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Fixation processes in evolutionary game dynamics in finite diploid populations are investigated.
Traditionally, bequency dependent evolutionary dynamics is modeled as deterministic replicator
dynamics. $Th\dot{\infty}$ implies that the infinite size of the population is assumed implicitly. In nature,
however, population $size\epsilon$ are finite. $B\epsilon cently$ , stochastic $proce\infty$ in finite populations have been
introduced in order to study finite size effects in evolutionary game dynamics. One of the moet
significant studiae on evolutionary dynamics in finite populations was carried out by Nowak et al.
which daecribae the $on\triangleright third$ law.” It states that under weak selection, if the fitness of stratey $\alpha$

$i\epsilon$ greater than that of strategy $\beta$ when $\alpha$ has abequency 1/3, strategy $\alpha$ fixates in a $\beta$-population
with selective advantage. In this study, we apply their hamework to adiploid population that plays
atwo-strategy game. The fixation probabilities of mutant alleles in diploid populations are derived.
A(three-tenth law” for acompletely recessive mutant allele and a $twc\succ fifth1aw^{1}$’for acompletely
dominant mutant allele are found; moreover, other casae are also discussed.

‘Raditionally, evolutionary game dynamioe [1-3] is
modeled ae deterministic equations, for example, the
well-known replicator equation [4]. However, in such
equations, the population size is intrinsically assumed to
be infinite, and the equations fail to consider the stochas-
tic effects. In natural, population sizes are finite and de-
terministic procaesae are disturbed by stochastic effects.
This fact has long been recognized in population genet-
ics [5-8]. Only recently, some stochastic processes are
introduced in order to investigate evolutionary game dy-
namics in finite populations, and it has been shown that
the finitenaes of population sizes may occasionally play
asigniRcant role in an evolutionary procaes [9-20]. In a
finite population, the fate of amutant is determined in a
stochastic procaes. Even an advantageous mutant could
become extinct and adeleterious mutant could fixate in
the population by chance. Anatural definition of an
advantageous mutation in afinite population was intro-
duced by comparing the fixation probability of amutant
strategy with that of aneutral strategy [11]. If the prob-
ability that the descendant of asingle strategy $\alpha$ mutant
invading apopulation of $(N-1)$ strategy $\beta$ individuak
takae over the entire population is higher than the cor-
raeponding probability for the caee of aneutral mutant,
strategy $\alpha$ is advantageous. Further, it is shown that
under weak selection, if the fitness of an $\alpha$ individual is
higher than that of a $\beta$ individual when the hequency of
$\alpha$ individuals isl/3, stratey $\alpha$ is advantageous. This is
called the one-third law.

Since the main focus area of evolutionary game dynam-
ics in its early stage was the evolution of strategies in ani-
mal conflicts [1, 21-23], the evolution of phenotypes were
primarily considered, and genetic mechanisms were often
neglected. Also in recent years, inheritance is assumed
to be asexual in most studies. Making a niodel siinple
is always important; however, at the same time it is also

true that sexual combination can play an important role
and be akey factor in the evolutionary process. In fact,
evolutionary game dynamioe in sexual populations has
also long been considered in many studies [1, 24-33].

In this study, we appiy the framework proposed by
Nowak et al. [11]to adiploid population and derive the
fixation probability of amutant allele in adiploid popula-
tion playing atwo-strategy game. In diploid populations,
each individual has two homologous copi$\infty$ of each chro-
mosome–one Rom its mother and the other from its
father. Let us consider two $allel\infty$ $A$ and $B$ on asingle
locus. Therefore, there are three genotypes $AA,$ AB, and
$BB$ . The genotype of anew offspring will be determined
by those of its parents according to the probability distri-
butions shown in Tablel. Let $x_{AA},$ $x_{AB}$ , and $x_{BB}$ denote
the hequencies of the genotypes $AA,$ AB, and $BB$ , re-
spectively. It should be noted that in alarge population,
the frequency distribution of the genotypes in each sex is
approximately identical to that in the entire population
since the genotype of anew offspring does not depend on
the sex of the offspring but depends only on the $gen\triangleright$

types of its parents as shown in Tablel. For simplicity,
we assume that the fitneae of an individual depends only
on the genotype on the locus.
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Consider a process in which a pair of individuals–a
male and a female–is chosen as parents for reproduc-
tion in proportion to their fitnesses, and their offspring
replaces a randomly chosen individual. Thus, in this pro-
cess, the number of individuals is constant. Let $N$ denote
the number of individuals; we assume a large but finite
value of $N$ . The sex ratio of offsprings is an arbitrary
constant. Let $f_{A\mathcal{A}},$ $f_{AB}$ , and $f_{BB}$ denote the average
fitnesses of the three genotypes $AA,$ AB, and $BB$ , re-
spectively. The probabilities that the genotype of a new
offspring is $AA,$ AB, or $BB$ are given by

