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1 Introduction

A sub-Riemannian manifold (M, D, g) is a differential manifold M equipped
with a subbundle D of the tangent bundle TM of M and a Riemannian metric
gon D. In particular, it is called a sub-Riemannian contact manifold if D is
a contact structure, i.e., a subbundle of codimension 1 and non-degenerate.

An infinitesimal automorphism of a sub-Riemannian manifold
(M, D,g) is a local vector field X on M such that LxD C D and Lxg =
0. Denote by £ the sheaf of the germs of infinitesimal automorphisms of
(M, D, g) and by L, the stalk of £ at a € M. We say that £ is transitive,
or (M, D, g) is homogeneous if the evaluation map £, 3 [X], — X, € T.M
is surjective for all a € M.

In this paper we study the structure of the Lie algebra £, for a point
a of a homogeneous sub-Riemannian contact manifold (M, D, g) from the
viewpoint of nilpotent geometry. We show that the formal algebra L of £,
(and therefore L£,) is of finite dimension less than or equal to (n + 1)? if
dimM = 2n + 1. We then completely determine the structures of the Lie
algebras L which attain the maximal dimension, which then leads to the
determination of the Lie algebras £, which attain the maximal dimension.
We also describe the standard concrete subriemannian manifolds on which
these Lie algebra sheaves are realized.
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2 Sub-Riemannian contact transitive filtered
Lie algebras

Let (M, D,g) be a homogeneous sub-Riemannian contact manifold of di-
mension (2n+ 1) and £ the sheaf of germs of infinitesimal automorphisms of
(M, D, g) as defined in Introduction. First of all let us introduce the contact
filtration {L2},cz of L, defined inductively as follows:

(i) L =La(p<-2)
(ii) £ = {[X]a € La; Xa € Da}
(iif) Lo = {[X]a € La; Xa = 0}
(iv) LB = {€ € L2 [6,n] € Lo+ for all n € £3,q < 0} (p > 0).
Then it is easy to see that
[CP, L3 C LB for all p,q € Z,

and that
dim £?2/LP*! < oo,

Passing to the projective limit by setting
L=tim £o/£,

we obtain a Lie algebra L, which also carries a filtration {L?},cz given by
L7 = 13_1;_1’01:{; /LCE.

Then we see that (L, {LP}) is a transitive filtered Lie algebra of depth 2 in
the sense of Morimoto[6]: A transitive filtered Lie algebra (TFLA) of depth
1, with 1 being a positive integer, is a Lie algebra L endowed with a filtration
{LP}pez of subspaces of L satisfying the following conditions:

(F1) L = L*,

(F2) LP D Lr+!,
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(F3) [L*, L9} C LP*e,

(F4) L2 =0,

(F5) dim L?/LP*! < oo,

(F6) LP*! = {X € L?;[X, L%] c LP***1 for all a < 0}, for any p > 0.

The TFLA (L, {L*}) thus obtained is called the formal algebra of L at a.
Let [ = @ I, be the graded Lie algebra associated to the TFLA (L, {L*})

defined by
[, = LP/LP*,

Then it is easy to see that [ = @ [, satisfies the following properties:

(i) - = &P, is isomorphic to the (2n+1)-dimensional Heisenberg Lie al-
p<0

gebra ¢_(n) = c_3(n) & c_1(n), where c_3(n) = R, c_;(n) = R*, and
the bracket operation is given by [e;, e;] = 8, —if for i < j and triv-
ial for the other pairs with respect to the standard bases {f} and
{e1,ea,...,e2,} of c_a(n) and c_,(n) respectively.

(ii) @, is transitive, that is, the condition that p > 0, z € [, [z,[_.] =0
implies x = 0.

(iii) There exists a positive definite inner product g : {_; x [_; — R such
that

9([A,z],y) + g(z,[A,y]) =0 forall A€ lpand z,y € [_;.

