
On a theorem of de Franchis

Masaharu Tanabe
Tokyo Institute of Technology, Department of Mathematics

1 Introduction

Let $X$ be a compact Riemann surface of genus $g(>1)$ . De Franchis [1] stated the
following:

Theorem 1 (de Franchis) $(a)$ For a fixed compact Riemann surface $Y$ of genus
$>1$ , the number of nonconstant holomorphic maps $Xarrow Y$ is finite.
$(b)$ There are only finitely many compact Riemann surfaces $Y_{i}$ of genus $>1$ which
admit a nonconstant holomorphic map from $X$ .

The second statement (b) is often attributed to Severi. After knowing the finiteness of
maps, we may ask if there exists a upper bound depending only on some topological
invariant, for example, the genus $g$ . Related to the statement (a), the author [4]
showed that the bound is smaller than $(cg)^{2g}$ for some constant $c$ .

Now, we consider a bound for holomorphic maps when $Y$ is not fixed, that is, we
estimate the number of all nonconstant holomorphic maps from $X$ to other Riemann
surfaces. Let $f_{i}$ : $Xarrow Y_{i}$ be nonconstant holomorphic maps for $i=1,2$ . We say that
$f_{1}$ and $f_{2}$ are isomorphic if and only if there is a conformal map $h$ : $Y_{1}arrow Y_{2}$ such
that $h\circ f_{1}=f_{2}$ . Let $\mathcal{I}_{\gamma}(X)$ denote the set of all isomorphic classes of nonconstant
holomorphic maps into compact Riemann surfaces of genus $\gamma>1$ , and denote $\mathcal{I}(X)=$

$\bigcup_{g>\gamma>1}\mathcal{I}_{\gamma}(X)$ . By the theorem of de Franchis, we see that $\#\mathcal{I}(X)$ is finite. In 1983
Howard and Sommese [2] first showed that there is a bound on $\#\mathcal{I}(X)$ depending only
on $g$ .

Let
$M(g)= \max_{X}\{\#\mathcal{I}(X)\}$ ,
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where the maximum is taken over all Riemann surfaces $X$ of genus $g$ . It is an in-
teresting problem to determine the exact rate of growth of $M(g)$ . The author [5]
showed

$M(g)\leq(cg)^{5g}$

for some constant $c$ and it was the best upper bound depending only on $g$ .

In this note we will improve the bound and show

$M(g)\leq(cg)^{2g}$

for some constant $c$ .

On the other hand, Kani [3] also constructed a sequence of Riemann surfaces of genara
$g_{1}<g_{2}<\ldots<g_{n}<\ldots$ , such that the number of isomorphic classes of nonconstant
holomorphic maps of each Riemann surface is larger than
$\exp(c(\log(g_{n}))^{2})$ for some constant $c>0$ (independent of $n$). It implies that $M(g)$

cannot be bounded by any polynomial in $g$ .

2 The bound

In the following, we will refer to [5] for all of the notation and lemmata. In [5],
the leading term of the upper bound was depend on Lemma 3 (p.3060) and the
Proposition (p.3062). We improve them as follows.

Lemma 3’ Let $f_{1}$ : $Xarrow Y_{1}$ be a holomorphic map of degree $d$ , and $f_{1}$ : $J(X)arrow J(Y_{1})$

be the homomorphism induced by $f_{1}$ . Take an arbitrary $u\in {}^{t}f_{1}(\overline{J(Y_{1})})$ . Then, the
number of isomorphic classes $0\underline{fhol}omorphic$ maps $f_{i}$ : $Xarrow Y_{i}$ of degree $d$ such
that the dual map $t_{\int_{i}}$ : $\overline{J(Y_{i})}arrow J(X)$ of the induced homomorphism $\int_{i}$ satisfies $u\in$

$t_{\int_{i}(\overline{J(Y_{i})})}$ is at most $(2g -2d)\cross(4g -4d)$ .

In [5], the conclusion was $(\begin{array}{ll}2g -2 d\end{array})\cross(2g-1)^{d}$ which is now replaced by $(\begin{array}{ll}2g -2 d\end{array})\cross$

$(\begin{array}{ll}4g -4 d\end{array})$ .

Proof The assumption means that there exist holomorphic differentials $\phi_{1}$ on $Y_{1}$

and $\phi_{i}$ on $Y_{i}$ such that their pull backs satisfy $f_{1*}\phi_{1}=f_{i*}\phi_{i}$ .
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Then, for a zero $p_{01}$ of $\phi_{1}$ , the number of possible $f_{1}^{-1}(p_{01})$ (counting multiplicities)

that can occur is at most $(2g -2d)$ . After determining $\phi=f_{1*}\phi_{1}$ and $f_{1}^{-1}(p_{01})$ , we

can show that there are at most $(4g -4d)$ possible isomorphic classes of holomor-

phic maps of degree $d$ as follows.