$p_{AA}=\psi_{A}^{2}$ , $p_{AB}=2\psi_{A}\psi_{B}$ , $p_{BB}=\psi_{B}^{2}$ , (1)

respectively, where

$\psi_{A}=x_{AA}\frac{f_{AA}}{\overline{f}}+\frac{x_{AB}}{2}\frac{f_{AB}}{\overline{f}}$,
(2)

$f_{BB}$ $x_{AB}f_{AB}$

$\psi_{B}=x_{BB}+\overline{f}\overline{2}\overline{f}$ .

$\overline{f}$ denotes the average fitness of the population $(\overline{f}=$

$x_{AA}f_{AA}+x_{AB}f_{AB}+x_{BB}f_{BB})$ . Flrther, the probabili-
tiae that the genotype of the individual replaced by the
offspring is $AA,$ AB, or $BB$ are given by $xx$ , and
$x_{BB}$ , respectively. The process is akind of aMoran pro-
caes [7], and it is called the frequency dependent Moran
process [11, 12] for diploid populations. It defines a
Markov process. For example, in asingle time step of
this process, the number of genotype $AA$ individuals in-
creaees by one and that of $AB$ individuals decreases by
one with aprobability Prob$(AA\uparrow, AB\downarrow)=p_{AA}x_{AB}$ .
Probabilities in other possible cases are calculated in the
same manner (Prob$(AB\uparrow,BB\downarrow)=p_{AB}x_{BB}$ and so on).

Let us assume that $N$ individuals interact with each
other through agame and that the genotype of the
locus determines the strategy of the game. Because
there exist three genotypes, they can correspond to three
strategies in general. In this study, we aaeume that
the game played by the population has two strategies

$-\alpha$ and $\beta$ . Let $(\begin{array}{ll}m_{\alpha\alpha} m_{\alpha\beta}m_{\beta\alpha} m_{\beta\beta}\end{array})$ denote the payoff ma-
trix of the game. We also sssume that $\alpha$ and $\beta$ are
the best replies to themselves, $i.e.,$ $m_{\alpha\alpha}>m_{\beta a}$ and
$m_{\beta\beta}>m_{\alpha}\rho$ . This assumption allows us to deduce that
$\mu=m_{\alpha\alpha}+m_{\beta}\rho-m_{\alpha\beta}-m\rho_{\alpha}$ is positive and that an un-
stable equilibrium $(q_{\alpha},q_{\beta})=(m_{\beta\beta}-m_{\alpha\beta}, m_{\alpha\alpha}-m_{\beta\alpha})/\mu$

exists. Further, we consider asituation in which an $AA$

individual plays the pure strategy $\alpha$ , a $BB$ individual
plays the pure strategy $\beta$ , and an $AB$ individual plays
amixed strategy comprising $\alpha$ and $\beta$ , i.e. $s_{\alpha}\alpha+s_{\beta}\beta$

$(s_{\alpha},s_{\beta}\geq 0, s_{\alpha}+s_{\beta}=1)$ . The frequencies of the
strategies $\alpha$ and $\beta$ played in the population are given
by $\pi_{\alpha}=x_{AA}+s_{\alpha}x_{AB}$ and $\pi_{\beta}=x_{BB}+s_{\beta}x_{AB},$ respec-
tively. The average payoffs for the strategie6 are given by
$f_{\alpha}=m_{\alpha\alpha}\pi_{\alpha}+m_{a}\rho\pi\rho$ and $f_{\beta}=m_{\beta\alpha}\pi_{\alpha}+m_{\beta\beta}\pi_{\beta}$. Then,

