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Abstract

Let Y be a smooth Calabi-Yau complete intersection in a weighted projective
space. We show that the space of quadratic invariants of the hypergeometric group
associated with the mirror manifold X; of Y in the sense of Batyrev and Borisov
is one-dimensional and spanned by the Gram matrix of a classical generator of the
derived category of coherent sheaves on Y with respect to the Euler form. This is
a part of collaboration with Kazushi Ueda.

1 Introduction
Let (go,-..,qn) and (d;, ..., d,) be sequences of positive integers such that
Q=@+ -+agv=di+ +d.

and consider a smooth complete intersection Y of degree (d,,...,d,) in the weighted
projective space P = P(qo, ..., qn). It is a Calabi-Yau manifold of dimension n = N —r >
1. The derived category D®coh P of coherent sheaves is known [2, 1] to have a full strong
exceptional collection

(&g = (Op, Op(1),...,0p(Q))-
Let (ﬁ)?zl be the full exceptional collection dual to (gi)};:Q so that

X(gn f:]) = o—i_jﬂ

where
X(€.F) = (~1)*dim Ext*(€, F),
k

is the Euler form.

A set {.7-',}?=1 of objects in a triangulated category D is said to be a classical generator
if D is the smallest subcategory containing {F;}%, which is closed under shifts, cones and
direct summands [5]. When D is the derived category D®cohY of coherent sheaves on
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Y, the set {?f}?_:l of restrictions F; of F; to Y is a classical generator by Kontsevich, as
explained in Seidel [18, Lemma 5.4].

The mirror of Y is identified by Batyrev and Borisov [3] as a toric complete intersection
whose affine part is given by

Xe={(xo.-- ,zn) € TV | fo(z) +t =0, fi(zx) +1=0,..., fu(zx)+ 1= 0}, (1)

where
fo(z) = 2Pl ... 2%

Ji(z) = Z Z;

€Sy

and

for 1 < k <r. Here
{0,1,...,.N} =85, 1I---UI8S,

is a partition of {0,1,..., N} into r disjoint subsets such that

dr = Z%‘-

i€Sk
The period integral o
z¥ ... dzy dz
I(t) = : N Awer A—2
&) /7csz0/\---/\dfr To Tn (2)

of the holomorphic volume form on X, for a middle-dimensional (vanishing) cycle v €
H,.(X:), a=(q0,q2,- - ,qv) and 1 = (1,1,--- , 1) satisfies the hypergeometric differential
equation

N q-—1 r  di
[H II @6 —a) =t TT ] (det: + b)] I=0. (3)

v=0 ag  k=1b=1

where 6, = téd'i- We remark that the submodule of H,(X;) consisting of its vanishing cycles
has rank Q. Define the hypergeometric group H(qo,...,qn; d1,...,d,) as the subgroup of
GL(Q,Z) generated by

00 ... 0 —Ag \
10 ... 0 —Ag,

ho= [0 1 0 —Ag-s (4)
00 1 -4

and

00 0 —Bg )
10 0 —Bg,

hi=10 1 0 —Bg-z|, (5)
0 0 1 -B )
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where .
[JO* = 1) = A9+ 42971 + 4,092 1. + Ag (6)
k=1

and
N
[JO® —1) = A2+ BiA9 + ByA®~2 + ... + By (7)
v=0

are characteristic polynomial of the monodromy at zero and infinitv. When the mon-
odromy representation of a Pochhammer hypergeometric equation is irreducible, Lev-
elt [15] shows that the monodromy group is conjugate to the hypergeometric group
(H(go,---,9n;d1,---,d,). Especially when the roots of the characteristic polynomial at
t = 0 and ¢ = oo are mutually distinct, the irreducibility of the monodromy is ensured
[4, Theorem 3.5]. Although the monodromy representation of (3) is reducible, we show
in section 2 that the monodromy group of (3) coincides with H(qo,...,qn;d1,. .., dr):

Theorem 1. For any sequences (di, - . .,d,) and (qo. . . ., qn) of positive integers such that
Q=q+ - -+gvn=d1+---+d,

and N —r > 1, the monodromy group of (3) is given by the hypergeometric group
H(qo,...,qn;dy,...,d;).

