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On a theorem of de Franchis

Masaharu Tanabe
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1 Introduction

Let X be a compact Riemann surface of genus g (> 1). De Franchis [1] stated the
following: .

Theorem 1 (de Franchis) (a) For a fired compact Riemann surface Y of genus
> 1, the number of nonconstant holomorphic maps X — Y is finite.

(b) There are only finitely many compact Riemann surfaces Y; of genus > 1 which
admit a nonconstant holomorphic map from X.

The second statement (b) is often attributed to Severi. After knowing the finiteness of
maps, we may ask if there exists a upper bound depending only on some topological
invariant, for example, the genus g. Related to the statement (a), the author [4]
showed that the bound is smaller than (cg)? for some constant c.

Now, we consider a bound for holomorphic maps when Y is not fixed, that is, we
estimate the number of all nonconstant holomorphic maps from X to other Riemann
surfaces. Let f; : X — Y; be nonconstant holomorphic maps for ¢ = 1,2. We say that
f1 and f; are isomorphic if and only if there is a conformal map h : Y7 — Y5 such
that ho f; = f,. Let Z,(X) denote the set of all isomorphic classes of nonconstant
holomorphic maps into compact Riemann surfaces of genus v > 1, and denote Z(X) =
Ugsys1 Zy(X). By the theorem of de Franchis, we see that §Z(X) is finite. In 1983
Howard and Sommese [2] first showed that there is a bound on #Z(X) depending only
on g.

Let
M(g) = maxx {§Z(X)},
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where the maximum is taken over all Riemann surfaces X of genus g. It is an in-
teresting problem to determine the exact rate of growth of M(g). The author [5]
showed

M(g) < (cg)®

for some constant ¢ and it was the best upper bound depending only on g.

In this note we will improve the bound and show
M(g) < (cg)*
for some constant c.

On the other hand, Kani [3] also constructed a sequence of Riemann surfaces of genara
g1 <9g2<...<gp<...,such that the number of isomorphic classes of nonconstant
holomorphic maps of each Riemann surface is larger than

exp(c(log(gn))?) for some constant ¢ > 0 (independent of n). It implies that M(g)
cannot be bounded by any polynomial in g.

2 The bound

In the following, we will refer to [5] for all of the notation and lemmata. In [5],
the leading term of the upper bound was depend on Lemma 3 (p.3060) and the
Proposition (p.3062). We improve them as follows.

Lemma 3’ Let f; : X — Y; be a holomorphic map of degree d, and f, : J(X) — J(Y7)
be the homomorphism induced by fi. Take an arbitrary u € *f1(J(Y1)). Then, the
number of isomorphic classes of holomorphic maps f; : X — Y; of degree d such

that the dual map *f; : J (Y) — J(X ) of the induced homomorphism f; satisfies u €
t5,(3(Y3)) 45 at most ( 2gd 2 ) x ( 49d—4 )

In [5], the conclusion was ( 29 —2 ) x (2g—1)¢ which is now replaced by ( 2gd_ 2 ) x

d
4g — 4
d .
Proof. The assumption means that there exist holomorphic differentials ¢; on Y
and ¢; on Y; such that their pull backs satisfy fi.¢1 = fic¢:.
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Then, for a zero po; of ¢;, the number of possible f;*(po1) (counting multiplicities)

29 —2 ) After determining ¢ = fi.¢; and fi!(po1), we

that can occur is at most ( d

49 —
d

can show that there are at most 4 ) possible isomorphic classes of holomor-

phic maps of degree d as follows.

Let f; : X — Y] be holomorphic maps (i = 1,2). Suppose that there are holomorphic
differentials ¢; and ¢, on Y; and Y3, respectively, with fi.¢1 = fo.p2, and there
is a zero po; (resp. pos) of ¢, (resp. ¢,) satisfying fi'(po1) = fo Y(pg2). We put
¢ = fr1 = fautha.

Let oo € fi'(po1) = f; (poz). Take a sufficiently small neighbourhood Up, (resp.
Upo;) Of Do (resp. po;) so that there is no zero of ¢ (resp. ¢;) on Us,

(resp. Up,,) except Po (resp. po;), and that fi(Us,) C Upy, (2 = 1,2). We may take a
local coordinate z (resp. z;) on Up, (resp. Up,,;) such that 2(Ho) = 0 (resp. zi(poi) = 0)
and the differential is written as

¢ =2"dz (resp. ¢; = 2]"dz;).