Let $f_{i}:Xarrow Y_{i}$ be holomorphic maps $(i=1,2)$ . Suppose that there are holomorphic
differentials $\phi_{1}$ and $\phi_{2}$ on $Y_{1}$ and $Y_{2}$ , respectively, with $f_{1*}\phi_{1}=f_{2*}\phi_{2}$ , and there
is a zero $p_{01}$ (resp. $p_{02}$ ) of $\phi_{1}$ (resp. $\phi_{2}$ ) satisfying $f_{1}^{-1}(p_{01})=f_{2}^{-1}(p_{02})$ . We put
$\phi=f_{1*}\phi_{1}=f_{2*}\phi_{2}$ .

Let $\tilde{p}_{0}\in f_{1}^{-1}(p_{01})=f_{2}^{-1}(p_{02})$ . Take a sufficiently small neighbourhood $U_{\overline{p}0}$ (resp.
$U_{P0i})$ of $\tilde{p}_{0}$ (resp. $p_{0i}$ ) so that there is no zero of $\phi$ (resp. $\phi_{i}$ ) on $U_{\overline{p}0}$

(resp. $U_{poz}$ ) except $\tilde{p}_{0}$ (resp. $p_{0i}$ ), and that $f_{i}(U_{\overline{p}0})\subset U_{p_{0i}}(i=1,2)$ . We may take a
local coordinate $z$ (resp. $z_{i}$ ) on $U_{\tilde{p}_{0}}$ (resp. $U_{p_{\mathfrak{c}u}}$ ) such that $z(\tilde{p}_{0})=0$ $($resp. $z_{i}(p_{0i})=0)$

and the differential is written as

$\phi=z^{m}dz$ $($ resp. $\phi_{i}=z_{i}^{n_{i}}dz_{i})$ .

Recalling that $f_{1}^{-1}(p_{01})=f_{2}^{-1}(p_{02})$ , we see $n_{1}=n_{2}$ and we will denote it by $n$ for
brevity. We take two real lines $\gamma_{i}$ : $[0, a)arrow U_{p_{0i}}$ with $\gamma_{i}(t)=t\in \mathbb{R}$ in the local
coordinates $z_{i}(i=1,2)$ . For an arbitrary $\tilde{p}\in U_{\overline{p}_{0}}\backslash \{\tilde{p}_{0}\}$ ,

$\int_{0}^{\tilde{p}}z^{m}dz=\int_{0}^{f_{1}(\overline{p})}z_{1}^{n}dz_{1}=\int_{0}^{f_{2}(\tilde{p})}z_{2}^{n}dz_{2}$ ,

hence the number of possible positions for the set of lifts of $\gamma_{1}$ (thus also those of $\gamma_{2}$ )
in $U_{\overline{p}0}$ is at most $m+1$ . Accordingly, the total number of possible positions for the

set of all the lifts of $\gamma_{1}$ is at most $(4g -4d).\cdot$

Let $\{\tilde{p}_{0j}\}_{j=1}^{N}=f_{1}^{-1}(p_{01})(=f_{2}^{-1}(p_{02}))$ . Suppose that, for every $\tilde{p}_{0j}\in f_{1}^{-1}(p_{01})$ ,
$U_{\overline{p}_{0j}}\cap f_{1}^{-1}(\gamma_{1})=U_{\overline{p}_{0j}}\cap f_{2}^{-1}(\gamma_{2})$ , that is, the set of lifts of $\gamma_{1}$ coincide with that of $\gamma_{2}$ .
Then, it is easy to see that we can define a local conformal map $h$ : $f_{1}(U_{\overline{p}_{0j}})arrow f_{2}(U_{\overline{p}_{0j}})$

such that $h\circ f_{1}|_{\bigcup_{j}U_{\overline{p}_{0j}}}=f_{2}|_{\bigcup_{j}U_{\overline{p}_{0j}}}$ . We want to extend it to a global conformal map
from $Y_{1}$ to $Y_{2}$ , and actually it is possible. Indeed, for an arbitrary point $p\in Y_{1}$ , we
will draw a curve $c$ from $p_{01}$ to $p$ avoiding branch points of $f_{1}$ other than possibly at
$p_{01}$ and $p$ . Let $\tilde{c}$ and $\tilde{C}’$ be two lifts of $c$ by $f_{1}$ . Then, we see that $f_{2}(\tilde{c})=f_{2}(\tilde{c}’)$ since
$h\circ f_{1}$ is well-defined near $\overline{p}_{0j}$ $(j=1, \ldots , N)$ . It implies that $h$ is well-defined on $Y_{1}$ .
It is easy to see that $h$ is invertible. $\square$