An element h € H(qq,-.-.,qn;d,- .., d,) acts naturally on the space of Q) x () matrices
by :
H(go,...,qn;d1,...,d;) D h: X — h-X-hT,

where hT is the transpose of h. We prove the following in sections 3 and 4:

Theorem 2. The space of matrices invariant under the action of H(qo,...,qn;d1,--.,dy)
is one-dimensional and spanned by the Gram matriz

ij=1
of the classical generator {F;}&, with respect to the Euler form.

This theorem is a variation of theorems of Horja {11, Theorem 4.9], which he attributes
to Kontsevich, and of Golyshev [9, §3.5]. Thc main diffcrence between their result and
ours is in the rank of the hypergeometric differential equation, which is Q in our case and
n+1 < Q in their case, that corresponds to the rank of the submodule of vanishing cycles
of X, that survive after its compactification.

2 Monodromy of hypergeometric equation

Let hy, h; and hy be the global monodromy matrix of the hypergeometric differential
equation (3) around the origin, one and infinity with respect to some basis of solutions.
Recall that a vector v € C9 is said to be cyclic with respect to h € GL(Q,C) if the
set {h*- v}3,! spans C2. The following lemma is used by Levelt [15] to compute the
monodromy of hypergeometric functions (see also Beukers and Heckman [4, Theorem
3.5)).
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Lemma 3. Assume that there exists a vector satisfying
hiv = hlv, i=0,1,...,Q — 2, (8)

which is cyclic with respect to hy. Then the monodromy group of (3) is isomorphic to
H(q07"'1QN;d1:---7dr)- :

Proof. The condition (8) shows that the action of hg and hZ! with respect to the basis
{hZv}25} of CX is given by

00 0

1 0 0 =x
01 0 x
00 ... 1 x

The last line is determined by the characteristic equations
det(A — hg) = A9 + AN 4 40972 .. 4 Ag
and
det(A — h!) = A% + BiA9" + B,A9"2 ... 4+ By,
O

Hence the proof of Theorem 1 is reduced to the following:

Proposition 4. There exists a vector v in the space of solutions of (3) which is cyclic
with respect to hy and satisfies (8).

The rest of this section is devoted to the proof of Proposition 4. The hypergeometric
differential equation (3) has regular singularities at t = 0,00 and A = [], ¢® / [The, di*.
To simplify notations, we introduce another variable z by ¢ = Az. Then the local exponents
are given by

-9—, k=1,....,r, b=1,...,d; at z = oo,
di
qﬁ’ v=1,...,N, a=0,...,q,—1 at z =0, and 9
v
0,1,2..Q-2 ”21 at z=1.
Let
1>p1>p2>--->pp=0
be the characteristic exponents of (3) at z = 0 so that
1 g —1
{p, o} = {0,—-,..., }
 0<r<N Qv qv
Let further
,-l’a=#{(QU7a) Pa—‘q'a': 0<a<qv_1’ 0<V<N}
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be the multiplicity of the exponent p, and put
eo = exp(2mvV —1pg). 1<a<p.

Introduce the matrices

(pl idy, +Jp,- 0 . 0
M, = O p2id,,, '+J,,2,_ - 0
K 0 0 - ppid,, '+J“p’_
(el id“l +Jm,— 0 cen 0
Eo = 0 €2idyy +Jyq - R 0
\ 0 0 .. epidy, ‘+Jup,—
where J; _ is a ¢ x ¢ matrix defined by
00 00
10 00 .
Ji-=101 0 0
00 . 10

As the two matrices e2"V=1M0 apnd Ej have the same Jordan normal form, we see easily
the following statement:

Corollary 5. There is a basis
X(2) = (X1(2),... Xq(2))
of solutions to (3) such that the monodromy around =z = 0 is given by
X(z) — X(2)- Ep.

Define o, by

1
o; = § Ho
a=1

fori=1,...,p. Here we remark that we have chosen the above basis in such a way that
z27P: X,,(2) were holomorphic at z = 0.

Lemma 6. X, (z) is singular at z =1 for any 1 <i <p.