A graded Lie algebra @) [, satisfying the above conditions will be called
a sub-Riemannian contact transitive graded Lie algebra (TGLA) and a fil-
tered Lie algebra (L, {LP}) whose associated graded Lie algebra is a sub-
Riemannian contact TGLA will be called a sub-Riemannian contact transi-
tive filtered Lie algebra (TFLA).
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3 Sub-Riemannian contact graded Lie alge-

bras

We call a pair ([, g) a sub-Riemannian Heisenberg Lie algebraif | = [_o®l_,
is a graded Lie algebra isomorphic to the Heisenberg Lie algebra ¢_(n) and
g is an inner product on [_;. Such pairs are classified as follows: For an
n-tuple of positive numbers A = (A1,...,A,) such that Ay > .-+ > A, and
A1+ A, = 1, we define an inner product g, on ¢_;(n) by

gx(ei,e;) =0 (i # 7), graler,ex) =1, gr(€nti,€ntr) =X (1 < k < n),

where {ej,...,ez,} is the basis of ¢c_;(n). From the normal form of a skew
symmetric matrix under the orthogonal group, we see:

Proposition 1 For an sub-Riemannian Heisenberg Lie algebra (I, g), there

is a unique A = (A1,...,\,) such that (I, g) is isomorphic to (c_(n), g»).

Next we define ¢y(n,gx) to be the Lie algebra consisting of all a €
Hom(I_,[_) such that

(i) a(l) Cl, p<0
(ii) a([z,y]) = [a(=), y] + [z, a(y)], =,y € I
(iil) g(a(x),y) + g(z, a(y)) =0, z,y € [1.

From (i) and (ii) the matrix representation of X € ¢o(n, gx) with respect to
the basis {f,e1,...,ean} has the following form.

| o
o
L)
o

where
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that is, Ay = —%A;;, A2 and Ay are symmetric matrices of degree n. Then

by (iii) we have
'AK + KA =0,

o \

where

A=A+ch, K=
A1

K Y

It follows from this that the trace of A vanishes, but A € sp(n,R) is also
traceless, therefore we see that the constant ¢ = 0. Using these facts, we
have the following proposition.

Proposition 2 If [ = @I, is a subriemannian contact TGLA, then I, = 0

p
for p > 1, and therefore | is finite dimensional.

The dimension of ¢y(n,gx) will be maximal, when all the eigenvalues

coincide, i.e., A = (1,...,1). Then X € ¢y(n, gr) can be expressed as:
0 0
X = An Ap ’
0
—Aig An

where A;; is skew symmetric and A;; is symmetric. It then turns out that
co(n, 9(1,..,1) is isomorphic to u(n), the Lie algebra of unitary group. Thus
we have shown:

Proposition 3 If a sub-Rriemannian contact TGLA | has the mazimal di-
mension (n+1)2, it is isomorphic to the TGLA t_,®t_, ¥, wheret_o = R,
t_, =C"=R?>™, ¢ = u(n), and the bracket operation is given by

(i) []: ¥z %t — 0
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(ii) []:tox by —€; [Az]:=Az (Acty,zect )
(iii) [,]: & x &g — &; [X,)Y]:=XY -YX (X,Y €b)

(iv) [[]: ey x €.y = t_g; [Z,W]:=Imh(Z, W), where h(,) is the canon-
ical Hermitian product on C".

4 Cohomology group H(t_,§)

In order to determine the TFLA’s whose associated graded Lie algebras are
isomorphic to ¢, we need to study the cohomology group H(t_,¢). Let us
now recall the definition of the cohomology group H(g-,g) for a transitive

graded Lie algebra g. We set g_ = @g,, which is a nilpotent subalgebra of
p<0
g, and consider the cohomology group associated with the adjoint represen-

tation of g_ on g, namely the cohomology group H(g-,g8) = @ H?(g-,9)
of the cochain complex (Hom(APg_,g),d), where the coboundary operator
9 : Hom(APg_,g) — Hom(AP*'g_, g) is defined by

(aw)(Xla X2, cee 7Xp+1)
n+1

= Z(—l)z—l[xﬂ w(Xla e 7X‘i, oo ,I-Xp+1)]
=1

+ Y (=DM(XG X, X, X Xy Xp)
1<i<j<p+1
for w € Hom(A?g_,g), X1,X2,...,Xp41 € g-—. Since both g_ and g are
graded, we can define a bigradation @HP(g_, g) of H(g-,g) as follows: De-
note by Hom(APg_, g), the set of all homogeneous p-cochains w of degree r
(i.e., w(@ay A+ ABay) C Bay+-tap+r fOr 8Ny a1,...,a, < 0), and set

Hom(Ag-, 8)r = DHom(APg_, g),.
p

Note that 9 preserves the degree. Hence Hom(Ag_, g), is a subcomplex and
the direct sum decomposition

Hom(Ag-,g) = @PHom(Ag_, 9).
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yields that of the cohomology group:

H(g-,8) = P H.(s-,9) = P H?(s-, 9).

