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Abstract

A global structure of the sixth Painlev\’e equation is described by its nonlinear mon-
odromy map along a loop, and it is interesting to investigate its dynamical properties
around classical special solutions, that is, around Gauss $hyperg\infty metric$ function solu-
tions. In a generic situation one sees that the monodromy map admits a horseshoe and
thus exhibits a chaotic behavior in any small neighborhood of the classical solutions.

1 Introduction
This is a report of a work [11] in progress conceming the monodromy of the sixth Painlev\’e
equation and the associated dynamical system created by a monodromy map.

In general, a total understanding of the Painlev\’e equation would be achieved by the
scheme in Table 1, in which some typical issues in various scales are listed, from microlocal
to macroscopic levels. Recent works by the author and his coworkers are mainly concerned
with global-txmacroscopic structures of the Painlev\’e equation. Usually, some properties of
this equation have been studied from the viewpoint of isomonodromic deformations, but this
approach is often too local in many respects. One should take more global points of view.

A global structure of the Painlev\’e equation is represented by the nonlinear monodromy
map (of a single turn along a given loop). A clear picture of this part is made by estab-
lishing a very precise Riemann-Hilbert correspondence based on a suitable moduli theory in
algebraic geometry. An even more global (namely, macroscopic) structure of the equation
is represented by the iterations of the monodromy map, that is, by infinitely many turns of
the loop. Dynamical systems theory and ergodic theory come into context at this stage.

In the linear case of Gauss hypergeometric equation, the monodromy map of a single
turn and its iterations of infinitely many tums make no essential difference, since the former
is only a linear map and the dominant effect of the latter is controlled by the spectral data
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Table 1: A total understanding of Painlev\’e equation

of the former, namely, by the largest eigenvalue and its eigenspace. In the nonlinear case of
Painlev\’e equation, there exists a large gap between the single tum and the infinitely many
tums, due to the ”nonlinear effect” of Painlev\’e equation. The analysis of the latter requires
advanced methods from dynamical systems theory and ergodic theory. But this leads to the
new feature of a chaotic dynamical system, which never exists in Gauss equation and which
makes the global structure of Painlev\’e equation much more interesting than that of Gauss
equation. We are interested in such an aspect of Painlev\’e equation.

The main focus of this paper is on a chaotic nature of Painlev\’e equation around classical
special solutions, that is, around Gauss hypergeometric function solutions (or in other words,
Riccati solutions). The Riccati solutions are parametrized by a curve called the Riccati
curve. In this paper we announce the following result: In any small neighborhood of the
Riccati curve the nonlinear monodromy map admits a Smale horseshoe and thus exhibits a
very complicated dynamical behavior, for almost all loops and for almost all parameters for
which Painlev\’e equation admits Riccati solutions. See Result 4 for the precise statement.

2 The Sixth Painlev\’e Equation
The sixth Painlev\’e equation $P_{VI}(\kappa)$ is a Hamiltonian system

$\frac{dq}{dz}=\frac{\partial H(\kappa)}{\partial p}$ , $\frac{dp}{dz}=-\frac{\partial H(\kappa)}{\partial q}$ , (1)

with a complex time variable $z\in Z:=\mathbb{P}^{1}-\{0,1, \infty\}$ and unknown functions $q=q(z)$ and
$p=p(z)$ , depending on complex parameters $\kappa$ in the four-dimensional affine space

$\mathcal{K}:=\{\kappa=(\kappa_{0}, \kappa_{1}, \kappa_{2_{1}}\kappa_{3}, \kappa_{4})\in \mathbb{C}_{\kappa}^{5}:2\kappa_{0}+\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}=1\}$ ,

where the Hamiltonian $H(\kappa)=H(q,p, z;\kappa)$ is given by

$z(z-1)H(\kappa)=(q_{0}q_{z}q_{1})p^{2}-\{\kappa_{1}q_{1}q_{z}+(\kappa_{2}-1)q_{0}q_{1}+\kappa_{3}q_{0}q_{z}\}p+\kappa_{0}(\kappa_{0}+\kappa_{4})q_{z}$,

with $q_{\nu}$ $:=q-\nu$ for $\nu\in\{0, z, 1\}$ . Note that $P_{VI}(\kappa)$ fails to make sense at $z=0,1,$ $\infty$ . These
points are called the fixed singular points of the Painlev\’e equation $P_{VI}(\kappa)$ .
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Figure 1: Monodromy map $\gamma_{*}:$ $\mathcal{M}_{z}(\kappa)O$ along a loop $\gamma\in\pi_{1}(Z, z)$ .