Proof. Assume that X, (z) is holomorphic at z = 1. Since X,,(z) is a solution to (3),
its only possible singular points on C are z = 0 and 1, so that 277X, (z) in fact turns
out to be an entire function. Since (3) has a regular singularity at infinity, X,,(z) has at
most polynomial growth at infinity. This implies that 27# X,.(z) is a polynomial, which
cannot be the case since the series defining X, (z) around the origin is infinite. This is
a direct consequence of the fact that none of the expressions b/d in (9) coincides with a
negative integer. a
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Lemma 7. There is a fundamental solution Y (z) = (Yi(2),...,Yo(2)) with Xg(z) =
Yo(z) of (3) around z = 1 such that Yi(z) is holomorphic fori=1,...,Q — 1.

Proof. Yg(z) has the series expansion

Yo(2) = (z = )T Y Gl(z— )"+ > Gh(z—1)™

m20 m>0
when n is even, and
Yo(z) = (2 — 1)*7 log(z — 1) (Z Gl.(z - 1)m) + > G" (2 — 1)™.
m20 m2>0

when n is odd. These expressions together with local exponents (9) show the statement.

a
Lemma 6 and Lemma 7 implies the following;:
Lemma 8. One can choose a fundamental solution Y (2) = (Yi(2),...,Yo(2)), around
z =1 so that the connection matriz
X(z)=Y(2) L, (10)
is given by
1 0 0 O
o1 --- 0 O
Li=f: ¢+ 0+ ] (11)
0o 0 - 1 0
¢t €2 - CQ-1 1

where ¢;, # 0 foranyi=1,....p.
When n is odd, the monodroymy of Y around s = 1 is given by
Yo(z) = Yo(2) + 2nv=1(z - ) V2N "G (2 — )™
m=0

The second term is holomorphic at z = 1 and can be expressed as a linear combination
of the components of Y;(z). Hence the monodromy z = 1 is given by

Y(z) > Y(z) E,

where
10 0 ¢
01 0 d

En
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When n is even,

Ya(2) = —Yo(z) +2 3 Gz = D™
m=0

so that the monodroymy around z = 1 is given by

Y (z2) - Y(z)- By

where
10 --- 0 ¢
01 --- 0 4
Ey=1|: : .
00 -+ 1 cpy
00 --- 0 -1

Note that the monodromy of Y (z) around 2z = 0 is given by
Y(z) = X(2) - Li!
— X(Z) . E() . Li—l = Y(Z) : L1 . E() . Ll_l
By a straightforward calculation, we have the following:

Proposition 9. The monodromy matrices hy, hy and ho around z = 0, 1 and co with
respect to the solution basis Y (z) of (3) are given by

0O 0 --- 00
ho = Eo + P T i )
"™ "1o 0o .- 00
no o 10
(71"" ,~7Q—27170) = (cb"' »CQ—I’]-)(EO —de)’
01 0 g2
hi=1}|: : : : )
00 1 gg-1
00 0 (1)1
0 0 - 0 4
00 --- 0 0
ho =ho+ ). . . . |
00 --- 0 dg
(61"" aéQ) = (gl"" 7QQ—1:(“1)n—l)h(J;+ (0 ,O-_l)
Lemma 10. Let v = (vy,...,vQ)T be a column vector and define a Q x Q matriz by

T = (v,ho-v,...,hd 1 v).
Then one has

p
detT = I—I (ea - ea)ua'#.? : H(vdu—l-i-l)”n'
a=1

1<3<a<p
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Proof. First we introduce a i x ¢ matrix defined by

010 0
0 0 1 0
Jig=1|:1 1 :
0090 --- 1
000 --- 0

Let T'(a, j) € SLg(C) be the block diagonal matrix defined by

T(c.j) = (ldQ(;j“l 0 ) :

idj1 —€q * Jj41,+
Then

T-TA,Q-1)-T(L,Q—-2)- T(1,Q — )
T(Z’Q—ul—l) """ T(2’Q_ﬂ'1"ﬂ'2)
T(p,Q = Opr — 1) -----T(p,1)

is a lower-triangular matrix whose i-th diagonal component for o,-1 < © < 04 is given by