On the other hand we note that g, naturally acts on Hom(A?g_, g)., and we

denote its representation by p, which is given by: for Xi,..., X, € g,
p

(p(A)a)(X1,. ., Xp) = [A, Xy, ., Xp)] = Dl Xy, .., [A, X, Xy).
i=1

Then we have

Op(A) = p(A)0 for any A € go.

Therefore it induces the representation p of go on H?(g_, g). Now we define
the set of all go-invariant elements by |

IH?(g-,9) = {a € H}(g-,9); p(A)a = 0 for all A € l}.

Then we have the following proposition for the subriemannian contact TGLA
& of dimension (n + 1)2:

Proposition 4 (i) TH?(¢_,¢) = 0.

(ii) THZ(€_,€) is 1-dimensional and generated by the equivalence class (W]
of a cocycle w € Hom(A2%k_, &) given by:

w(e; Nej) = w(enti N enyj) = —Eij + Ey
w(ei A entj) = V—1(Ei; + Eji + 26;;1,),

where {ey,es,...,e3,} is the standard basis of €_,and E;; denotes the
(2, 7) matriz unit in gl(n, C). Moreover, w itself is &y-invariant, that is,
p(A)w = 0 for A € &, where p is the representation of &y on Hom(t_, £).

(i) HZ2(e_,&) =0 for r > 3.
The proof of the proposition is based on the decomposition of the complex

Hom(€_,€), — Hom(A%¢_, t), — Hom(A3E_, k),
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into

HOm(E_z, Er__z) — Hom(é_g X E_l, ET_3) —_— Hom(k._g X /\28_1, 37_4)

N N\
Hom(t_;,8._;) —  Hom(A%f_,8._,) — Hom(A3€_1, 8, _3)

and uses the knowledge on irreducible u(n)-modules informed from Y. Agaoka.
A detailed proof of the proposition will be published elsewhere.

5 Maximal sub-Riemannian contact transi-

tive filtered Lie algebras

5.1 Main theorem

We define, for each ¢ € R, a TFLA K. as follows: Let the underlying

vector space of K, to be the graded vector space ¢ = €, D €_; @ €&, and

define the filtration {KP},cz of K, by KP = E>B £;, and the bracket operation
i>p

[]e : Ke X K. — K, by
[w’y]é‘ = [m’y]f +E(4)(.’,U, y) for T,y € Ksa

where [z,y]s denotes the bracket of the graded Lie algebra € and w is the
cocycle in Hom(AZ%€_;, &) given in Proposition 4 (ii) (regarded as an element
of Hom(AZ?¢, £) in an obvious manner). Now our main theorem may be stated
as follows:

Theorem 1 If K is a TFLA and if there is an isomorphism ¢ : grK —
¢ of graded Lie algebras, then there exists a unique real number € and an
isomorphism ® : K — K, of filtered Lie algebras such that the associated
map gr® equals to ¢.

By using proposition 4 it is shown that the theorem holds. A detailed proof
of the theorem is given in [3].
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5.2 Realizations

Let us see how the filtered Lie algebras K, are realized on sub-Riemannian

manifolds.
If e = 0, then the filtered Lie algebra K, is isomorphic to ¢_,D¢_, D&,. It
is realized as the Lie algebra of the infinitesimal automorphisms of the space

(R?"*1, D, g), where D is the contact structure on R®**1(zy, ..., Zn, ¥1,...,YUn, 2)
defined by
1 n+1
dz — 5 Z(:cjdy]- — y;dz;) =0,
j=1

and the metric g on D is given by
g = (dz1|p)* + - - + (dzalp)® + (dy1lp)* + - - + (dyalD)*.

If € is positive, then the filtered Lie algebra K, is isomorphic to
(u(n + 1), {FP},ez), where {FP},cz is a filtration of u(n + 1) given by:

FP = ¢ AeR,E=(61,...,6) €C"Acu(n)p (p<-2),

_tg A

([ o £ \
F—1=< _tg A |§=(£1,--~a§n)ecn’A€u(n)>’
X /
( (o] o \

F° Aculn)y, Fi=0 (¢g=>1).