3 Moduli Theory
Let $\mathcal{M}_{z}(\kappa)$ be the set of all meromorphic solution germs to $P_{VI}(\kappa)$ at a base point $z\in Z$ .
The set $\mathcal{M}_{z}(\kappa)$ can be realized as the moduli space of (certain) stable parabolic connections,
so that it can be equiped with the structure of a smooth quasi-projective rational complex
surface [6, 7, 8], where a stable parabolic connection is a rank-two vector bundle over $\mathbb{P}^{1}$

together with a FMchsian connection having four regular singular points and a parabolic
structure that satisfies a sort of stability condition in geometric invariant theory.

Moreover there exists a natural compactification of the moduli space

$\mathcal{M}_{z}(\kappa)arrow\overline{\mathcal{M}}_{z}(\kappa)$ ,

where $\overline{\mathcal{M}}_{z}(\kappa)$ is the moduli space of stable parabolic phi-connections. Here, roughly speak-
ing, a stable parabolic phi-connection “V $=\phi\otimes d+A$” is a variant of stable parabolic
connection allowing a “matrix-valued Planck constant” $\phi$ , called a phi-field (that may be
degenerate or semi-classical). The compactified modulis space $\overline{\mathcal{M}}_{z}(\kappa)$ has a unique anti-
canonical effective divisor $\mathcal{Y}_{z}(\kappa)$ , which has the irreducible decomposition

$\mathcal{Y}_{z}(\kappa)=2E_{0}+E_{1}+E_{2}+E_{3}+E_{4}$ . (2)

The objects on $\mathcal{Y}_{z}(\kappa)$ are exactly those with degenerate phi-field $\phi$ , where the coefficients of
the irreducible decomposition (2) stand for the ranks of degeneracy of $\phi$ . Thus one has

$\mathcal{M}_{z}(\kappa)=\overline{\mathcal{M}}_{z}(\kappa)-\mathcal{Y}_{z}(\kappa)$ ,

and there exists a holomorphic two-form $\omega_{z}(\kappa)$ on $\mathcal{M}_{z}(\kappa)$ , meromorphic on $\overline{\mathcal{M}}_{z}(\kappa)$ with
pole divisor $\mathcal{Y}_{z}(\kappa)$ . It is unique up to constant multiples and yields a natural holomorphic
area-form on the moduli space $\mathcal{M}_{z}(\kappa)$ .
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Figure 2: Three basic loops in $\pi_{1}(Z, z)$ , where $z_{1}=0,$ $z_{2}=1$ and $z_{3}=\infty$ .

4 Nonlinear Monodromy
It is known that $P_{VI}(\kappa)$ enjoys the Painlev\’e property, that is, any solution germ $Q\in \mathcal{M}_{z}(\kappa)$

can be continued analytically along any loop $\gamma\in\pi_{1}(Z, z)$ as a meromorphic function. Thanks
to this property, the monodromy map along the loop $\gamma$ ,

$\gamma_{*}:\mathcal{M}_{z}(\kappa)arrow \mathcal{M}_{z}(\kappa)$ , $Q\mapsto\gamma_{*}Q$ , (3)

$is$ well defined, where $\gamma_{*}Q$ is the result of the analytic continuation (see Figure 1). It is a
holomorphic automorphism of $\mathcal{M}_{z}(\kappa)$ preserving the holomorphic area-form $\omega_{z}(\kappa)$ .

