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Complexified Penner’s coordinates and its applications

Toshihiro Nakanishi (Shimane University) *

1 Penner’s \-lengths

1.1 A coordinate-system for Teichmiiller space

Let D = {z € C: |z| < 1} be the unit disk, a model of hyperbolic plane and

SU(1,1) = {(‘g 2) :a,bec,|a|2—|b|2=1},

Then PSU(1,1) is the group of orientation preserving hyperbolic motions of D.

Let G = Gy, be the punctured surface group of type (g, n), where 2g—~2+n > 0:

= (al,bl, . ,ag,bg,dl, (H akbkak bk )d]_ d,-. = 1).

A point of the Teichmiiller space T = T, is a class of faithful Fuchsian represen-
tations of G into PSU(1, 1) which have finite covolume. We denote points in 7 by
marked groups I'y,,, where I is a Fuchsian group and m : G — T is an isomorphism.

Elements D;,..., D, in I',, € T corresponding to dy,... , d,, are parabolic. Choose
a horocycle Hy invariant under Dy such that action of Dy on Hy is the translation of
length one. Then the identification of I',, Wlth (Tm, Hy, ..., H,) gives the following
statement.

Ty is naturally embedded in the decorated Teichmiiller space 7.

Therefore, by restricting them to this embedded subspace, Penner’s A-length coor-
dinates for T . give also global coordinates for the Teichmiiller space Ty .

*A joint work with M. Na&téanen. The author is grateful to Professor Robert Penner for helpful
discussions. He thanks Professor Michihiko Fujii for organizing a series of workshops on hyperbolic
geometry and its related topics.



1.2 Distance between horocycles

Let p be a point of the unit circle. A horocycle h at p is a Euclidean circle in D
tangent at p to the unit circle. The point p is called the base point of h.

Let h; and h; be horocycles based at different points p, and p; and ~ the hyper-
bolic line between p; and p,. Define '

A=ér (1)

where 0 is the signed length of the portion of the geodesic 7y intercepted between the
two horocycles h; and hy, § > 0 if h; and h, are disjoint and § < 0 otherwise. In
this way we can assign a positive number ) to the pair (h;, hs).
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1.3 JA-length of an ideal arc

Let S be the oriented closed surface of genus g, P = {py,...,pn} & set of n points.
An ideal arc ¢ of (S, P) is a path joining two points p; and p; in S — P. The ideal
arc c is simple if cN (S — P) is a simple arc.

Let I';, € 7, ,, then there exists an orientation preserving homeomorphism

f:S—-P—-D/T

inducing m. Let v be the geodesic representative in the homotopy class of f(c) for.

the Poincaré metric of the punctured surface D/T. By the identification of I', with
(T, Hy, ..., Hy), the horocycles at the endpoints of v defines the A-length Ale,T).

Let A = {c1, ¢y, ..., ¢4}, ¢ = 69— 6+3n, be an ideal triangulation of (S, P). Then

Theorem 1 (Penner 1
q
s = H)\(Ci) tTgm — (R}
i=1

is an embedding.
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The image of Aa is a real algebraic variety determined by n polynomials. A
component of S — Ug-:lcj is called a triangle in A. The image of \p is a real
algebraic variety determined by zero loci of n algebraic equations D;,..., D,, where
Dy is easily obtained by triangles abutting on the kth puncture py.

€;

N
Dk()\l, q) = Z b a’:()e):)b) 1. : (2)

1.4 The Ptolemy identity

Let A = {c1,¢p,...,cq} be an ideal triangulation of (S, P). Let e € A and T} and
T> be triangles being on the different sides of e. It is possible that T; = To. Lift
Ty UeUT; to a quadrangle Q = T1 UEUT, in D. Then & is a diagonal of Q. Let f
be the other diagonal and project f to an ideal arc finTyUeUT;,. Then

=(A-{ehu{r}

is another ideal triangulation of (S, P). We say that A’ arises from A by the ele-
mentary move on e
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Let (a, b, €) be the sides of T} and (e, d, €) be the sides of T5. Suppose that @ and
¢ are opposite sides of Q. Let a, b, ¢, d € AN A’ be the projections of &, b, ¢, d.
The following theorems are proved in Penner’s paper :

Theorem 2 (the Ptolemy identity, Penner {1])
The A-lengths function satisfy the identity

A(@)A(c) + A(b)A(d) = A(e)A(f) 3)
This theorem describes the coordinate-change between Aa(7) and Aa/(7):
Aar 0 A+ 5 M), AD), Me), A(d), Ale), - )

= (oo A@), A0 M@ M), XEHEIHAOND Ly g

Theorem 3 (Penner [1]) For arbitrary ideal triangulations A and A’ of (S, P),
there exists a finite sequence of ideal triangulations

A=A0,A1a"' aAm=A'a

where each A; arises from A;_, by an elementary move.
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Using this theorem it can be shown that coordinate change between A-length
coordinates associated with two ideal triangulations is a bi-rational map:

Theorem 4 If A and A’ are ideal triangulations of F, then the coordinate change

T 225 M(T)C (Ry)
id Aaroazl
T 225 an(T) C (R

extends to a rational transformation of RY

Let MC = MC,,, denote the mapping class group of (S, P). Each ¢ € MC acts
on the Teichmiiller space 7. The theorem above yields

Theorem 5 The correspondence
¢ By = Ap-1(a) © AR

gives an isomorphism of MC to a group of rational transformations.

