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1 Introduction
Recently we discovered a new geometry on submanifolds in hyperbolic n-space which

is called horospherical geometry ([5, 6, 13, 14, 15, 16, 17, 18, 19]). This is a survey
article on horospherical geometry. This geometry is not invariant under the hyperbolic
motions (it is invariant under the canonical action of $SO(n)$ ), but the flatness in this
geometry is a hyperbolic invariant and the total curvatures are topological invariants.
We also study horo-tight immersions of manifolds into hyperbolic spaces and give several
characterizations of horo-tightness of spheres, answering a question proposed by T. Cecil
and P. Ryan (1985) : What are the horo-tight imersions of spheres? It has been
shown in [6] that a horo-tight immersion of sphere is hyperbolic tight in the sense of Cecil
and Ryan [9] (cf., Theorem 5.2). Since the converse assertion has been shown in their
paper [9], this is a complete answer to their question. According to this result, we have
the following conjecture:

Conjecture A horo-tight immersion from any closed (orientable) manifold is hyperbolic
tight.

Moreover, we consider a special class of surfaces in the hyperbolic space which are called
horo-flat surfaces (i.e., flat surfaces in the sense of horospherical geometry).

2 Elementary horocyclic geometry
What is the horospherical geometry? We describe the basic idea of this geometry
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in the hyperbolic plane which might be called the “ horocyclic geometry“. We consider
the Poincar\’e disk model $D^{2}$ of the hyperbolic plane which is an open unit disk in the
$(x, y)$ plane with the Riemannian metric: $ds^{2}=4(dx^{2}+dy^{2})/(1-x^{2}-y^{2})$ . Therefore it
is conformally equivalent to Euclidean plane, so that a circle in the Poincar\’e disk is also
a circle in Euclidean plane. It is well-known that a geodesic in the Poincar\’e disk is the
circle in Euclidean plane which is orthogonal to the ideal boundary (i.e., the unit circle).
If we adopt geodesics as the lines in the Poincar\’e disk, we have a model of Hyperbolic
geometry (the non-Euclidean geometry of Gauss-Bolyai-Lobachevski). However, we have
another kind of curves in the Poincar\’e disk which have an analogous property of lines in
Euclidean plane. A horocycle is a Euclidean circle which is tangent to the ideal boundary
(cf., Fig. 1).

$(’\backslash _{\backslash }^{\backslash _{\sim-)}}/\backslash \grave{I}^{\backslash }\nearrow(\backslash \backslash ,\backslash \backslash _{--}\wedge-./,$
$(((’.,)\backslash /_{/-\backslash }^{\prime--.\sim}-\backslash ()^{1^{\backslash )^{1_{1}^{\backslash }}}}\backslash ^{(}A_{\lrcorner}j\vee^{)}’,\backslash$

Fig. 1: Horocycle Fig. 2 : The limit of circles

We remind that a line in Euclidean plane can be considered as a limit of circles when the
radii tend to infinity. A horocycle is also a curve as a limit of circles when the radii tend
to infinity in the Poincar\’e disk (cf., Fig. 2). Therefore, horocycles are also an analogous
notion of lines. If we adopt horocycles as lines, what kind of geometry we obtain? We say
that two horocycles are paralle if they have the comon tangent point at the ideal boundary.
Under this definition, the axiom of parallel is satisfied (cf., Fig. 3). However, for any two
points in the disk, there are always two horocycles though the points, so that the axiom 1
of the Euclidean Geometry is not satisfied (cf., Fig. 4). We call this geometry a horocyc$lic$

geometry. Therefore, the horocyclic geometry is also a non-Euclidean geometry.