We are interested in the dynamics of the monodromy map $\gamma_{*}:\mathcal{M}_{z}(\kappa)CJ$ along a given
loop $\gamma\in\pi_{1}(Z, z)$ . The fundamental group $\pi_{1}(Z, z)$ is represented as

$\pi_{1}(Z, z)=\{\gamma_{1},$ $\gamma_{2},\gamma_{3}|\gamma_{1}\gamma_{2}\gamma_{3}=1\rangle$ ,

where $\gamma_{i}(i=1,2,3)$ are the basic loops as in Figure 2, with $z_{1}=0,$ $z_{2}=1$ and $z_{3}=\infty$ .

Deflnition 1 A loop $\gamma\in\pi_{1}(Z, z)$ is said to be elementary if $\gamma$ is conjugate to the loop $\gamma_{i}^{m}$

for some $i\in\{1,2,3\}$ and $m\in Z$ , namely, if it makes a finite number of tums around only
one of the three fixed singular points. Otherwise, $\gamma$ is said to be non-elementary.

The dynamics along an elementary loop is relatively simpler [10, 13] and we are more inter-
ested in the dynamics along a non-elementary loop.

5 Riccati Curves
For particular parameters $\kappa$ of codimension one in $\mathcal{K}$ , there exist particular solutions to
$P_{VI}(\kappa)$ that can be expressed in terms of Gauss hypergeometric functions. They are known
as Riccati solutions, as they appear as solutions to the Riccati equation associated with a
Gauss equation. Let $\mathcal{E}_{z}(\kappa)$ be the set of all Riccati solution germs to $P_{VI}(\kappa)$ at the base point
$z$ . It is known that $\mathcal{E}_{z}(\kappa)$ is an algebraic set in $\mathcal{M}_{z}(\kappa)$ , each irreducible component of which
must be a (-2)-curve in $\mathcal{M}_{z}(\kappa)$ , that is, a curve isomorphic to $\mathbb{P}^{1}$ and of self-intersection
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Figure 3: Some strata and their abstract Dynkin types

number-2. Conversely, any (-2)-curve in $\mathcal{M}_{z}(\kappa)$ is an irreducible component of $\mathcal{E}_{z}(\kappa)$ . For
this reason a (-2)-curve is called a Riccati curve. We can think of the dual graph of $\mathcal{E}_{z}(\kappa)$

which encodes the intersection relations among the Riccati curves in $\mathcal{M}_{z}(\kappa)$ .

6 Affine Weyl Groups
The configuration of Riccati curves in $\mathcal{M}_{z}(\kappa)$ can most clearly be described in terms of some
affine Weyl group structures and an associated stratification on $\mathcal{K}$ (see Lemma 2). Consider
the (complex) inner product on $\mathcal{K}$ induced from the standard Euclidean inner product on $\mathbb{C}_{\kappa}^{4}$

through the forgetful isomorphism $\mathcal{K}arrow \mathbb{C}_{\kappa}^{4},$ $\kappa\mapsto(\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4})$ . For each $i\in\{0,1,2,3,4\}$

let $w_{i}$ : $\mathcal{K}0$ be the orthogonal reflection in the affine hyperplane $H_{i};=\{\kappa\in \mathcal{K} : \kappa_{i}=0\}$ .
These five reflections generate an affine Weyl group of type $D_{4}^{(1)}$ ,

$W(D_{4}^{(1)})=\{w_{0}, w_{1}, w_{2}, w_{3}, w_{4}\}\cap \mathcal{K}$ .
Denote the nodes of the Dynkin diagram $D_{4}^{(1)}$ by $\{0,1,2,3,4\}$ , where $0$ represents the

central node. The automorphism group of the Dynkin diagram $D_{4}^{(1)}$ is the symmetric group
$S_{4}$ of degree 4 permuting {1, 2, 3, 4} while fixing the central node $0$ . The semi-direct product

$W(F_{4}^{(1)}):=W(D_{4}^{(1)})xS_{4^{\Gamma}}\backslash \mathcal{K}$

is an affine Weyl group of type $F_{4}^{(1)}$ , which is the full symmetry group of Painlev\’e VI.

