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This short note is a r\’esum\’e of our preprint [5].

Let $S_{\epsilon}^{n-1}(a)$ be the $(n-1)$-dimensional sphere with center $a$ and radius $\epsilon$ . For a map-
germ f : ( $\mathbb{R}$n, a) $arrow$ ( $\mathbb{R}$n, 0) with an isolated zero f-1(0) $=$ {a} near a, we can consider the
mapping $f/||f||$ : $S_{\epsilon}^{n-1}(a)arrow S_{1}^{n-1}$ ( $\epsilon$ : sufficiently small) and its topological mapping
degree. We call this degree the index of $f$ at $a$ and denote it by $ind_{a}[f]$ ([1, Chap. 5]).

Let $\mathbb{R}\{x\}$ be the convergent power series ring in variables $x_{1},$ $\cdots,$ $x_{n}(x=(x_{1},$ $\cdots$ ,
$x_{n})\in \mathbb{R}^{n})$ and $(f_{0})$ be the ideal in $R\{x\}$ generated by components of $f_{0}$ . We consider a
polynomial map-germ $f_{0}:(\mathbb{R}^{n}, 0)arrow(\mathbb{R}^{n}, 0)$ with $\dim_{R}\mathbb{R}\{x\}/(f_{0})<\infty$ . Then $f_{0}$ has an
isolated zero $f_{0}^{-1}(0)=\{0\}$ near $0$ and the index of $f_{0}$ at the origin is defined.

Let $f$ : $(\mathbb{R}^{n}\cross \mathbb{R}, 0)arrow(\mathbb{R}^{n}, 0)$ be any polynomial one-parameter deformation of $f_{0}$ and
$g$ : $(\mathbb{R}^{n}\cross \mathbb{R}, 0)arrow(\mathbb{R}, 0)$ be any polynomial function-germ. We denote $f_{t}(x)=f(x, t)$

and $g_{t}(x)=g(x, t)$ .
When we deform $f_{0}$ to $f_{t}(t>0)$ , the zero of $f_{0}$ bifurcates to the zeros of $f_{t}$ . The

sum of the indices over these zeros of $f_{t}$ is equal to $ind_{0}[f_{0}]$ . Then we are interested in
the subsets of zeros which bifurcate into the region $g_{t}>0$ ( $<0,$ $=0$ respectively). Our
aim is to construct certain map-germs, the indices of which at the origin give the sums
of indices of $f_{t}$ over these subsets of zeros.

For any polynomial function-germ $\varphi$ : ( $\mathbb{R}$n $\cross \mathbb{R}$ , 0) $arrow$ ( $\mathbb{R}$ , 0) and any positive integer
l, we define

$L(l)=L(l;f, \varphi)=\dim_{\mathbb{R}}\mathbb{R}\{x, t\}/(f, \varphi+t^{l})$ .
It tums out {L(l)} is an arithmetic sequence for sufficiently large integers l.

Definition. We define $l_{0}=l_{0}(f, \varphi)$
” by the minimal exponent in the set of integers $l$ , for

which L(l) is finite and satisfies the general term of the arithmetic sequence determined
by large integers l.

We define $I_{+}=I(f, t>0;g>0)$ by the sum of the indices over the zeros of
$f_{t}(t>0)$ , which bifurcate to the region $g_{t}>0$ from the zero of $f_{0}$ , and we define
$I_{-}=I(f, t>0;g<0),$ $I_{0}=I(f, t>0;g=0)$ similarly.
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We call a function $\varphi(x, t)$ has the symmetry with respect to the hyperplane $t=0$ ,
if $\varphi(x, t)=\varphi(x, -t)$ . For any function $\varphi(x, t)$ , by setting $\varphi’(x, t)=\varphi(x, t^{2}),$ $\varphi’(x, t)$ has
the symmetry with respect to $t=0$ .

Theorem. We assume that $f$ and $g$ have the symmetry with respect to $t=0$ .

(i) for any even integer $l$ with $l\geq l_{0}(f, tg)+1$ , if we consider $F’=(f,$ $tg+t^{l})$ :
$(\mathbb{R}^{n}\cross \mathbb{R}, 0)arrow(\mathbb{R}^{n}\cross \mathbb{R}, 0)$ , then we obtain

$ind_{0}[F’]=I_{+}-I_{-}$ .

(ii) for any odd integer $l$ with $l\geq l_{0}(f, g)+1$ , if we consider $F”=(f, g+t^{\iota})$ : $(\mathbb{R}^{n}\cross$

$\mathbb{R},$ $0)arrow(\mathbb{R}^{n}\cross \mathbb{R}_{\}}0)$ , then we obtain

$ind_{0}[F’’]=I_{0}$ .

The sum of indices of $f_{t}$ over all the zeros, which bifucate from the zero of $f_{0}$ , is
$I_{+}+I_{-}+I_{0}=ind_{0}[f_{0}]$ . Therefore we obtain the formula about each of $I_{+},$ $I$-and $I_{0}$ .
Remark. For $F=(f, tg)$ : $(\mathbb{R}^{n}\cross \mathbb{R}, 0)arrow(\mathbb{R}^{n}\cross \mathbb{R}, 0),$ $\dim_{\mathbb{R}}\mathbb{R}\{x, t\}/(f, tg)$ may not be
finite. But if $\dim_{\mathbb{R}}\mathbb{R}\{x, t\}/(f, tg)<\infty$ , then we can prove the formula

ind$0[F]=I_{+}-I_{-}$ ,

by a similar method as in [3], [4],
There are related works: (i) for a generic $f$ and the function $g(x, t)=t,$ $f_{t}$ has the

only simple zeros outside $t=0$ . The number of the zeros in $t>0$ ( $<0$ respectively)
is studied in [3]. (ii) for generic $f$ and $g$ , the deformation $f_{t}$ has the only simple zeros
outside $g_{t}^{-1}(0)$ . The number of the zeros in $g_{t}>0$ ( $<0$ respectively) can be obtained by
modifying the method developed in [4].