the average fitnesses of the genotypes $AA,$ AB, and $BB$

are given by

$f_{AA}=1-w+wf_{\alpha}$ ,
$f_{AB}=1-w+w(s_{\alpha}f_{\alpha}+s_{\beta}f_{\beta})$ , (3)
$f_{BB}=1-w+wf_{\beta}$ ,

respectively. $w\in[0,1]$ is called “the selection intensity
parameter) [11]. If $w\ll 1$ , this game provides asmall
perturbation to the fitness of an individual and the se-
lection with this game is termed as “weak selection.” In
previous studies [11, 18-20], it is aaeumed that selection
is sufficiently weak. In the study by baulsen et al. [19],
it is asserted that weak selection is an important con-
cept for two reasons: (i) many analytical results can be
obtained only in the limit of weak selectlon; however,
agood approximation can also be obtained for alarger
value of $w$ and (ii) many factors affect the fitness of an
individual; however, only aparticular game is under con-
sideration. For these reasons, we restrict the value of $w$

to the domain of weak selection; i.e., in this study, we
assume that $Nw\ll 1$ .

Nowak et al. introduced anatural definition of an ad-
vantageous mutation by comparing the fixation probabil-
ity of amutant strategy with that of aneutral strategy
[11]. For amutant allele in adiploid population, the
definition is modified as follows. The fixation probabil-
ity $\rho_{A}$ of mutant allele $A$ is defined as the probability
that apopulation consisting of $(N-1)BB$ individuals
and asingle $AB$ individual is eventually taken over by
$AA$ individuak. If allele $A$ is always neutral, the fixation
probability is equal to the reciprocal of the total number
of genes in the population, $i.e.,$ $\frac{1}{2N}$ . Let $\tilde{\rho}$ denote the fix-
ation probability of allele $A$ in aneutral case $( \tilde{\rho}=\frac{1}{2N})$ .
Therefore, allele $A$ is deemed advantageous if the fixation
probability $\rho_{A}$ is greater than $\tilde{\rho}$ .

Since this is atwo-dimensional Markov process, it is
difficult to obtain the exact value of the fixation proba-
bility. However, in the limit of weak selection, $Nw\ll 1$ ,
the population goes close to the Hardy-Weinberg equilib-
rium (H-W eq.). Let $\phi_{A}$ and $\phi_{B}$ denote the frequencies of
$A$ and $B$ $($ i.e., $\phi_{A}=x_{AA}+\frac{1}{2}x_{AB}$ and $\phi_{B}=x_{BB}+\frac{1}{2}x_{AB})$ .
In the H-W eq., $x_{A\mathcal{A}},$ $x_{AB}$ , and $XBB$ satisfy

$x_{AA}=\phi_{A}^{2},$ $x_{AB}=2\phi_{A}\phi_{B},$ $x_{BB}=\phi_{B}^{2}$ . (4)

Thus, in the H-W eq., $h=x_{AB}^{2}-4x_{AA}x_{BB}\in[-1,1]$ is
zero. By evaluating the expected change in $h$ in asingle
step at time $t$ , denoted by $\langle h_{t}\rangle$ , it can be proved that
$\langle h_{t}\rangle=-h\hat{N}+O(N^{-2})$ with the assumption $Nw\ll 1$ .
This implies that the population tends to the H-W eq.
even though demographic stochasticity constantly per-
turbs the system state. Furthermore, $h$ is almost zero
in the initial state, $h_{t=0}=N^{-2}$ . Thus; the population
is very close to the H-W eq. right from the beginning.
These facts help us to obtain an approximate value of
the fixation probability. By the approximation that the
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population is always in the H-W eq., we can substitute
a simple gene pool model for the original diploid popula-
tion model. The simple gene pool model is described as
follows. There exist two types of genes in the pool $-A$

and $B$ -and the total number of genes is $2N$ . $A$ (or $B$ ) is
reproduced with $a$ probability $\psi_{A}$ (or $\psi_{B}$ ) and it replaces
a randomly chosen gene. $\psi_{A}$ and $\psi_{B}$ are determined by
Eqs. (2), (3), and (4). When the diploid population is
in the H-W eq., a single step of the original process is
equivalent to two steps of this simplified process. The
simplified process is a one-dimensional Markov process.
The number of gene $A$ can increase by one, stay the same,
or decrease by one. The transition matrix of the process
is tri-diagonal and defines a birth-death process given by