7 Stratification
There exists a natural stratification of $\mathcal{K}$ , namely, the one by proper subdiagrams of the
Dynkin diagram $D_{4}^{(1)}$ , which we shall now describe. Let $\mathcal{I}:=\{I\subset\{0,1,2,3,4\}\}/S_{4}$ be the
set of all proper subsets of $\{0,1,2,3,4\}$ , including the empty set $\emptyset$ , up to the action of $S_{4}$ .
Note that each element of $\mathcal{I}$ represents the abstract Dynkin type of a proper subdiagram of
$D_{4}^{(1)}$ . For each $[I]\in \mathcal{I}$ with $I\subset\{0,1,2,3,4\}$ we put

$\overline{\mathcal{K}}([I])$ $=$ the $W(F_{4}^{(1)})$-translates of the affine subspace $H_{I}$
$:= \bigcap_{i\in I}H_{i}$

,

$\mathcal{K}([I])$ $=$ Xlf
$([I])- \bigcup_{|J|=|t|+1}\overline{\mathcal{K}}([J])$

, where $|I|$ denotes the cardinality of $I$ ,
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Figure 4: Adjacency relations among the strata

The sets $\mathcal{K}(*)$ with $*\in \mathcal{I}$ define a stratification of $\mathcal{K}$ . For $I=\emptyset$ one has the big open stratum
$\mathcal{K}(\emptyset)$ and some other strata are given in Figure 3. The adjacency relations among the strata
are depicted in Figure 4, where $*arrow**$ indicates that $\mathcal{K}(**)$ is in the closure of $\mathcal{K}(*)$ .
Lemma 2 If $\kappa\in \mathcal{K}(*)with*\in \mathcal{I}$ , then the dual graph of $\mathcal{E}_{z}(\kappa)\subset \mathcal{M}_{z}(\kappa)$ is the Dynkin
graph of $type*$ . In particular $\mathcal{M}_{z}(\kappa)$ contains no Riccati curve precisely when $\kappa\in \mathcal{K}(\emptyset)$ .

8 Dynamics around a Riccati Curve
Assume that $\kappa\in \mathcal{K}(A_{1})$ for simplicity. Recall that $H_{0}$ is the hyperplane in $\mathcal{K}$ defined by the
equation $\kappa_{0}=0$ , namely, by $\kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}=1$ . Let $H_{0}^{x}$ denote the set of all points lying
on $H_{0}$ but not on any other $D_{4}^{(1)}$ reflection hyperplane, that is,

$\kappa_{i}=m$ , $\kappa_{1}\pm\kappa_{2}\pm\kappa_{3}\pm\kappa_{4}=2m+1$ $(i\in\{1,2,3,4\}, m\in \mathbb{Z})$ .
Then any point $\kappa\in \mathcal{K}(A_{1})$ can be sent to a point in $H_{0}^{x}$ by applying a suitable transformation
in $W(D_{4}^{(1)})$ . Thus we may assume that $\kappa\in H_{0}^{x}$ from the beginning.

If $\kappa\in H_{0}^{x}$ then $\mathcal{M}_{z}(\kappa)$ contains a unique Riccati curve $\mathcal{E}_{z}(\kappa)\cong \mathbb{P}^{1}$ . The Riccati solutions
paramatrized by $\mathcal{E}_{z}(\kappa)$ are described as follows. The second equation of system (1) has the
null solution $p\equiv 0$ . Substituting this into the first equation yields the Riccati equation

$z(z-1)q’+\kappa_{1}q_{1}q_{z}+(\kappa_{2}-1)q_{0}q_{1}+\kappa_{3}q_{0}q_{z}=0$,

which is linearized to the Gauss hypergeometric equation

$z(1-z)f”+\{(1-\kappa_{3}-\kappa_{4})-(\kappa_{2}-\kappa_{4}+1)z\}f’+\kappa_{2}\kappa_{4}f=0$ , (4)

via the change of dependent variable $q= \frac{z(1-z)d}{\kappa_{4}dz}\log\{(1-z)^{-\kappa 4}f\}$ . The Riccati curve
$\mathcal{E}_{z}(\kappa)$ is just the projective space (line) associated with the solution space of equation (4).