In our case: Since $f$ is arbitrary, $f_{t}$ may have multiple zeros, and since $g$ is arbitrary,
some zeros of $f_{t}$ may belong to $g_{t}^{-1}(0)$ . Because we want to treat arbitrary bifurcations
of the zero of $f_{0}$ , these non-generic situations can not be avoided. Therefore our results
are different from theirs.

In the example below, we need the next proposition and lemma. Both of these are
considered for the complexifications of $f_{0},$ $f$ and $\varphi$ . We consider a polynomial map-germ
$f_{0}$ : $(\mathbb{C}^{n}, 0)arrow(\mathbb{C}^{n}, 0)$ with $\dim_{\mathbb{C}}\mathbb{C}\{x\}/(f_{0})<\infty$ . Let $f$ : $(\mathbb{C}^{n}\cross \mathbb{C}, 0)arrow(\mathbb{C}^{n}, 0)$ be
any polynomial one-parameter deformation of $f_{0}$ and $\varphi$ : $(\mathbb{C}^{n}\cross \mathbb{C}, 0)arrow(\mathbb{C}, 0)$ be any
polynomial function-germ. We have $L(l)=L(l;f, \varphi)=\dim_{\mathbb{C}}\mathbb{C}\{x, t\}/(f, \varphi+t^{\iota})$ .

Proposition. For sufficiently large integers $l$ ,

$L(l+1)-L(l)=[whichbifurcateintothehypersurface\varphi_{t}=0fromthezerothesumofthemultiplicitiesoverthezerosoff_{t}(t\neq 0)$
,

of
$f_{0}]$ .

Lemma. If we set $l_{1}=\deg(f_{1})\cross\cdots\cross\deg(f_{n})\cross\deg(\varphi)+1$ , then $L(l_{1})$ is finite and
satisfies the general term of the arithmetic sequence determined by large integers $l$ .
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Example. (i) for $f,$ $g$ : $(\mathbb{R}\cross \mathbb{R}, 0)arrow(\mathbb{R}, 0)$ , we consider $f=x^{2}(x-t)$ and $g=x$ .
Symmetrizing these with respect to $t=0$ , we obtain $f’=x^{2}(x-t^{2})$ and $g’=x$ .

(i-a) for $\varphi=tg’$ , we consider $L(l)=L(l;f’, tg’)$ . By Lemma, we have the exponent
$l_{1}=4\cross 2+1=9$ . Starting from this $l_{1}$ , we obtain Table 1. (We use “Singular”
to calculate $L(l)$ [ $2$ , Chap. $A$] $.)$ The minimal exponent $l_{0}$ which we want is 3. Since

Table 1: (i-a)

4 is the minimal even integer which is greater than 3, by (i) of Theorem, we obtain
$ind_{0}[(f’, tg’+t^{4})]=I_{+}-I_{-}$ .

(i-b) for $\varphi=g’$ , we consider $L(l)=L(l;f’, g’)$ . By Lemma, we have the exponent
$l_{1}=4\cross 1+1=5$ . Starting from this $l_{1}$ , we obtain Table 2. The minimal exponent $l_{0}$

Table 2: (i-b)

which we want is 2. Since 3 is the minimal odd integer which is greater than 2, by (ii)
of Theorem, we obtain $ind_{0}[(f’, g’+t^{3})]=I_{0}$ .

(ii) sometimes, we want to deform $f_{0}$ such that two simple zeros, which are conjugate
each other, run away to the imaginary region. By using our results, we can algebraically
determine whether or not a given deformation $f$ is in this situation: A polynomial map-
germ $f_{0}$ : $(\mathbb{R}^{n}, 0)arrow(\mathbb{R}^{n}, 0)$ with $\dim_{\mathbb{R}}\mathbb{R}\{x\}/(f_{0})<\infty$ and a polynomial one-parameter
deformation $f$ : $(\mathbb{R}^{n}\cross \mathbb{R}, 0)arrow(\mathbb{R}^{n}, 0)$ of $f_{0}$ are given. We set $\mu=\dim_{R}\mathbb{R}\{x\}/(f_{0})$ and
consider $f_{t}$ for $t>0$ . If $\dim_{\mathbb{R}}\mathbb{R}\{x\}/(f_{t})=\mu-2$ , then $\mu-2$ multiple zero remains at the
origin. We take $\varphi=J(f_{t})$ ( $J(f_{t})$ : the Jacobian of $f_{t}$ ) and consider $L(l)=L(l;f, J(f_{t}))$ .
If $L(l+1)-L(l)=\mu-2$ ( $l$ : sufficiently large integer), by Proposition, two simple zeros
bifurcate outside $J(f_{t})=0$ . We symmetrize $f$ to $f’$ with respect to $t=0$ , then $J(f_{t}’)$

has the symmetry too. If $ind_{0}[(f’,$ $tJ(f_{t}’)+t^{\ell})]=0$ ( $l$ : sufficiently large even integer),
by (i) of Theorem, these two simple zeros of $f_{t}(t>0)$ are not real.
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