Singular domains in higher dimensional complex dynamics

Yûsuke Okuyama
Department of Comprehensive Sciences,
Kyoto Institute of Technology, Kyoto 606-8585 JAPAN
email; okuyama@kit.ac.jp

This article aims to extend the fundamental Cremer theorem from the iteration theory of one complex variable to the setting of higher-dimensional dynamics over more general valued fields, not necessarily C. This article is an announcement of the preprint [Oku2].

Projective spaces over valued fields. Let K be a commutative algebraically closed field which is complete and nondiscrete with respect to a non-trivial absolute value (or valuation) $|\cdot|$. This $|\cdot|$ is said to be non-Archimedean if $\forall z, \forall w \in K, |z - w| \leq \max\{|z|, |w|\}$. Otherwise, $|\cdot|$ is said to be Archimedean and K is then topologically isomorphic to \mathbb{C} (with Hermitian norm). We extend $|\cdot|$ to $K^\ell (\ell \in \mathbb{N})$ as the maximum norm $|Z| = |Z|_\ell = \max_{j=1,\ldots,\ell} |z_j|$ for $Z = (z_1, \ldots, z_\ell)$. Let $\pi : K^{n+1} \setminus \{O\} \rightarrow \mathbb{P}^n(K)$ be the canonical projection and set $\ell(n) \in \mathbb{N}$ so that $\wedge^2 K^{n+1} \cong K^{\ell(n)}$. The chordal distance $[\cdot, \cdot]$ on $\mathbb{P}^n(K)$ is defined as

$$[z, w] := \frac{|Z \wedge W|_{\ell(n)}}{|Z|_{n+1}|W|_{n+1}},$$

where $Z \in \pi^{-1}(z), W \in \pi^{-1}(w)$ (cf. [KS]). For $z_0 \in \mathbb{P}^n(K)$ and $r > 0$, we consider the ball

$$\overline{B}(z_0, r) := \{z \in \mathbb{P}^n(K); [z, z_0] \leq r\}.$$

Nonlinearity of morphisms. Let $f : \mathbb{P}^n(K) \rightarrow \mathbb{P}^n(K)$ be a (finite) morphism, i.e., there is a homogeneous polynomial map $F : K^{n+1} \rightarrow K^{n+1}$ over K, which is called a lift of f, such that $F^{-1}(O) = \{O\}$ and satisfies

$$\pi \circ F = f \circ \pi.$$
The degree \(d = \deg f \) is that of \(F \) as homogeneous polynomial map. As in the case of \(K = \mathbb{C} \), the Fatou set \(F(f) \) is the largest open set at each point of which the family \(\{ f^k; k \in \mathbb{N} \} \) is equicontinuous.

The Julia set \(J(f) \) is defined by \(\mathbb{P}^n(K) \setminus F(f) \). In non-Archimedean case, \(J(f) \) may be empty even if \(d \geq 2 \). One of the main results is

Theorem 1 (nonlinearity of morphisms). Let \(f : \mathbb{P}^n(K) \to \mathbb{P}^n(K) \) be a morphism of degree \(d \geq 1 \). If there are a ball \(\overline{B}(z_0, r) \subset \mathbb{P}^n(K) \) and a morphism \(g : \mathbb{P}^n(K) \to \mathbb{P}^n(K) \) such that

\[
\lim_{k \to \infty} \frac{1}{d^k} \log \sup_{\overline{B}(z_0, r)} [f^k, g] = -\infty,
\]

then either \(f \) is linear or \(J(f) = \emptyset \).

We give a few applications of Theorem 1.

Analytic linearization over a field \(K \). Consider the \(K \)-algebra

\[
\mathcal{O}_k \cong K \{ X_1, \ldots, X_k \} = \{ f = \sum c_I X^I; \lim_{|I| \to \infty} |c_I|^{1/|I|} =: r_f^{-1} < \infty \}
\]

of all germs of analytic functions at the origin \(O \in K^k \). Here \(I = (i_1, \ldots, i_k) \in \mathbb{Z}_{\geq 0}^k \) is a multi-index, \(X_1^{i_1} \cdots X_k^{i_k} \) is denoted by \(X^I \) and we put \(|I| := i_1 + \cdots + i_k \). For germ of analytic map \(\phi = (f_1, \ldots, f_n) \in (\mathcal{O}_n)^n \), we identify the linear part of \(\phi - \phi(O) \) at \(O \) with

\[
A_\phi := \left(\frac{\partial f_i}{\partial X_j}(O) \right)_{i,j=1,\ldots,n} \in M(n, K) \cong \text{End}(K^n).
\]

We also denote the operator norm on \(M(n, K) \) by \(| \cdot | \).

A germ \(\phi = (f_1, \ldots, f_n) \in (\mathcal{O}_n)^n \) fixing \(O \) is (analytically) linearizable if there is \(H \in (\mathcal{O}_n)^n \) fixing \(O \) such that \(A_H = I_n \) (unit matrix) and \(H \) satisfies the Schröder (or Poincaré) equation

\[
\phi \circ H = H \circ A_\phi.
\]

From Siegel and Sternberg ([Sie], [Ste]) and its non-Archimedean version by Herman-Yoccoz [HY], \(\phi \) is linearizable if \(A_\phi \) is diagonalizable and its eigenvalues \(\lambda_1, \ldots, \lambda_n \) satisfy the Diophantine condition: there exist \(C > 0 \) and \(\beta \geq 0 \) such that for every \(I \in \mathbb{Z}_{\geq 0}^n \) (multi-index) with \(|I| \geq 1 \),

\[
|(\lambda_1, \ldots, \lambda_n)^I - 1| \geq \frac{C}{|I|^\beta}.
\]
On the other hand, consider an inverse of a coordinate chart
\[\sigma : K^n \ni (z_1, \ldots, z_n) \mapsto (1 : z_1 : \cdots : z_n) \in \mathbb{P}^n(K). \]
When a morphism \(f : \mathbb{P}^n(K) \to \mathbb{P}^n(K) \) fixes a point \(z_0 \in \mathbb{P}^n(K) \), assuming that \(z_0 = \sigma(O) \) without loss of generality, we say \(f \) to be \textit{linearizable} at \(z_0 \) if the germ \(\phi_f \in (\mathcal{O}_n)^n \) of the analytic map \(\sigma^{-1} \circ f \circ \sigma : \mathbb{P}^n(O, r) \to K^n \) is linearizable. The following is regarded as a higher dimensional version of the Cremer condition [Cre, p. 157].