Given a loop $\gamma\in\pi_{1}(Z, z)$ , the nonlinear monodromy map $\gamma_{*}:$ $\mathcal{M}_{z}(\kappa)O$ restricts to an
automorphism $\gamma_{*}:$ $\mathcal{E}_{z}(\kappa)O$ of the Riccati curve. It is just a M\"obius transformation, arising
as the projective monodromy map along $\gamma$ of the hypergeometric equation (4), and thus the
dynamics on $\mathcal{E}_{z}(\kappa)$ is very simple. Now the following problem naturally occurs to us.

Problem 3 How does the dynamics look like in a small neighborhood of $\mathcal{E}_{z}(\kappa)$ ?
As to this problem, we will see that it is very complicated, actually, chaotic in any small
neighborhood of $\mathcal{E}_{z}(\kappa)$ for almost all parameters $\kappa$ , provided that $\gamma$ is a non-elementary loop.
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Figure 5: Horseshoe: Smale’s geometric model (left) and homoclinic intersection (right).

9 Smale Horseshoe
A homeomorphism $f$ : $MO$ of a topological space $M$ is said to admit a horseshoe if there
exist an $f$-invariant Cantor subset $J\subset M$ and a homeomorphism $Jarrow\Sigma$ that transfers
$f$ : J $O$ to the standard symbolic dynamics $\sigma$ : $\Sigma O$ , where $\Sigma$ $:=\{0,1\}^{Z}$ is the topological
space of bi-infinite sequences of $0$ ’s and l’s, and $\sigma$ is the shift map on $\Sigma$ . This abstract sense
of horseshoe can be realized by Smale’s famous geometric model of a horseshoe-like figure
(see Figure 5, left) [19, 18]. The existence of a horseshoe gives evidence of chaos such as
the positivity of topological entropy and the exponential growth of the number of periodic
points as the period tends to infinity, and so on.

When $f$ : $MO$ is a diffeomorphism of a differentiable manifold $M$ , the existence of a
horseshoe is usually established through the existence of a transverse homoclinic intersection
of stable and unstable manifolds (see Figure 5, right) [20, 18]. This scenario will be applied
to the Painlev\’e dynamics in a neighborhood of a Riccati curve.

10 Main Result
Let $\gamma\in\pi_{1}(Z, z)$ be a non-elementary loop and assume that $\kappa\in H_{0}^{x}$ as in Section 8. If the
M\"obius transformation $\gamma_{*}$ : $\mathcal{E}_{z}(\kappa)O$ is hyperbolic, then it admits exactly two flxed points,
one of which, say $P$ , is expanding at dilation rate $\mu=\mu(\gamma)$ and the other, say $Q$ , is attracting
at dilation rate $\mu^{-1}$ for some $|\mu|>1$ . Notice that $P$ and $Q$ are saddle fixed points at dilation
rates $\mu^{\pm 1}$ of the map $\gamma_{*}:$ $\mathcal{M}_{z}(\kappa)O$ , since this map is area-preserving with respect to the area
form $\omega_{z}(\kappa)$ . Thus one can speak of the stable curve $W^{s}$ through $P$ and the unstable curve
$W^{u}$ through $Q$ of the map $\gamma_{*}:\mathcal{M}_{z}(\kappa)$ O. Here we remark that $\mathcal{E}_{z}(\kappa)$ is the unstable curve
through $P$ and at the same time the stable curve through $Q$ . In order to assure the presence
of a horseshoe, it is important to as$k$ when $W^{\epsilon}$ and $W$“ have a transverse intersection (see
Figure 6). An answer to this question is given by the following.