Proposition’ Let $f_{i}$ : $Xarrow Y_{i}$ be nonconstant holomorphic maps, and $\mathcal{F}_{i}$ be the
mtional representations of the endomorphisms associated with $f_{i}(i=1,2)$ . Suppose
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that, for some $k<2g$ ,

$\{\begin{array}{l}t\mathcal{F}_{1}a_{1}=\ldots=^{t}\mathcal{F}_{1}a_{k-1}=0,t\mathcal{F}_{2}a_{1}=\ldots=^{t}\mathcal{F}_{2}a_{k-1}=0,\end{array}$

and that there exists some integer $l>2g-2$ such that $t\mathcal{F}_{1}a_{k}\equiv t\mathcal{F}_{2}a_{k}$ (mod. l) holds.
Then $t\mathcal{F}_{1}a_{k}=t\mathcal{F}_{2}a_{k}$ .

If, in addition, $Y_{1}$ and $Y_{2}$ are of the same genus $\gamma_{f}$ then the assumption $l>2g-2$
can be replaced by $l>(2g-2)/(\gamma-1)$ .

In [5], we assumed $l>(2g-2)^{2}$ . But in Proposition’, we only need $l>2g-2$ .

Proof Let $D=\mathcal{F}_{1}-\mathcal{F}_{2}$ . Then, $D$ is the rational representation of some en-
domorphism of $J(X)$ . By an easy calculation, we see ${}^{t}D$ ‘ $={}^{t}D$ . We note that
${}^{t}D’x,$ $a_{1},$ $\ldots,$ $a_{k-1}$ are linearly independent for any vector $x\in \mathbb{R}^{2g}$ if ${}^{t}D’x$ is not zero.
Indeed, using Lemma 1 in [5], we see $({}^{t}D’x, a_{j})_{X}=(x,{}^{t}Da_{j})_{X}=0$ for $j=1,$ $\ldots,$ $k-1$

by the assumption. Thus, ${}^{t}D’x,$ $a_{1},$ $\ldots,$ $a_{k-1}$ are linearly independent. By the as-
sumption, ${}^{t}D’a_{k}\equiv 0$ $(mod. l)$ thus the vector ${}^{t}D’a_{k}$ can be written in the form
${}^{t}D’a_{k}=l\cross n$ , where $n\in \mathbb{Z}^{2g}$ . Thus, if it is not $0$ , then

$||^{t}Da_{k}$ lI $\geq l\lambda_{k}$ .

We also have

$||^{t}Da_{k}||\leq||^{t}\mathcal{F}_{1}a_{k}||+||^{t}\mathcal{F}_{2}a_{k}||\leq d_{1}||a_{k}||+d_{2}||a_{k}||$,

where $d_{i}$ is the degree of $f_{i}(i=1,2)$ . The first inequality is just the triangle inequality,
and the second one is obtained by Lemma 2.

Therefore, we have

$||^{t}Da_{k}||\leq||a_{k}||(d_{1}+d_{2})=(d_{1}+d_{2})\lambda_{k}$ .

By Riemann-Hurwitz formula, $d_{i}\leq g-1$ and we see that ${}^{t}Da_{k}$ must be $0$ since
$l>2(g-1)$ .

A little modification of above argument lead us to the conclusion for the case $Y_{1}$ and
$Y_{2}$ are of the same genus $\gamma$ . $\square$

Now we will get the improved bound. Just the same consideration as in[5, p.3063],
we have

$\#\mathcal{I}_{\gamma}(X)<\sum_{d>1}(2g-2\gamma+1)\cross\{(\frac{2g-2}{\gamma-1})+1\}^{2g}\cross(\begin{array}{ll}2g -2 d\end{array}) \cross(\begin{array}{ll}4g -4 d\end{array})$ .
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Observing $(\begin{array}{l}md\end{array})\leq 2^{m}$ , we see that the right hand side is smaller than

$\{(\frac{2g-2}{\gamma-1})+1\}^{2g}\cross 2^{2g-2}\cross 2^{4g-4}\cross(2g-2\gamma+1)(g-\gamma)/(\gamma-1)$ .

Summing up for all possible $\gamma$ , we get

$M(g)\leq(cg)^{2g}$

for some constant $c$ .
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