{Q}^{[32^{2},1^{n-4}]})$

and

Corollary 3. For $n\geq 4$ ,

$rank_{Z}(H_{1}(\mathcal{K}_{n}, Z))\geq\frac{1}{3}n(n^{2}-1)+\frac{1}{8}n^{2}(n-1)(n+2)(n-3)$ .
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5.2. Non surjectivity of the cup product $\bigcup_{Q}^{M}$ .
In this subsection, we also assume $n\geq 4$ . Here we show that the rational cup product

$\bigcup_{Q}^{M}$ : $\Lambda^{2}H^{1}(IA_{n}^{M}, Q)arrow H^{2}(IAnM, Q)$ is not surjective. From the rational five-term exact
sequence

$0arrow H^{1}$ $(IAnM, Q)arrow H^{1}(IA_{n}, Q)arrow H^{1}(\mathcal{K}_{n}, Q)^{IA_{n}}arrow H^{2}(IA_{n}^{M}, Q)arrow H^{2}($ IA$n’ Q)$

of (9), we have an exact sequence
$0arrow H^{1}(\mathcal{K}_{n}, Q)^{IA_{n}}arrow H^{2}(IA_{n}^{M}, Q)arrow H^{2}(IA_{n}, Q)$ .

By Theorem 4.1, to show the non-surjectivity of the cup product $\bigcup_{Q}^{M}$ it suffices to show
that the non-triviality of $H^{1}(\mathcal{K}_{n}, Q)$

IA$n$ .
The natural projection $\mathcal{K}_{n}arrow\overline{\mathcal{K}}_{n}$ induces an injective homomorphism

$H^{1}(\overline{\mathcal{K}}_{n}, Q)arrow H^{1}(\mathcal{K}_{n}, Q)^{IA_{\hslash}}$ .
By Theorem 5.1, and the universal coefficients theorem, we see

$H^{1}(\overline{\mathcal{K}}_{n}, Q)\cong Hom_{Z}(H_{1}(\overline{\mathcal{K}}_{n}, Z), Q)\neq 0$.
Therefore we obtain

Theorem 5.2. For $n\geq 4$ , the rational cup product
$\bigcup_{Q}^{M}$ : $\Lambda^{2}H^{1}(IA_{n}^{M}, Q)arrow H^{2}(IA_{n}^{M}, Q)$

is not surjective, and

$\dim_{Q}(H^{2}(IA_{n}^{M}, Q))\geq\frac{1}{24}n(n-2)(3n^{4}+3n^{3}-5n^{2}-23n-2)$ .
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