Result 4 For any non-elementary loop $\gamma\in\pi_{1}(Z, z)$ there exists a nontrivial entire function
$\phi_{\gamma}$ : $H_{0}arrow \mathbb{C}$ such that if $\kappa\in H_{0}^{x}\cap\phi_{\gamma}^{-1}(\mathbb{C}\backslash [-1,1])$ , then

(1) the Mobius transformation $\gamma_{*}:$ $\mathcal{E}_{z}(\kappa)O$ is hyperbolic;
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Figure 6: transverse intersection of the stable and unstable curves

(2) the stable and unstable curves $W^{\theta}$ and $W^{u}$ have a tmnsverse intersection; and
(3) there exists an $N\in N$ such that $\gamma_{*}^{N}$ : $\mathcal{M}_{z}(\kappa)O$ admits a Smale horseshoe in any small

neighborhood of the Riccati curve $\mathcal{E}_{z}(\kappa)_{f}$ where $N$ depends on the neighborhood chosen.
Here $\phi_{\gamma}$ being nontrivial means that it is not a constant function urith value in [-1, 1]. The
function $\phi_{\gamma}(\kappa)$ is computable once the loop $\gamma$ is given explicitly.

This result may fail if $\kappa\in H_{0}^{x}\cap\phi_{\gamma}^{-1}([-1,1])$ , but this exceptional subset is very tiny,
being at most of real codimension one in $H_{0}^{x}$ , since $\phi_{\gamma}$ is a nontrivial entire function. In this
sense the result holds for almost all parameters $\kappa\in H_{0}^{x}$ .

Example 5 We illustrate the function $\phi_{\gamma}(\kappa)$ for two loops.

(1) An eight-figured loop $e_{ij}$ is a loop conjugate to the loop $\gamma_{i}\gamma_{j}^{-1}$ for a cyclic permutation
$(i,j, k)$ of (1, 2, 3) as in Figure 7 (left). If $\gamma$ is an eight-figured loop $t_{ij}$ , then

$\phi_{\gamma}(\kappa)=\cos\pi(\kappa_{i}-\kappa_{k})-\cos\pi(\kappa_{i}+\kappa_{k})-\cos\pi(\kappa_{j}-\kappa_{4})$ .
(2) A Pochhammer loop $\wp_{ij}$ is a loop conjugate to $[\gamma_{i}, \gamma_{j}^{-1}]=\gamma_{i}\gamma_{j}^{-1}\gamma_{i}^{-1}\gamma_{j}$ for a cyclic

permutation $(i,j, k)$ of (1, 2, 3) as in Figure 7 (right). If $\gamma$ is a Pochhammer loop $\wp_{ij}$ ,

$\phi_{\gamma}(\kappa)=2-cos2\pi\kappa_{1}-\cos 2\pi\kappa_{2}-\cos 2\pi\kappa_{3}-\cos 2\pi\kappa_{4}$

$+\cos 2\pi(\kappa_{1}+\kappa_{2})+\cos 2\pi(\kappa_{2}+\kappa_{3})+\cos 2\pi(\kappa_{3}+\kappa_{1})$.

Figure 7: An eight-figured loop (left) and a Pochhammer loop (right).
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Figure 8: The Riemann-Hilbert correspondence in the parameter level

So far we have restricted our attention to the stratum $\mathcal{K}(A_{1})$ for the $s$ake of simplicity.
There are similar results for the other strata. Result 4 will be shown in [11].

11 Riemann-Hilbert Correspondence
Result 4 is established, not directly on the moduli space $\mathcal{M}_{z}(\kappa)$ , but by passing to a character
variety $S(\theta)$ through the Riemann-Hilbert correspondence [6, 7, 8, 10],

RH$z,\kappa$ : $\mathcal{M}_{z}(\kappa)arrow S(\theta)$ , $Q\mapsto\rho$ , with $\theta=$ rh$(\kappa)$ . (5)

Here the character varieties for Painlev\’e VI can be realized as a four-parameter family
of complex affine cubic surfaces $S(\theta)$ parametrized by $\theta\in\Theta$ $:=\mathbb{C}_{\theta}^{4}$ and rh : $\mathcal{K}arrow\Theta$ is a
holomorphic map that is a branched $W(D_{4}^{(1)})$-covering ramifying along Wall (the union of all
reflection hyperplanes) and mapping it onto the discriminant locus $V$ $:=\{\theta\in\Theta : \Delta(\theta)=0\}$

of the cubics (see Figure 8). A fUndamental fact for the map (5) is the following.