$R_{\tau,i+1}=\psi_{A}\phi_{B},$ $R_{i}=\psi_{\mathcal{A}}\phi_{A}+\psi_{B}\phi_{B},$

$R_{i-1}=\psi_{B}\phi_{A,(5)}$

where $i$ denotes the number of $A(i=2N\phi_{A})$ . The fix-
ation probability $\rho_{\mathcal{A}}$ in the original process can be ap-
proximated by the fixation probability of $A$ , denoted by
$\rho_{A}’$ , in the process defined by Eq. (5). It is given by

$\rho_{A}\approx\rho_{A}’=(1+\sum_{k=1}^{2N-1}\prod_{i=1}^{k}\frac{R_{i-1}\prime}{R_{i+1}})^{-1}$

(see [34]). In the limit of weak selection, $Nw\ll 1$ , we
obtain

$\rho_{A}\approx\frac{1}{2N}-\frac{w\mu}{6}\{s_{\beta}(q_{\alpha}-\frac{3}{10})+2s_{\alpha}(q_{\alpha}-\frac{2}{5})+\frac{1}{5}s_{\alpha}s_{\beta}\}$

(6)

by neglecting orders higher than the first order of $w$ .
From this equation, we observe that the threshold value
of $q_{\alpha}$ for allele $A$ to be advantageous depends on genetic
mechanisms. If allele $A$ is completely recessive, an $AB$ in-
dividual plays the pure strategy $\beta$ $(i.e. (s_{\alpha}, s_{\beta})=(O, 1))$ .
Therefore, in this case, Eq. (6) is simplified into

$\rho_{A}\approx\frac{1}{2N}-\frac{w\mu}{6}(q_{\alpha}-\frac{3}{10})$ . (7)

In Fig. 1(a), $\rho_{A}/\tilde{\rho}$ obtained by Eq. (7) for three values
of $w$ are plotted. The numerically evaluated values of
$\rho_{A}/\tilde{\rho}$ are also plotted. From Fig. l(a), we observe that
Eq. (7) approximates the fixation probability quite well
not only when $Nw\ll 1$ but also when $w$ is significantly
large $(Nw=1/2)$ . Equation (7) suggests that when the
mutant allele $A$ is completely recessive, $A$ is advantageous
if strategy $\alpha$ has a higher payoff than strategy $\beta$ when
the frequency of $\alpha$ individuals is 3/10 (i.e., $\rho_{A}\gtrless\tilde{\rho}\Leftrightarrow$

$q_{\alpha} \lessgtr\frac{3}{10})$ . This is a “three-tenth law” for a completely
recessive mutant allele. On the other hand, if allele $A$ is
completely dominant, an $AB$ individual plays the pure
strategy $\alpha$ , and this indicates that $(s_{\alpha}, s_{\beta})=(1,0)$ . In
this case, Eq. (6) \’is simplifled into

$\rho_{A}\approx\frac{1}{2N}-\frac{w\mu}{3}(q_{\alpha}-\frac{2}{5})$ . (8)

FIG. 1: Ratio of $\rho_{A}$ to $\tilde{\rho}$ plotted as a function of $q_{\alpha}$ . Allele $A$ is
completely recessive in (a), $s_{\alpha}=0$ , and completely dominant
in (b), $s_{\alpha}=1$ . The points denote $\rho_{A}/\overline{\rho}$ evaluated numerically
for three values of $w$ which are indicated in the figures. The
lines are obtained with Eq. (7) in (a) and Eq. (8) in (b).
The system parameters are given by $N=100,$ $m_{\alpha\alpha}=1-q_{\alpha}$ ,
$m_{\alpha\beta}=m_{\beta\alpha}=0$ , and $m_{\beta\beta}=q_{\alpha}$ .

Equation (8) provides a “two-fifth law” for a completely
dominant mutant allele, $\rho_{A}\gtrless\overline{\rho}\Leftrightarrow q_{\alpha}\lessgtr\frac{2}{5}$ (see Fig.
1 $(b))$ . If the two alleles $A$ and $B$ have an additive effect
on the fitness, i.e., an $AB$ individual plays $\alpha$ and $\beta$ in
equal proportions, $(s_{\alpha}, s_{\beta})=(1/2,1/2)$ , we obtain $\rho_{A}\approx$

$\overline{2}w^{-\lrcorner i}1w_{4}(q_{\alpha}-\frac{1}{3})$ from Eq. (6), Thus, in this case, the
”one-third law” appears again.