$-\cdot----\simeq\backslash \sim\sim$

$(.-\backslash _{\backslash }\backslash ^{1}\backslash ^{(-.\backslash }(\backslash \backslash \Vert_{\backslash _{A_{\backslash }\underline{\}}}}^{1^{-}\prime}(((/\cdot---\backslash )^{\backslash }I^{\backslash }’-|^{--\backslash }(()))$

Fig. 3: The axiom of parallel

$\ovalbox{\tt\small REJECT}_{\backslash ^{-}}^{/_{\wedge’(_{\backslash /^{1^{\backslash }}}}},)-’)/.\cdot\cdot/\nearrow^{--}\backslash \backslash$

$\simarrow\nearrow’$

Fig. 4: The axiom 1

It might be said that horocycles have both the properties of lines and circles in Euclidean
plane. We define the normal angle between two horocycles as follows: For a horocycle,
we have a unit vector on Euclidean plane directed to the tangent points of the horocycle.
We define that a normal angle between two horocycles is the Euclidean angle between
corresponding two unit vectors (cf., Fig. 5, Fig. 6). It is clear that two horocycles are
parallel if and only if the normal angle is zero. However, two horocycles are not paralle
even if the normal angle is $\pi$ .
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Fig. 5: Two horocycles Fig. 6: Two unit horonormal vectors

We now consider three horocycles in the disk (cf., Fig.7, Fig. 8). In this case, there are

$|_{\backslash }^{\backslash _{\backslash }}-(\backslash _{\backslash \backslash y^{\prime’ y^{\gamma_{))}^{1^{\backslash }}}}}’|/\backslash \nearrow^{-}.\backslash |/\sim\backslash \backslash \sim\vee-\sim..$

$\Rightarrow$

Fig. 7: Horo-triangles Fig. 8: Three unit horo-normal vectors

four horo-triangles on the disk. For the simplicity, we consider a $hor(\succ(.,onvex$ triangle.
For any three horocycles, we say that a triangle is horo-convex if the horo-normal unit
vector is directed to the inside of the triangle. If we have three horocycles sufficiently
large radiuses parallel to given horocycles, there exists a horo-convex horo-triangle. By
Fig. 7 and Fig. 8, we can recognize the following theorem:

Theorem 2.1 The total sum of horo-normal angles of a horo-convex horo-triangle $\iota s2\pi$ .

If we consider the orientation of the horo-triangle. we have the similar theorem for other
horo-triangles (under some careful considerationt). Moeover, we can show that the total
suiii of the boro-normal angles of an orientod pieswise horo-cyclic curve is the winding
number times $2\pi$ , so that it is a topological invariant. This suggests us a kind of the Gauss-
Bonnet type theorem holds if we define a suitable curvature of a surface in hyperbolic
space (cf., Theorem 4.1). However, the horo-normal angle is not a hyperbolic invariant.
If we consider the absolute value of horo-normal angle we have the following inequality.

Theorem 2.2 The total sum of absolute horo-nor7nal anqles of $f\iota oro- tr^{v}iangl’$) $\iota$ ; greater
than or equal to $2\pi$ . The equality holds if and only if the horo-trianqle $i_{\backslash }9horo- con\uparrow$) $ex$.

This theorem suggests us a kindof Chern-Lashof type theorem (cf., Theoreni 4.5).
On the other hand, the property that two horocycles are parallel is a hyperbolic invariant

which corresponds to the flatness of the “horospherical curvature“ in hyperbolic space.

3 Local Horospherical Geometry of submanifolds in
Hyperbolic space

We outline in this section the local differential geometry of submanifolds in the hy-
perbolic n-space developed in the previous papers [13, 14, 15]. We adopt, for this pur-
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pose, the model of hyperbolic n-space in the Minkowski $(n+1)$-space. Let $\mathbb{R}^{n+1}=$

