On a theorem of de Franchis

Masaharu Tanabe Tokyo Institute of Technology, Department of Mathematics

1 Introduction

Let X be a compact Riemann surface of genus g (> 1). De Franchis [1] stated the following:

Theorem 1 (de Franchis) (a) For a fixed compact Riemann surface Y of genus > 1, the number of nonconstant holomorphic maps $X \rightarrow Y$ is finite.

(b) There are only finitely many compact Riemann surfaces Y_i of genus > 1 which admit a nonconstant holomorphic map from X.

The second statement (b) is often attributed to Severi. After knowing the finiteness of maps, we may ask if there exists a upper bound depending only on some topological invariant, for example, the genus g. Related to the statement (a), the author [4] showed that the bound is smaller than $(cg)^{2g}$ for some constant c.

Now, we consider a bound for holomorphic maps when Y is not fixed, that is, we estimate the number of all nonconstant holomorphic maps from X to other Riemann surfaces. Let $f_i: X \to Y_i$ be nonconstant holomorphic maps for i = 1, 2. We say that f_1 and f_2 are isomorphic if and only if there is a conformal map $h: Y_1 \to Y_2$ such that $h \circ f_1 = f_2$. Let $\mathcal{I}_{\gamma}(X)$ denote the set of all isomorphic classes of nonconstant holomorphic maps into compact Riemann surfaces of genus $\gamma > 1$, and denote $\mathcal{I}(X) = \bigcup_{g > \gamma > 1} \mathcal{I}_{\gamma}(X)$. By the theorem of de Franchis, we see that $\#\mathcal{I}(X)$ is finite. In 1983 Howard and Sommese [2] first showed that there is a bound on $\#\mathcal{I}(X)$ depending only on g.

Let

$$M(g) = \max_X \{ \sharp \mathcal{I}(X) \},\$$

where the maximum is taken over all Riemann surfaces X of genus g. It is an interesting problem to determine the exact rate of growth of M(g). The author [5] showed

$$M(g) \le (cg)^{5g}$$

for some constant c and it was the best upper bound depending only on g.

In this note we will improve the bound and show

$$M(g) \le (cg)^{2g}$$

for some constant c.

On the other hand, Kani [3] also constructed a sequence of Riemann surfaces of genara $g_1 < g_2 < \ldots < g_n < \ldots$, such that the number of isomorphic classes of nonconstant holomorphic maps of each Riemann surface is larger than $\exp(c(\log(g_n))^2)$ for some constant c > 0 (independent of n). It implies that M(g) cannot be bounded by any polynomial in g.

2 The bound

In the following, we will refer to [5] for all of the notation and lemmata. In [5], the leading term of the upper bound was depend on Lemma 3 (p.3060) and the Proposition (p.3062). We improve them as follows.

Lemma 3' Let $f_1: X \to Y_1$ be a holomorphic map of degree d, and $\mathfrak{f}_1: \mathfrak{J}(X) \to \mathfrak{J}(Y_1)$ be the homomorphism induced by f_1 . Take an arbitrary $u \in {}^t\mathfrak{f}_1(\widehat{\mathfrak{J}(Y_1)})$. Then, the number of isomorphic classes of holomorphic maps $f_i: X \to Y_i$ of degree d such that the dual map ${}^t\mathfrak{f}_i: \widehat{\mathfrak{J}(Y_i)} \to \widehat{\mathfrak{J}(X)}$ of the induced homomorphism \mathfrak{f}_i satisfies $u \in$ ${}^t\mathfrak{f}_i(\widehat{\mathfrak{J}(Y_i)})$ is at most $\begin{pmatrix} 2g-2\\ d \end{pmatrix} \times \begin{pmatrix} 4g-4\\ d \end{pmatrix}$.

In [5], the conclusion was $\begin{pmatrix} 2g-2 \\ d \end{pmatrix} \times (2g-1)^d$ which is now replaced by $\begin{pmatrix} 2g-2 \\ d \end{pmatrix} \times \begin{pmatrix} 4g-4 \\ d \end{pmatrix}$.

Proof. The assumption means that there exist holomorphic differentials ϕ_1 on Y_1 and ϕ_i on Y_i such that their pull backs satisfy $f_{1*}\phi_1 = f_{i*}\phi_i$.

Then, for a zero p_{01} of ϕ_1 , the number of possible $f_1^{-1}(p_{01})$ (counting multiplicities) that can occur is at most $\begin{pmatrix} 2g-2\\ d \end{pmatrix}$. After determining $\phi = f_{1*}\phi_1$ and $f_1^{-1}(p_{01})$, we can show that there are at most $\begin{pmatrix} 4g-4\\ d \end{pmatrix}$ possible isomorphic classes of holomorphic maps of degree d as follows.