Theorem 6 ([6, 7, 8]) If $\kappa\in \mathcal{K}(*)$ then the chamcter variety $S(\theta)$ unth $\theta=$ rh $(\kappa)$ has
simple singularities of Dynkin $type*and$ the Riemann-Hilbert comespondence (5) is a proper
$su\dot{\eta}ective$ holomorphic map that is an analytic minimal resolution of singularities.

Take an algebraic minimal desingularization $\varphi:\tilde{S}(\theta)arrow S(\theta)$ . Then the Riemann-Hilbert
correspondence (5) uniquely lifts to a biholomorphism $\overline{RH}_{z_{2}\kappa}$ : $\mathcal{M}_{z}(\kappa)arrow\tilde{S}(\theta)$ such that

$\mathcal{M}_{z}(\kappa)\underline{\overline{RH}_{z.narrow}}\tilde{S}(\theta)$

$\Vert$ $\downarrow\varphi$

$\mathcal{M}_{z}(\kappa)\underline{R}H_{l\hslash}-,arrow S(\theta)$

is commutative. The lifted Riemann-Hilbert correspondence $\overline{RH}_{z,\kappa}$ maps the Riccati lo-
cus $\mathcal{E}_{z}(\kappa)\subset \mathcal{M}_{z}(\kappa)$ isomorphically onto the exceptional set $\mathcal{E}(\theta)\subset\overline{S}(\theta)$ of the algebraic
resolution $\varphi$ . The cubic surface $S(\theta)$ has a natural area-form, that is, the Poincar\’e residue

$\omega(\theta)=\frac{dx_{1}\wedge dx_{2}\wedge dx_{3}}{d_{x}f(x,\theta)}$ ,
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where $x=(x_{1},x_{2}, x_{3})$ is the standard coordinates of $\mathbb{C}_{x}^{3}$ and $f(x, \theta)=0$ is the defining
equation of the surface $S(\underline{\theta})$ in $\mathbb{C}_{x}^{3}$ . The Poincar\’e residue $\omega(\theta)$ lifts to a holomorphic area-
form $\tilde{\omega}(\theta)$ $:=\varphi^{*}\omega(\theta)$ on $S(\theta)$ , with respect to which the biholomorphism RH$z_{1}\kappa$ is area-
preserving [9]. The monodromy map $\gamma_{*}:(\mathcal{M}_{z}(\kappa), \omega_{z}(\kappa))O$ is strictly conjugated to an
automorphism $\sigma$ : $(\tilde{S}(\theta),\tilde{\omega}(\theta))O$ , which in tum can be extended to a birational map on the
natural compactification of $\tilde{S}(\theta)$ . We then apply the ergodic theory of birational maps on
compact surfaces [1, 2, 5, 4] to the last map in order to establish our main result.

12 Ergodic Theory
Let $\gamma\in\pi_{1}(Z, z)$ be a non-elementary loop. For the monodromy map $\gamma_{*}:\mathcal{M}_{z}(\kappa)O$ the
“recurrent” dynamics takes place only away from infinity, where the vertical leaves $\mathcal{Y}_{z}(\kappa)$

are thought of as the points at infinity in $\mathcal{M}_{t}(\kappa)$ . Namely the non-wandering set $\Omega_{\gamma}(\kappa)$ of
$\gamma_{*}$ is compact in $\mathcal{M}_{z}(\kappa)$ . Under the interations of $\gamma_{*}$ , the trajectory of each initial point
$Q\in \mathcal{M}_{t}(\kappa)\backslash \Omega_{\gamma}(\kappa)$ tends to in$finity\mathcal{Y}_{z}(\kappa)$ very rapidly.