H(ea - e@)“ﬂ *VUog-1+1-

B<a
a
Corollary 11. v = (vy,...,v0)7 is a cyclic vector with respect to ho if and only if the
condition »
H Voo 1+1 7& 0 (12)
a=1
is satisfied.
Lemma 12. If v € C? satisfies ' ’
hZ - v = hyv, (13)
then (12) holds.
Proof. Since the cokernel of h7! —hy is spanned by the last coordinate vector (0,...,0,1) €
CQ9, the equations (13) for v = (v,0) where v = (v1,- -+ ,vg-1) can be rewritten as
Y.v=0

where T is a (Q — 1) x (@ — 1) matrix whose j-th row vector is given by the first @ — 1
component vector of the following

(ﬂlll’ Q-2 17 0)(h0)j_1'
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Define a block diagonal (Q — 1) x (@ — 1) matrix by

) idg_j—2 0
S(a)]) = (1 QOJ 2 Sl)

where S’ € SL;4,(C) is given by

1 0 0 O
—en 1 0 O
Sl — E .
0o 0 - 1 O
0 0 —eq 1

Then the components of the matrix

>=501,1)---S(1,p1—1)-S2.p1)---S2.0, —1)-S(3.02) - -- S(3,03 — 1)
-+ 8(p,0p-1) - S(p,0p —2) - &

are zero below the anti-diagonal (i.e., ii,- = 0if 1 +j > Q) and the i-th anti-diagonal
component £; g_i~1 for o4-1 < i < 04 is given by

[ (ea — es)*con-

B>a

The (Q - 1)-st equation

(const) - v, + H(e, —eg)HBey, v,
B>1

together with Lemma 8 implies that v, = 0 if v; = 0. By repeating this type of argument,
one shows that v; = 0 implies v = 0. Moreover, one can run the same argument by
interchanging the role of (z1,e1,¢,,) with (vs,_,+1,€a,Co,) t0 show that v, ,41 = 0
implies v = 0. Hence a non-trivial solution to (13) must satisfy (12). a

3 Invariants of the hypergeometric group

We prove the following in this section:

Proposition 13. Let (qo,...,qn) and (di.....d.) be sequences of positive integers such
that Q := Zf_’__o g = D1 dr. Then the space of Q@ x Q matrices invariant under the

action
H(qo,.-.-qn;dy,....dy)Dh: X —h-X-AT

is at most one-dimensional.

Proof. Let X be a Q@ xQ matrix invariant under the hypergeometric group H = H(qo,-..,qn;d1,- ..

so that
h-X KT =X

, dy)
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for any h € H. Let e; = (1,0,....0) be the first coordinate vector. Since {(hT)’el}l
spans C@, Xi; is determined bv the H-invariance once we know X;; for i = 1,. ,Q.

Consider the relation
thl-X-th. (14)

Since

(h1- X A1)y = Z(h Jik Xt (h1)u

’ =

= Z (h) s X (=1)N 176y,
ki=1

Q

(=1)M (B ik Xk

Mo

k=1 ‘
= (=DM ((h)a X + Xa),

the first column of the above equation reduces to
(“1)N+r+1((h1)i1X11 + Xi1) = Xa
for 2 <7 < @. This equation implies
Xa = _%(hl)ilxll
if N +r is even, and
‘ Xn=0

if N+r isodd. In the latter case, fix j # 1 such that (h1)j1 = (—1)"(Bg-j+1—Aqg-j+1) # 0
and consider the j-th row of (14) Since

(hi- X - h{)y; = Z(hl)szkl(h )it

k=1

Q
= (A1) X1 (ha) 1 + Xij(ha)ss)
k=1

Q
= Z(hl)ik(Xkl(hl)jl + Xkj)
k=1

= (h1)a(X11(h)j1 + X1j) + (Xil(hl)jl + Xij)
= (hl)ilej + Xu(h)jn + Xij,
the second column of (14) reduces to
(h)aXy; + (h)nXa =0
for 2 < i < Q. Since (h1);; # 0, the solution to the above equation is given by
()
' (h1)j1

for 2 < ¢ < N. This shows that the space of H-invariant matrices is at most one-
dimensional. O

X; X1
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4 Coherent sheaves on Calabi-Yau complete inter-
sections in weighted projective spaces (by Kazushi

Ueda)

The results of this section belong to Kazushi Ueda. Here we describe an invariant bilinear
form of the hypergeometric group in terms of Euler characteristic of coherent sheaves on
Calabi-Yau complete intersections in weighted projective spaces.