Theorem 2 (nonresonance). Let \(f : \mathbb{P}^n(K) \to \mathbb{P}^n(K) \) be a morphism of degree \(d \geq 2 \) which fixes \(z_0 \in \mathbb{P}^n(K) \), and suppose that \(J(f) \neq \emptyset \). If \(f \) is linearizable at \(z_0 \) and \(|A_{\phi_f}| \leq 1 \), then
\[\liminf_{k \to \infty} \frac{1}{d^k} \log |(A_{\phi_f})^k - I_n| > -\infty. \]
If in addition \(A_{\phi_f} \) is diagonalizable, then its eigenvalues \(\lambda_1, \ldots, \lambda_n \) satisfy
\[\liminf_{k \to \infty} \frac{1}{d^k} \log \max_{j=1,\ldots,n} |\lambda_j^k - 1| > -\infty. \]

Singular domain over the field \(\mathbb{C} \). Let \(f : \mathbb{P}^n = \mathbb{P}^n(\mathbb{C}) \to \mathbb{P}^n \) be a morphism, which is now holomorphic, of degree \(d \geq 2 \).

Each component \(D \) of \(F(f) \), which is called a \textit{Fatou component} of \(f \), is Stein and Kobayashi hyperbolic [Ued1]. In particular, \(D \) is holomorphically separable and the biholomorphic automorphisms \(\text{Aut}(D) \) is a Lie group. When there is a sequence \((f^{kj}) \subset \{f^k\} \) which converges to \(\text{Id}_D \) locally uniformly on \(D \), we have \(f^p|D = D \) for some \(p \in \mathbb{N} \) and moreover \(f^q|D \in \text{Aut}(D) \). Following Fatou [Fat, §28], we call such \(D \) a \textit{singular domain} (un domaine singulier) of \(f \). A singular domain is also called a \textit{Siegel domain} or rotation domain. When \(n = 1 \), a singular domain \(D \) is either a Siegel disk or an Herman ring. When \(n \geq 2 \), a partial analogue is known: let \(G \) be the closed subgroup generated by \(f^p|D \) in \(\text{Aut}(D) \), and \(G_0 \) the component of \(G \) containing \(\text{Id}_D \). Then there is a Lie group isomorphism \(G_0 \to \mathbb{T}^s \) for some \(s \in [1, n] \), which maps \(f^q|D \) for some \(q \in \mathbb{N} \) to \((e^{2\pi i \alpha_1}, \ldots, e^{2\pi i \alpha_s}) \) for some \(\alpha_1, \ldots, \alpha_s \in \mathbb{R} \setminus \mathbb{Q} \) (see [FS1], [Ued2], [Mih]). In the maximal case of \(s = n \), we say the singular domain \(D \) to be of \textit{maximal type}.

A singular domain \(D \) of maximal type is exactly a generalization of one-dimensional Siegel disks and Herman rings: setting \(\lambda_j := e^{2\pi i \alpha_j} \) (\(j = 1, \ldots, n \)), we have by [BBD, Theorem 1] a biholomorphic homeomorphism \(\Phi \) from a Reinhardt domain \(U \subset \mathbb{C}^n \) to \(D \) such that the Schröder equation
\[f^q(\Phi(w_1, \ldots, w_n)) = \Phi(\lambda_1 w_1, \ldots, \lambda_n w_n) \quad \text{on} \quad U \]
holds.
Theorem 3 (a priori bound). Let $f : \mathbb{P}^n \to \mathbb{P}^n$ be a holomorphic map of degree $d \geq 2$. If a singular domain D of f is of maximal type, then under the same notation as in the above, D satisfies

$$\lim_{k \to \infty} \frac{1}{d^k} \log \max_{j=1, \ldots, n} |\lambda_j^k - 1| = 0.$$

In the case of $n = 1$, every singular domain of f is of maximal type. In this case, Theorem 3 is essentially proved in [FS2, p. 169] by pluripotential theory, and in [Oku1, Main Theorem 3] by a Nevanlinna theoretical argument. Both proofs contain some one-dimensional arguments which are not easily extended to higher dimensions. Our proof of Theorem 3 is based on a proof of Theorem 1, which dispenses with pluripotential theory.

Finally, we give a vanishing result on the Valiron deficiency

$$\delta_V(\text{Id}_{\mathbb{P}^n}, (f^k)) := \limsup_{k \to \infty} \frac{1}{d^k} \int_{\mathbb{P}^n} \log \frac{1}{[f^k, \text{Id}]} d\omega_{FS}^n$$

(cf. [DO]). Here ω_{FS} denotes the Fubini-Study Kähler form on \mathbb{P}^n.

Theorem 4 (a vanishing theorem). Let $f : \mathbb{P}^n \to \mathbb{P}^n$ be a holomorphic map of degree ≥ 2. If every singular domain of f is of maximal type, then

$$\delta_V(\text{Id}_{\mathbb{P}^n}, (f^k)) = 0.$$

We expect that the assertion of Theorem 4 still remains true with no maximality assumption on singular domains.

References