Recalling that f;l(po1) = f5'(poz2), We see n; = ny and we will denote it by n for
brevity. We take two real lines 7; : [0,a) — Uy, with v;(t) = t € R in the local
coordinates z; (¢ = 1,2). For an arbitrary p € U, \ {Bo},

P f1(9) f2(P)
/ 2Mdz = / - 2ldzn = / z3dz,
0 0 0

hence the number of possible positions for the set of lifts of v, (thus also those of ys)
in Uj, is at most m + 1. Accordingly, the total number of possible positions for the

set of all the lifts of ~y; is at most ( 49 c—i_ 4 )

Let {fo;}.y = fi7'(®o1)(= fo~'(po2)). Suppose that, for every fo; € f17 (por),
Uso; N f1 (1) = Upo; N f2(12), that is, the set of lifts of +; coincide with that of 7a.
Then, it is easy to see that we can define a local conformal map h : fi1(Us,,) — f2(Us,;)
such that h o fllU,— Uso; = fgluj Uso; * We want to extend it to a global conformal map
from Y; to Yz, and actually it is possible. Indeed, for an arbitrary point p € Yy, we
will draw a curve ¢ from pg; to p avoiding branch points of f; other than possibly at
po1 and p. Let & and & be two lifts of ¢ by fi. Then, we see that fo(¢) = fo(¢) since
ho fy is well-defined near po; (j = 1,..., N). It implies that h is well-defined on Y;.
It is easy to see that h is invertible. []

Proposition’ Let f; : X — Y; be nonconstant holomorphic maps, and F; be the
rational representations of the endomorphisms associated with f; (i = 1,2). Suppose
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that, for some k < 2g,

{ tFia; = ... = "Frakg-1 =0,

t
tFaay = ... = "Foax_1 =0,

and that there exists some integer | > 2g — 2 such that *Frax = *Foar (mod. 1) holds.
Then t]-'lak = tj:zak.

If, in addition, Y, and Y, are of the same genus vy, then the assumption | > 2g — 2
can be replaced by | > (29 — 2)/(v — 1).

In [5], we assumed [ > (2g — 2)2. But in Proposition’, we only need | > 2g — 2.

Proof. Let D = F, — F,. Then, D is the rational representation of some en-
domorphism of J(X). By an easy calculation, we see 'D’ = *D. We note that

tD'z, ay,...,ar—; are linearly independent for any vector z € R?9 if tD’ z is not zero.
Indeed, using Lemma 1 in [5], we see (D' z,a;)x = (z,*Daj)x =0forj=1,...,k~1
by the assumption. Thus, *D’z, ay,...,ax—1 are linearly independent. By the as-

sumption, ‘D'ay = 0(mod. !) thus the vector *D’a; can be written in the form
tD' ar =1l x n, where n € Z%9. Thus, if it is not 0, then

||tDak|| Z l/\k
We also have
[|*Da|| < [|*Frael| + [|*Faae|l < dillakl] + dallaxll,

where d; is the degree of f; (¢ = 1, 2). The first inequality is just the triangle inequality,
and the second one is obtained by Lemma 2.

Therefore, we have
|I*Dax|| < |laxl|(d1 +d2) = (d1 + d2) Ak
By Riemann-Hurwitz formula, d; < g — 1 and we see that !Da, must be 0 since

[>2(g—1).

A little modification of above argument lead us to the conclusion for the case Y; and
Y, are of the same genus ~v. U

‘Now we will get the improved bound. Just the same consideration as in[5, p.3063],
we have

ﬁIv(X)<Z(2g—2~r+1)><{(2g_12)+1}29><(29;2>X (4g;4>'

d>1 T
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Observing ( 7:;’ ) < 2™, we see that the right hand side is smaller than

29 —2
) 1P 27 297 (29 = 27 4 1)(g = 1)/ (1 - D).

{(
Summing up for all possible v, we get

M(g) < (cg)*

for some constant c.
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