Let Y be a smooth complete intersection of degree (d;,...,d.) in P(go,...,qn). We
have the Koszul resolution

0_,0(__(11_..._dr)é@o(_dl_..._{{i_.....dr)

- P O(-di—d;)) - PO(-di) > O — Oy -0

1<i<i<r i=1

of the structure sheaf @y of Y. By tensoring this sequence with O(i), we obtain a
locally-free resolution of Oy (i) for any i € Z. By Kontsevich (cf. Seidel [18, Lemma
5.4]), {Oy,0r(1),...,0¢(N)} is a classical generator of the bounded derived category
DPcoh Y of coherent sheaves on Y.

Let (8 ),_Q be the full strong exceptional collection on D®coh P(qy, . .., qn) given as

Ea.- &) =(0,...,0Q - 1)),
and (.7?1,. . f'Q) be its right dual exceptional collection so that
Ext*(E, &) = C i=yj, z?,ndk=0
0 otherwise.

Equip the Grothendieck group K(P(q,....qn)) with the Euler form
x(E,F) = Z(-l)i dimExt‘(g,]?).

Note that the Euler form on K(P(q,-..,qn)) is neither symmetric nor anti-symmetric,
whereas that on K (Y) is either symmetric or anti-symmetric depending on the dimension
of Y. The bases {[8]},_1 and {[F;]}Z, of K(P(qy,...,qn)) are dual to each other in the

sense that

X(gu]:) = oz]

We will write the restrictions of & and F; to Y as ; and F; respectlvely Unlike {[&]}¥,
and {[F]}2,, {[E:]}2, and {[Fi|}2, are not bases of K(Y). Put

Xij = x([F3), [F5)

and let (a;;)¥;_; be the transformation matrix between two bases {ENL, and {{F}2,
so that

Bl = > o

The following is the main result in this section:
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Theorem 14. X is an invariant of the hypergeometric group H(qo,...,qn;d1,- .., d.).
We divide the proof into three steps.

Lemma 15. Let © be an autoequivalence of D* cohY such that its action on {[Fi]}2, is
given by
Q o—
=D hylF).
j=1

Then X is invariant under the action of h = (hy; )g___l;
X=h-X-h"
Proof. Since ® induces an isometry of K(Y'), one has

Xz] = X([?tL {?JJ)
= x([B(F))), [®(F;)))
Q

Z haex([Fe), [Fi]) b

;
Z hie X kb

I=1
forany 1 <i,j < Q. O
Remark 16. Since {[F;]}%, are not linearly independent, the choice of k in Lemma 15
is not unique.

Lemma 17. The action of the autoequwalence of D®cohY defined by the tensor product
with Oy (—1) on {F;}2, is given by ho

b

Q
[F: ® Oy (=1)] = 3 _(hoo)ss (]

Proof. Since tensor product with @(—1) commutes with restriction, it suffices to show
[F:®0(-1)] = i(hm)ﬁ[ﬁjl-

Since {[&]}<, and {[F; ]}, are dual bases, this is equivalent to
[ ®O(-1)] = i[gj](h;l)ﬁ, |

which follows from the exact sequence on P(qy, - - ., gn) obtained by sheafifying the Koszul
resolution
0= A"V @Sym*V* —... - A’V & Sym* V*
- V&Sym"V* - Sym*V* - C — 0,
where V is a graded vector space such that P(go. . ...g~) = Proj(Sym" V*). Here, one has
to be careful with our choice & = O(Q — i) of numbering on &;. a
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Lemma 18. The action of the autoequivalence of DPcohY given by the spherical twist
T%l along F, is given on {F;}<, by hy;

Q
[T%, (F)] = Z(hl)ij[?j]-

Proof. Recall that for a spherical object £ and an object F. the twist Ty F of F along €
is defined as the mapping cone

TS F = {F - hom(F.E)" 8 F}

of the dual evaluation map. Since the induced action of the twist functor T¢ on the
Grothendieck group is given by the reflection

[T (F)] = [F] — x(F,E)[€],
it suffices to show that

. ~X ifj=1,
hy —id);; =
(hy )i {0 otherweise.