Let $f_i: X \to Y_i$ be holomorphic maps (i = 1, 2). Suppose that there are holomorphic differentials ϕ_1 and ϕ_2 on Y_1 and Y_2 , respectively, with $f_{1*}\phi_1 = f_{2*}\phi_2$, and there is a zero p_{01} (resp. p_{02}) of ϕ_1 (resp. ϕ_2) satisfying $f_1^{-1}(p_{01}) = f_2^{-1}(p_{02})$. We put $\phi = f_{1*}\phi_1 = f_{2*}\phi_2$.

Let $\tilde{p}_0 \in f_1^{-1}(p_{01}) = f_2^{-1}(p_{02})$. Take a sufficiently small neighbourhood $U_{\tilde{p}_0}$ (resp. $U_{p_{0i}}$) of \tilde{p}_0 (resp. p_{0i}) so that there is no zero of ϕ (resp. ϕ_i) on $U_{\tilde{p}_0}$ (resp. $U_{p_{0i}}$) except \tilde{p}_0 (resp. p_{0i}), and that $f_i(U_{\tilde{p}_0}) \subset U_{p_{0i}}$ (i = 1, 2). We may take a

(resp. $U_{p_{0i}}$) except p_0 (resp. p_{0i}), and that $f_i(U_{\tilde{p}_0}) \subset U_{p_{0i}}$ (i = 1, 2). We may take a local coordinate z (resp. z_i) on $U_{\tilde{p}_0}$ (resp. $U_{p_{0i}}$) such that $z(\tilde{p}_0) = 0$ (resp. $z_i(p_{0i}) = 0$) and the differential is written as

$$\phi = z^m dz$$
 (resp. $\phi_i = z_i^{n_i} dz_i$).

Recalling that $f_1^{-1}(p_{01}) = f_2^{-1}(p_{02})$, we see $n_1 = n_2$ and we will denote it by n for brevity. We take two real lines $\gamma_i : [0, a) \to U_{p_{0i}}$ with $\gamma_i(t) = t \in \mathbb{R}$ in the local coordinates $z_i \ (i = 1, 2)$. For an arbitrary $\tilde{p} \in U_{\tilde{p}_0} \setminus \{\tilde{p}_0\}$,

$$\int_0^{\tilde{p}} z^m dz = \int_0^{f_1(\tilde{p})} z_1^n dz_1 = \int_0^{f_2(\tilde{p})} z_2^n dz_2,$$

hence the number of possible positions for the set of lifts of γ_1 (thus also those of γ_2) in $U_{\tilde{p}_0}$ is at most m + 1. Accordingly, the total number of possible positions for the set of all the lifts of γ_1 is at most $\begin{pmatrix} 4g-4\\ d \end{pmatrix}$.

Let $\{\tilde{p}_{0j}\}_{j=1}^{N} = f_1^{-1}(p_{01})(= f_2^{-1}(p_{02}))$. Suppose that, for every $\tilde{p}_{0j} \in f_1^{-1}(p_{01})$, $U_{\tilde{p}_{0j}} \cap f_1^{-1}(\gamma_1) = U_{\tilde{p}_{0j}} \cap f_2^{-1}(\gamma_2)$, that is, the set of lifts of γ_1 coincide with that of γ_2 . Then, it is easy to see that we can define a local conformal map $h: f_1(U_{\tilde{p}_{0j}}) \to f_2(U_{\tilde{p}_{0j}})$ such that $h \circ f_1|_{\bigcup_j U_{\tilde{p}_{0j}}} = f_2|_{\bigcup_j U_{\tilde{p}_{0j}}}$. We want to extend it to a global conformal map from Y_1 to Y_2 , and actually it is possible. Indeed, for an arbitrary point $p \in Y_1$, we will draw a curve c from p_{01} to p avoiding branch points of f_1 other than possibly at p_{01} and p. Let \tilde{c} and \tilde{c}' be two lifts of c by f_1 . Then, we see that $f_2(\tilde{c}) = f_2(\tilde{c}')$ since $h \circ f_1$ is well-defined near \tilde{p}_{0j} $(j = 1, \ldots, N)$. It implies that h is well-defined on Y_1 . It is easy to see that h is invertible. \Box

Proposition' Let $f_i : X \to Y_i$ be nonconstant holomorphic maps, and \mathcal{F}_i be the rational representations of the endomorphisms associated with f_i (i = 1, 2). Suppose

that, for some k < 2g,

$$\begin{cases} {}^{t}\mathcal{F}_{1}a_{1}=\ldots={}^{t}\mathcal{F}_{1}a_{k-1}=0,\\ {}^{t}\mathcal{F}_{2}a_{1}=\ldots={}^{t}\mathcal{F}_{2}a_{k-1}=0, \end{cases}$$

and that there exists some integer l > 2g - 2 such that ${}^{t}\mathcal{F}_{1}a_{k} \equiv {}^{t}\mathcal{F}_{2}a_{k} \pmod{l}$ holds. Then ${}^{t}\mathcal{F}_{1}a_{k} = {}^{t}\mathcal{F}_{2}a_{k}$.