2 SL(2,C)-representation space of a punctured sur-
face group

Let R = R, be the space of classes of faithful representations [m] of the punctured

surface group G into SL(2,C) such that m(d;) is parabolic with tr m(d;) = —2 for

i=1,2,...,n. The Teichmiiller space 7, is a subspace of Ry .

Our purpose is to give a coordinate-system for R,, whose restriction to 7y,
coincides with Penner’s A-lengths coordinate-system.

2.1 Parabolic elements of SL(2,C)

Define
P ={P e SL(2,C) : P is parabolic with trP = —2}.

If P, and P, € P do not commute, then the square root of —P, P, in SL(2,C)

1
=t (] - P\ P,), (5
Q m( 1 2) ( )
is unique up to sign and satisfies
| P, =Q7'PQ. (6)

For the rest of this paper, the diagram

P—2-p,
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will mean that Q?> = — P, P,.
Cycles of parabolic elements

Let A, ..., By, P,y1 = P, € P. Suppose that no consecutive elements P; and
Piy1 commute. Let Q; be a square root of —FP;Piy;, (¢ = 1,2,..,n). Then, since
Py = Q7 PQ;, Q1Q2 - - Qn commutes with P,

tr1Q2 - Qn=+20r —2. (M)

Definition
(@1, Q2 ..., Qr) is & (+)-system or a (—)-system according to if trQ1Qs - Qn = +2
or —2.

2.2 A trace identity of Ptolemy type

Let P, P, P; and F4. Supposé that P; and P; do not commute unless ¢ = j. Choose
Qh Q21 Q37 Q4a Q57 Q67 ’57 Qg € SL(Z') C) so that

Qi =-PPp, Q%= —-P,p;, Qs = —BPFy,
Q% =-PR,P, Qi = -PP, Q¢ = — PPy,
’ (Qg)2 = —P B, (Q8)2 = —FP P,
where |
Qs = PQs P, Qs = PiQe Pt
P; P;
Q1 Q4 Q1 Q4
. ’ Qs
P2 QSI l % SPs Py = Py
Qs
Q2 Qs Q2 Qs
P3 P3

Theorem 6 If (Q1,Q2, @s), (@5, @3, Qs) and (Q1, Qs, Q) are (—)-systems, then
trQstrQs = trQitrQs + trQatrQy _ (8)
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3 Complexified A-length

3.1 Definition of A-length

A point of R is represented by a marked group I',. Let P, (T') be the set of parabolic
elements in [m(d,)] U - - - U [m(d,)], where [m(d;)] is the conjugacy class of m(d;).

Let c be an ideal arc in (S, P). Then for each I'), € R, c defines two parabolic
elements P, P, of P, ('), see the following figure. We define the \-length of ¢ with
respect to I',, by

Ae, Tp) = tr@, (9)
where @ is a square root of —P, P,. The A-length is defined up to sign.

3.2 A-length coordinates for R,

Let A = (¢y,¢g, ..., ¢q) be an ideal triangulation of (S, P). Let T be a triangle in A.
T inherites the orientation of the surface S. Label the sides of T by a, b, c in order.
Then those sides determine matrices @,, Q», Q. Whose traces give A-lengths of a, b
and c for I'y,.

Lemma 1 It is possible to choose branches of A-length functions A(c1), A(¢2), ...,
A(cq) so that (Qa, @b, Q.) is a (—)-system for each triangle T in A.

With the choice of branches of A-lengths as depicted in the lemma, we obtain
Theorem 7 For each ideal triangulation A,

o =TI Me) : Ryn — (€

i=1

is an embedding. The image is contained in an algebraic variety.

3.3 Rational representation of the mapping class group
As in the case of 7', the Ptolemy identity (8) yields 4

Theorem 8 The mapping class group MC acts on R as a group of rational trans-
formations.
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4 Invariant holomorphic two-form

Let Ty,..., Ty, p = 49 — 2, be triangles in an ideal triangulation of a once-punctured
surface. Let the sequence of sides a;, b;, ¢; of T; agree with the positive orientation
of T;, then the 2-form

Zl(dlog A(a;) A dA(b;) + dlog A(b;) A dlog A(c;) + dlog M(¢;) A dlog A(a;))  (10)

P
i=1

is invariant under the mapping class group MC. The proof is similar to the one of
the corresponding result in [2].