Note that
(-1)"Xa = (-1)"x(F:, F1)
= ("I)NX(?I,?i)
= (-1)Vx(Oy(-1)[N]. F))
= x(Ov(-1),F)

= X(?i(l))
=x(FD) =Y _xF1-d))+ Y x(F(l-dc—d))
k=1 1<k<i<r
— o CD)X(FE(Q —dy~ o~ dr)
and
_ Q Q
X(f.z(l)) = ZX((h’o-ol Z UY SQ"F) - (h’ )ZQ = ~'BQ—-z-H

Since

X(F:(G)) = x(O(=3), Fi) = x(Eqrj» Fi) = G4
for —-Q+1<j<0and

H(td"—l)—tQ ZtQ %y (1) ) e

1<k<I<r

+ -4 (_1)"‘1 thk + (_l)r
k=1

=19+ Ath—l + -+ Ag-1t - Ag,
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it follows that L o
X(fl,fi) - ,\’(fl-]:i) = AQ—i-Ha

and hence X,;; = —(h; —id);1. O

Theorem 14 immediately follows from Lemmas 15, 17 and 18.

5 The Mellin transform of the period integrals

In this section we show that the period integral (2) satisfies the hypergeometric equation
(3). First of all we recall the notion of the Leray coboundary cycle I' € Hy.yq(TN+! \ Xp)
constructed as a (r + 1)times successive S’ —bundle over a cycle ¥ € H,(X,). It is a cycle
that avoids all the hypersurfaces fo(z) +t = 0 and fi(z) +1 = 0,---, fo(zx) +1 = 0
[7, Theorem 2]. Without loss of generality, we can assume that HRe( fo(z) + t)|r < 0,
Re(fr(z) +1)|r <0, 1 < k < r out of a compact set

Theorem 19. For a Leray coboundary cycle T € Hy,(T¥*!\ X,) we consider the
following residue integral:

ro. - dz
It = | 2 t) v 1) —, 15
S5t = J o)+ 07 [T + 75 (15)
with the monomial z* := a:f,° . a:f{}’, gl :=x9 TN, v = (Vo,v1, - ,v,). Then the integral

Ii:’,)r(t) satisfies the following hypergeometric differential equation
[PO(~8,) ~ 1Q®¥(~6,)] ISX(t) = 0, (16)
for |

rod=1ax_ +p—1

P(i)("et) = H H H (—Q)\kul'i'PBt + iy +p — @), (17)

k=1 p=0 a=0

r dg d;—1
Q(=0) = [T T(=db: ~ di + 3" (iney4p + 1) = b) (18)
k=1 b=1 p=0

with 6, = tgz. Here we used the notation Ay = le §(S:) and d), = §(Sk).

Proof. Let us consider the Mellin transform of the fibre integral (15)

v o dt
M) = / IOk (19)
n
for a cycle avoiding the discriminant. For the Mellin transform (19), we have the following
r -1
MY (2) =g(=)T ()T (w0 = 2) [T T T(@ncsns(z = v0) +ingyas +1)
k=1 j=0 (20)

d,—1

T(= D (irecrss + 1) = dilz = vo) + vg),
}=0
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with g(2) a rational function in €*™**. As the period integral Ii',-’)r(t) can be expressed by
the inverse Mellin transform,

I = /n t2 M{P (2)dz,

for some cycle II encircling the poles of " function factors, the equation (16) immediately
follows from (20).

To show (20) we make use of the so called Cayley trick. Namely we transform the
integral (19) into the following form.

d:r dy dt

M () = / e S R] | P 21
0= [ e [wesis o
with R, the positive real axis in C,, for p = 0.--.,7. Here we introduce new variables
To,- - TN4r+2,
To = yofo(z), Ti =yot, T2 = yoxl’, Tz = yozi’, - -+ , TNtrs2 = Yr,
in such a way that the phase function of the right hand side of (21) becomes
v(fo@) +8) + D wlfe(@) + 1) =To+Ti +" - + Tisriz.
If we introduce the following notation,
Log T :="* (log To, - - - ,109 T ir42)
= '_t (-’170,"' axN’tayUa"' ayr)
Log = :=* (log zo,--- ,log zx,log s,log yo,--- ,log yr),
(22)
we have
LogT =1L -LogZE,
for the following non-singular matrix L,
(@ @1 - Qa1 Q4 Q41 Qa2 gv 01 0 0 0]
0o o0 -- 0 0 0 0 0 11 0 00
1 0 0 0 0 0 0 00 1 00
0 1 0 0 0 0 0 00 1 00
0 0 0 0 0 0 0 0 0 1 00
0 0 1 0 0 0 0 00 1 00
L=10 0 0 0 0 0 0 00 1 0 0 (23)
0 0 0 1 0 0 0 00 O 00
0 0 0 0 1 0 0 00 O 00
0 0 0 0 0 1 0 00 O 00
: : : : . 10
0 0 0 0 0 1 0 0 01
| 0 0 0 0 0 0 0 00 O 0 1]
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The above relation is equivalent to
LY. Log T = Log =,