The topological entropy $h_{top}(\gamma)$ of the map $\gamma_{*}:\Omega_{\gamma}(\kappa)O$ is positive, being represented as

$h_{top}(\gamma)=\log\lambda(\gamma)$ , $\lambda(\gamma)\geq 3+2\sqrt{2}$ ,

where $\lambda(\gamma)$ is a number called the dynamical degree of $\gamma$ , which depends on $\gamma$ but is inde-
pendent of $\kappa$ . There exists a unique $\gamma_{*}$ -invariant probability measure $\mu_{\gamma}=\mu_{\gamma}(\kappa)$ , with its
support in $\Omega_{\gamma}(\kappa)$ , that is mixing, hyperbolic of saddle type, and of maximal entropy. There
are positive (1, 1)-currents $\mu_{\gamma}^{\pm}$ on $\mathcal{M}_{z}(\kappa)$ , called the stable and unstable currents, such that
$\gamma_{*}^{\pm 1}\mu_{\gamma}^{\pm}=\lambda(\gamma)\mu_{\gamma}^{\pm}$ and the probability measure $\mu_{\gamma}$ is given by the wedge product

$\mu_{\gamma}=\mu_{\gamma}^{+}\wedge\mu_{\overline{\gamma}}$ , (6)

where the currents $\mu_{\gamma}^{\pm}$ have continuous potentials so that the wedge product is well defined.
The $s$addle periodic points of $\gamma_{*}$ are dense in $supp\mu_{\gamma}$ and the measure is also represented as

$\mu_{\gamma}=\lim_{narrow\infty}\frac{1}{\lambda(\gamma)^{n}}\sum_{p}\delta_{p}$ (weak limit),

where the sum is taken over all saddle points of period $n$ and $\delta_{p}$ is the Dirac mass at $p$ .
Let $D^{s}\subset W^{\epsilon}$ be a stable disk centered at $P\in \mathcal{E}_{z}(\kappa)$ (see Figures 6 and 9). Similarly let

$D^{u}\subset W^{u}$ be an unstable disk centered at $Q\in \mathcal{E}_{z}(\kappa)$ . Then there exist positive constants
$c^{\pm}>0$ such that one has weak convergence of currents

$\lim_{narrow\infty}\frac{1}{\lambda(\gamma)^{n}}[\gamma_{*}^{\mp n}D^{s/u}]=c^{\pm}\mu_{\gamma}^{\pm}$ ,

where $[D]$ denotes the current of integration defined by $\langle[D],$ $v\rangle$ $:= \int_{D}v$ for a test form
$v$ . Thus the wedge product in (6) represents the geometric intersections of the stable and
unstable curves $W^{s/u}$ . Then some geometric structures of the invariant measure $\mu_{\gamma}$ lead to
the existence of a transverse intersection of $W^{\epsilon/u}$ .
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Figure 9: A stable disk $D^{8}$

13 Concluding Remark
There are two classes of classical special solutions to the sixth Painlev\’e equation; one is the
class of Riccati solutions discussed in this paper and the other is that of algebraic solutions
(see e.g. [12, 14, 17, 21]). Here a solution of the first class can be characterized in terms of
a compact one-dimensional algebraic subset (a curve) in $\mathcal{M}_{z}(\kappa)$ invariant by the nonlinear
monodromy map along every loop, while a solution of the second class can be characterized
by a compact zerodimensional algebraic subset (a set of finite points) enjoying the same
invariance property [10]. Perhaps the method in this paper could also be applied to a
solution of the second class in order to reveal the presence of chaos around it.

A closely related topic is the non-integrability test for a Hamiltonian system in terms
of differential Galois theory developed in [16], with an application to the second Painlev\’e
equation around a rational solution [15]. We hope that our dynamical approach would lead
to a deeper result as to the “complexity” of Painlev\’e equations.
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