Since Eq. (6) can be rewritten as $\rho_{A}$
$\approx$ $\overline{2}\pi 1-$

$\underline{w_{6}}g(1+s_{\alpha})\{q_{T^{R}}^{s^{2}}\alpha^{-\frac{3}{10}-}51+s_{\alpha}\urcorner\},$ $A$ is advantageous if $q_{\alpha}$

is smaller than $Q_{\alpha}= \frac{3}{10}+T^{s_{S}^{2}}51+\urcorner_{\alpha}$ , i.e., $\rho_{A}\gtrless\tilde{\rho}\Leftrightarrow q_{\alpha}\lessgtr$

$Q_{\alpha}$ . Since $Q_{\alpha}$ is a monotone increasing function of $s_{\alpha}$ , it
is concluded that a more dominant allele is advantageous
in a wider domain of $q_{\alpha}$ (see Fig. 2).

$q_{\alpha}$

FIG. 2: The threshold $Q_{a}$ of $q_{\alpha}$ for allele $A$ to be advantageous
is plotted as a function of $s_{\alpha}$ . In the shaded region $(q_{\alpha}<Q_{\alpha})$ ,
$A$ is advantageous.

We compared the fixation probability of $A$ with
the corresponding probability under neutral drift.
Here, we compare the fixation probability of $A$

with that of $B$ , which is given by $\rho_{B}$
$\approx$ $\nabla 2^{1}-$

$\underline{w}_{6}g\{s_{\alpha}(q_{\beta}-\frac{3}{10})+2s_{\beta}(q_{\beta}-\frac{2}{5})-\frac{1}{5}S_{\alpha^{\mathfrak{l}}}9_{\beta}\}$ . From this
and Eq. (6), it is shown that $\rho_{A}\geq<\rho_{B}\Leftrightarrow q_{\alpha}>\leq\frac{1}{2}$ (see
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Fig. 3) regardless of the strategy of $AB$ . This is closely
related to the concept of ”risk-dominance“ : strategy $\alpha$ is
risk-dominant over strategy $\beta$ if $\alpha$ gets higher payoff than
$\beta$ when the two strategies have the same frequencies of
1/2. Our result can be restated as follows: if the strategy
of $AA$ is risk-dominant over the strategy of $BB$ , regard-
less of the strategy of AB, $\rho_{A}$ is larger than $\rho_{B}$ , which
suggests that in a process with infrequent mutations, $A$

dominates the population more frequently than $B$ .

FIG. 3: $\rho_{A}$ and $\rho_{B}$ are plotted as functions of $q_{a}$ where $A$ is a
completely recessive gene $(i.e., (8_{\alpha}, S\beta)=(O, 1))$ . $\beta A$ is larger
(smaller) than $\rho_{B}$ when $q_{\alpha}$ is less (greater) than 1/2.

We have studied akequency dependent Moran pro-
cess for adiploid population in order to investigate game
dynamics in afinite diploid population and we have de-
rived the fixation probabilities of mutant alleles under
weak selection. The criterion of the internal equilibrium
of the game for amutant allele to be advantageous is
derived, and its dependency on genetic mechanisms is
revealed. Similar to the 1/3law, there are several laws of
the criterion for the determination of advantageous mu-
tant genes; the 3/10law for acompletely recessive allele
and the 2/5 law for acompletely dominant allele. Fur-
ther, it is shown that whether the fixation probability of
$A$ is higher than that of $B$ does not depend on the strat-
ey of $AB$ , instead, it depends only on the position of
the internal equilibrium.

In this study, an $AB$ individual plays amixed strategy
comprising the strategies of $AA$ and $BB$ . There exist
other possible cases; $AA$ or $BB$ plays amixed strategy.
Moreover, the genotypes can correspond to completely
different strategies; this indicates three-strategy game.
Further, although we consider only asingle game in this
study, several games are played simultaneously in gen-
eral. This situation is described by “multi-game” [35].
Furthermore, it is assumed that every individual joins
the game irrespective of its sex. However, it is observed
that some games in nature are played only in asingle sex.

Studies for these situations will be reported in future.
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