for a non-singular matrix L=! which has the following form:;

0 0 1 o --- 0 -1 0 0 0 0
0 0 O 1 ... 0 -1 0 0 0 0
0 0 O 0 0 -1 0 0 0 0
0 0 0 O 1 -1 0 0 0 0
0 0 O 0 0 0 1 0 0 -1
0 0 O 0 0 0 0 1 0 -1
Ll = 0 0 O 0 0 0 0 0 0 -1 ] (24)
0 0 0 o -.. 0 0 0 0 . 1 -1
=11 @ @& - gg-1 —di g Q441 -+ gy —d.
1 0 —g -@ -+ —qa-1 di —gs —Qa41 - —qn dy
0 0 O o -- 0 1 0 0 = 0 0
| 0 0 O 0 0 0 0 0 0 1 ]
If we set ‘
(iO + 17 S INF 1; 2,Ug, " sv'r) ' L_l = (cO(ia 2, ‘U), e )£N+T+2(i7 2, ‘U)), (25)
then we can see that
'(‘") — t+1 To+-+TN+rs2,,V0 _ . . vrtzd_x@ﬂ
Mg,l‘ (Z) ,/I:Ix]R:_"’lxI‘ T € yO yr IL'I yl t
. dT (26)
= (det L) / et +ivere [T qlatbeo) A 228
JL. (xR xT) 0<a<N+r+2 0<a<N+r+2 T

Here L.(IT x R} x ') denotes a (N + r + 3)—chain in Ty - - - Tv4rs2 # O that obtained
as a image of IT x R7*! x I under the transformation induced by L. In view of the choice
of the cycle I', we can apply the formula to calculate Gamma function to our situation:

/C e-Tng = (1 - &*"*)[(0),

for the unique nontrivial cycle C' turning around T = 0 that begins and returns to
ReT" — +oo. Here one can consider the natural action A : C, — A(C,) defined by the

relation,
/ e—TaT:afi.T& - / e—Ta(ezn\/:TTa)%ﬂ.
X(Ca) . Jeo T.
In terms of this action, L,(II x R*! x T') is shown to be homologous to a chain
' Lamc Nitd2 o
Z M . 5 e HAJ“ (R4) aI:[r Na' (Cq),

Ap) ... o) YE[D,QJN +r+3

(o™ v+ INrs2
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with me e € Z. This explains the appearance of the factor g(z) in front of the I’
1]

v I Ngr42
function factors in (20).

The direct calculation of (25) shows that
ﬁO(ir <, 'U) = —Z + Uy, El(ia z, 'U) =z,

‘C)\k-1+P+k+1(i’ 2, ’U) = qz\k—1+p(z - UO) + i'\k—L‘H’ +1.0<j <6 -1
d,—1
c%k+k+l(i7 z, ‘U) = —dk(z - UO) - Z(L\k-l‘?? + 1) + 'Uk,]. S k S r.
p=0
We remark here that 3y, n, 42 La(i,2.0) = ;o vk and the variable change T, —
—T, in the integration of (26) would cause only multiplication by the factor (—1)Tk=o?*,
This shows the formula (20) and consequently (16) by virtue of the fact that the
periodic function g(z) plays no réle in establishment of the differential equation satisfied
by its Mellin inverse transform. ‘ a

As a result we get the Mellin transofrm ‘Mi(y',’,)(z). Especially

1 )= o= D@2)
AIq—l.‘y(z) - n,’;::r‘(dkz) : (27)

always up to a periodic function factor. This formula has already been claimed in (8]
(resp. [11]) in the case when q = 1 (resp. q general).
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