5 A characterization of the rational map induced
by a mapping class

5.1 Example: Once punctured torus

The Teichmiiller space T,; of once punctured tori is represented as the subspace of
(R,)3 defined by

2+ 9% + 22 = ayz, (11)
where z, y, z are A-length functions related to an (essentially unique) triangulation

of the once punctured torus (or z, y, z are trace functions tra, trp, trap, with {4, B}
the canonical generator-system of G ;.)

The mapping class group MC;; has generators

2+y2

z2 + 22
T Y, T),

o(2,9,2) = (z, 2, ) and T(z,9,2) = (%

with relations
(troo)®*=1, (corTo0)?=1.

Since MC;y; acts on Ty, the group of rational transformations generated by ¢
and 7 preserves the equation (11) and (z,y, z) = (3,3, 3) gives integer solutions of

(11).

Theorem 9 (Markoff) All positive integer solutions of (11) are in the oribit of
(3,3, 3) under the action of MC, .

The viewpoint of understanding the Markoff transformations as mapping classes
actiong on 7, ; is given in Penner’s paper [1].

With A-length cdordinates, the Teichmiiller space 7, is determined by n alge-
braic equations and the group of rational transformations induced by the mapping
class group MC,, keep this space. So we can pursue analogies of the above result.
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5.2 Example: twice punctured torus

Let A be the ideal triangulation of the twice punctured torus as depicted in the
following figure.

twice punctuped torus

Consider the A-lengths
Aa, Ab) )\c, Ad’ Ae

associated with A. Then it holds that A\, = Ay. The Teichmiiller space 772 (or the
space R ) is represented by the A-lengths as the space -

Ae Aa Ab AC Ad Ae —
YV VWS W WL WS WD W WD W Vi

1.

or
AAa(A2 4 A2 + A2) + A (A2 + A2 + A2) = AgdpdcAde. (12)

The mapping class group MC;,; (as a group of rational transformations) has
generators

A+ )3

Wix (Aa) Aln )‘07 Ad) )\e) = (Ad) Ab, Am d ) Ae)

w2*(Aa’ Ab) Ac, Ad’ Ae) = (Ada )\aa Ab, Ac’ &;-_/'\LAE)
9 2 €

w3*(>\a,)\ba Ac,Ad,)\e) = ()‘m 2"é_-t'é'e;aAba >‘d’)‘e)a

Ae
with relations

w%.wl.wg‘ = W3« W1slW3s = W3+

(wltw%)a =1, (w3*w2*)3 =1
The point p = (6,6,6,6,6) gives integer solutions of (12). An analogous result to
the Markoff equation holds:

Theorem 10 The orbit {¢.(6,6,6,6,6) : ¢ € MC,2}, gives integer solutions of
(12), but not all of its integer solutions.



5.3 Diophantine equations
We consider a once punctured surface.
Lemma 2 Let (A, Ag, ..., Ag) be the A-length coordinate-system for Ry associated

to an ideal triangulation (cy,cs,...,cq), where ¢ = 6g — 3. Then the A-length of a
simple ideal arc c is expressed by a rational function of the form

P(A1, A2, .04 Ag)

m1 yma Mg
VIR

(13)
where P(A1, Az, ..., Aq) is a homogeneous polynomial of degree

d=1+m1+m2+--~+mq,

with positive integer coefficients and m; is the geometric intersection number of c
andc; in S— P fori=1,2,...,q

For p € MC,; let @, denote the rational transformation induced by ¢. Then
~entries of @,(A1,Ag, ..., Aq) are of the form as in (13). This fact leads us to the
following observation.

Let
D(A1,...,A) =0 (14)

be the algebraic equation which determines 7, in the A-length coordinates. Then
the rational transformation ¢, induced by ¢ € MC,, preserves D(Ay, ..., Ag). More-
over, if

Ay ey A)
gives integer solutions of (14), then so does @, (), J, ..., ).

We remark that it is not true in general that all integer solutions are in the orbit
of (A, A, ..., A) under MC.

6 3-manifolds which fiber over the circle

Let ¢ € MC;n. Let M, be a manifold which fibers over the circle and whose
monodoromy is ¢. If ¢, denotes the action of ¢ on the fundamental group G =
Ggn of the surface S of type (g,n), then the fundamental group of M, has the
presentation

G = (G,t: p.(g) =tgt™ for all g € G) (15)
If m:G — SL(2,C) is a faithful representation of 7, then for all g € G

(ou 0 m)(g) = m(t)m(g)m(t)™".

Hence the class [m] is a fixed point of ¢, for its action on R, .

137
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The A-length coordinates of Ry, represent ¢, as a rational function. Hence the
fixed point [m] corresponds to a solution of the algebraic equation

Ge(AL, s Ag) = (A, o Ag)- (16)

If ¢ is reducible, then one of the solutions of (16) gives a faithful and discrete
representation m of G. We can find the Mobius transformation m(t) easily, because
m(t) sends the fixed point of m(g) to that of m(yp.(g)) for each parabolic element
g € G. In this way hyperbolization of M, can be done. However, to carry this
hyperbolization program into effect, we need efficient discreteness criteria.
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