If, in addition, Y_1 and Y_2 are of the same genus γ , then the assumption l > 2g - 2 can be replaced by $l > (2g - 2)/(\gamma - 1)$.

In [5], we assumed $l > (2g-2)^2$. But in Proposition', we only need l > 2g-2.

Proof. Let $D = \mathcal{F}_1 - \mathcal{F}_2$. Then, D is the rational representation of some endomorphism of J(X). By an easy calculation, we see ${}^tD' = {}^tD$. We note that ${}^tD'x$, a_1, \ldots, a_{k-1} are linearly independent for any vector $x \in \mathbb{R}^{2g}$ if ${}^tD'x$ is not zero. Indeed, using Lemma 1 in [5], we see $({}^tD'x, a_j)_X = (x, {}^tDa_j)_X = 0$ for $j = 1, \ldots, k-1$ by the assumption. Thus, ${}^tD'x$, a_1, \ldots, a_{k-1} are linearly independent. By the assumption, ${}^tD'a_k \equiv 0 \pmod{l}$ thus the vector ${}^tD'a_k$ can be written in the form ${}^tD'a_k = l \times n$, where $n \in \mathbb{Z}^{2g}$. Thus, if it is not 0, then

$$||^t D a_k|| \ge l\lambda_k.$$

We also have

$$||^{t} Da_{k}|| \leq ||^{t} \mathcal{F}_{1}a_{k}|| + ||^{t} \mathcal{F}_{2}a_{k}|| \leq d_{1}||a_{k}|| + d_{2}||a_{k}||,$$

where d_i is the degree of f_i (i = 1, 2). The first inequality is just the triangle inequality, and the second one is obtained by Lemma 2.

Therefore, we have

$$||^{t}Da_{k}|| \leq ||a_{k}||(d_{1}+d_{2}) = (d_{1}+d_{2})\lambda_{k}$$

By Riemann-Hurwitz formula, $d_i \leq g - 1$ and we see that tDa_k must be 0 since l > 2(g-1).

A little modification of above argument lead us to the conclusion for the case Y_1 and Y_2 are of the same genus γ . \Box

Now we will get the improved bound. Just the same consideration as in [5, p.3063], we have

$$\sharp \mathcal{I}_{\gamma}(X) < \sum_{d>1} (2g-2\gamma+1) \times \{ (\frac{2g-2}{\gamma-1}) + 1 \}^{2g} \times \begin{pmatrix} 2g-2 \\ d \end{pmatrix} \times \begin{pmatrix} 4g-4 \\ d \end{pmatrix} + \frac{2g-2}{\gamma-1} \end{pmatrix}$$

Observing $\begin{pmatrix} m \\ d \end{pmatrix} \leq 2^m$, we see that the right hand side is smaller than

$$\{(\frac{2g-2}{\gamma-1})+1\}^{2g} \times 2^{2g-2} \times 2^{4g-4} \times (2g-2\gamma+1)(g-\gamma)/(\gamma-1) + 2g^{2g-2} \times 2^{4g-4} \times (2g-2\gamma+1)(g-2\gamma+1)(g-2\gamma+1) + 2g^{2g-2} \times 2^{4g-4} \times (2g-2\gamma+1)(g-2\gamma+1)(g-2\gamma+1) + 2g^{2g-2} \times 2^{4g-4} \times (2g-2\gamma+1)(g-2\gamma+1)(g-2\gamma+1) + 2g^{2g-2} \times 2^{4g-4} \times (2g-2\gamma+1)(g-2\gamma+1) + 2g^{2g-2} \times 2^{4g-4} \times (2g-2\gamma+1)(g-2\gamma+1)(g-2\gamma+1) + 2g^{2g-2} \times 2^{4g-4} \times (2g-2\gamma+1)(g-2\gamma+1)(g-2\gamma+1) + 2g^{2g-2} \times (2g-2\gamma+1)(g-2\gamma+1)(g-2\gamma+1)(g-2\gamma+1) + 2g^{2g-2} \times (2g-2\gamma+1)(g-2\gamma+1)(g-2\gamma+1)(g-2\gamma+1) + 2g^{2g-2} \times (2g-2\gamma+1)(g-2$$

Summing up for all possible γ , we get

$$M(g) \le (cg)^{2g}$$

for some constant c.

References

- [1] de Franchis, M., Un teorema sulle involuzioni irrazionali, Rend. Circ. Mat. Palermo 36, (1913), 368.
- [2] Howard, A., Sommese, A. J., On the theorem of de Franchis, Ann. Scoula. Norm. Sup. Pisa Cl. Sci. 10, (1983), 429-436.
- [3] Kani, E., Bounds on the number of non-rational subfields of a function field, Invent. Math. 85, (1986), 185-198.
- [4] Tanabe, M., A bound for the theorem of de Franchis, Proc. Amer. Math. Soc. 127, (1999), 2289-2295.
- [5] _____, Bounds on the number of holomorphic maps of compact Riemann surfaces, Proc. Amer. Math. Soc. 133, (2005), 3057-3064.