N
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It is realized as the Lie algebra of the infinitesimal automorphisms of the
sphere (S™*!, D, g|p), where S*"*! is the set of all (z1,%1,...,Tnt1,Yns1) €
R??"*+2 such that

(1) + )+ + (@nt1)? + Wn1)’ =1,

and D is defined by

n+1

Z (Ezdyz - yid$i|52n+1 =0
and
g = (dz1)* + (dy)? + -+ - + (dzpy1)? + (dYns1)?.

If € is negative, then the filtered Lie algebra K is isomorphic to (u(n, 1), {FP},ez),
where {F?},cz is a filtration of u(n, 1) given by:

([xi] ¢ ‘
FP = { | A AeR,E=(&,...,6n) €CMAcu(n) ; (p<-—-2),
\ /
(o] ¢ ‘
-1 __ — n
F = < té‘ A |£ (61,...,&”)60 ’Aeu(n) ?)
\ J
( 0 0 h
Fo=dlol 4 Acu(n)p, F1=0 (¢g=1).
\ y

It is realized as the Lie algebra of infinitesimal automorphisms of the hyper-
surface (£2"*1, D, g|p), where 2"+ is the set of all (z1,¥1,...,Tn+1,Ynt1) €
R2?"+2 such that

(#1)? + 1)? + - = (Tn41)? = Yn+r)? = —1
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and D is defined by

Z(yjdxj - mjdyj) — (Yn+1dTns1 — Tny1dYnya) = 0,

j=1
and
g= (d$1)2 + (dy1)2 +-+ (dmn)2 + (dyn)2 - (d$n+1)2 - (dyn+1)2
is a pseudo-Riemannian metric on R®*2(zy,y1,...,%Tns1, Ynt1), Whose re-

striction g|p on D is a positive definite inner product.

Summarizing the above discussion, we have, in particular:

Theorem 2 If K is a mazrimal sub-Riemannian contact TFLA, then K is
isomorphic to K, fore = —1,0 or 1.

It should be noted that there exists a Cartan connection associated with
a sub-Riemannian structure (satisfying certain regularity conditions)[8]. By
using this Cartan connection we can prove that £2 = 0 if p is large enough,
which implies that £, is in fact isomorphic to L. Thus the results above for
L hold also for £,, and we have:

Theorem 3 Let (M, D, g) be a homogeneous sub-Riemannian contact man-
ifold of dimension 2n + 1, and let L, be the stalk at a € M of the sheaf L
the of infinitesimal automorphisms of (M, D, g). If L, attains the mazimal
dimension (n + 1)2, then L, is isomorphic to K, fore = —1,0 or 1.

6 A remark on transitive filtered Lie algebras

In [6] Morimoto studied transitive filtered Lie algebras (TFLA’s) of depth
1 > 1 and established the fundamental structure theorems which describe
how a TFLA is built on its associated transitive graded Lie algebra (TGLA).

In this paper we have followed his method to study the structure of sub-
Riemannian contact TFLA’s. While applying it to our concrete problems we
have obtained some improvement of his general theorems. In particular, we
can extend Theorem 4.3 ([6], p.69) as follows:
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Theorem 4 Let L; (i = 1, 2) be complete TFLA’s, and let k be an integer
> 0 such that

HYgr_L,grL) = IH?(gr_L,grL) =0 fori=1,2, r>k+1.

Then L, and L, are isomorphic if and only if TrungL, and TrungL, are
isomorphic.

Here we follow the notation of [6]. In particular, we refer to it for the
definition of a truncated transitive filtered Lie algebra TrunL of order & ([6],
p.57). As defined in section 4, IH?(gr_L,grL) denotes the space of groL-
invariant elements in H2(gr_L, grL)

Our theorem asserts that the condition H2(gr_L,grL) = 0 in the origi-
nal theorem can be replaced by the weaker condition IH2(gr_L,grL) = 0.
Roughly speaking, given a TGLA g, we can take the smaller space TH2(g_, g)
instead of H2(g_, g) as a parameter space of the moduli of the TFLA’s whose
associated TGLA’s are equal to g.

The proof of the theorem is similar to that of the original one if we
properly interpret that the formula (2.21), ii) ([6], p.67) actually leads to
our condition JH?(gr_L, grL) = 0.

The improvement observed here seems useful also in other applications
of the theorem. As a corollary of the theorem above, we have also:

Corollary 1 If L is a TFLA satisfying H(gr_L,grL) = IH?(gr-L,grL) =
0 forr > 1, then L is graded, that is, L can be embedded into the completion
of the graded Lie algebra grL.
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