$\{(x_{0}, x_{1}, \ldots, x_{n})|x_{i}\in \mathbb{R}(i=0,1, \ldots, n)\}$ be an $(n+1)$-dimensional vector space. For
any $x=$ $(x_{0}, x_{1}, \ldots , x_{n}),$ $y=(y_{0}, y_{\rceil}, \ldots, y_{n})\in \mathbb{R}^{n+1}$ , the pseudo scalar product of $x$

and $y$ is defined by $\{x,$ $y \rangle=-x_{0}y_{0}+\sum_{i=1}^{n}x_{i}y_{i}$ . We call $(\mathbb{R}^{n+1}, \langle, \})$ Minkowski $(n+1)-$
space and denote it by $\mathbb{R}_{1}^{n+1}$ . We say that a non-zero vector $x\in \mathbb{R}_{1}^{n+1}$ is spacelike,
lightlike or timelike if $\langle x,$ $x\}>0,$ $\langle x,$ $x\}=0$ or $\langle x,$ $x\}<0$ respectively. For a vec-
tor $v\in \mathbb{R}_{1}^{n+1}$ and a real number $c$ , we define the hyperplane with pseudo normal $v$ by
$HP(v, c)=\{x\in \mathbb{R}_{1}^{n+1}|\langle x, v\}=c\}$ . We call $HP(v, c)$ a spacelike hyperplane, a timelike
hyperplane or a lightlike hyperplane if $v$ is timelike, spacelike or lightlike respectively.

We now define hyperbolic n-space by $H_{+}^{n}(-1)=\{x\in \mathbb{R}_{1}^{n+1}|\langle x, x\}=-1,$ $x_{0}\geq 1\}$ and $de$

Sitter n-space by $S_{1}^{n}=\{x\in \mathbb{R}_{1}^{n+1}|\langle x, x\rangle=1\}$ . We have three kinds of totally umbilical
hypersurfaces in $H_{+}^{n}(-1)$ which are given by the intersections of $H_{+}^{n}(-1)$ with hyperplanes.
A hypersurface given by the intersection of $H_{+}^{n}(-1)$ with a spacelike hyperplane, a timelike
hyperplane or a lightlike hyperplane is respectively called a hypersphere, an equidistant
hypersurface or a hyperhorosphere. Especially, a hyperhorosphere is an important subject
in this paper, so that we denote it by $HS(v, c)=H_{+}^{n}(-1)\cap HP(v, c)\}$ where $v$ is a
lightlike vector. We also define a set $LC_{+}^{*}=\{x=(x_{0}, \ldots x_{n})\in LC_{0}|x_{0}>0 \}$ , which is
called the future lightcone at the origin.

In the first place, we review the results on hypersurfaces in $H_{+}^{n}(-1)$ . Let $X$ : $Uarrow$

$H_{+}^{n}(-1)$ be an embedding, where $U\subset \mathbb{R}^{n-1}$ is an open subset. We shall identify $M=$

$X(U)$ and $U$ through the embedding $X$ . Since $\langle$X, $X\}\equiv-1$ , we have $\{X_{u_{i}}(u), X(u)\}\equiv$

$0$ $(i=1, \ldots , n-1)$ , for any $u=(u_{1}, \ldots u_{n-1})\in U$. Therefore, we can define the
spacelike unit normal $\mathcal{E}(u)\in S_{1}^{n}$ . It follows that $X(u)\pm \mathcal{E}(u)\in LC_{+}^{*}$ and hence we
can define a map $L^{\pm}:$ $Uarrow LC_{+}^{*}$ by $L^{\pm}(u)=X(u)\pm \mathcal{E}(u)$ which is called the hyperbolic
Gauss indicatrix (or the lightcone dual) of $X$ . In order to define the hyperbolic Gauss-
Kronecker curvature of the hypersurface $M=X(U)$ , we have shown in [13] $d\mathbb{L}^{\pm}(u_{0})$

is a linear transformation on the tangent space $T_{p}M$ . We call the linear transformation
$S_{p}^{\pm}=-d\mathbb{L}^{\pm}(u_{0})$ : $T_{p}Marrow T_{p}M$ the hyperbolic shape operator of $M=X(U)$ at $p=$
$X(u_{0})$ . We denote the eigenvalues of $S_{p}^{\pm}$ by $\overline{\kappa}_{\rho}^{\pm}$ and the eigenvalues of $A_{p}$ by $\kappa_{i}(p)(i=$

$1,$ $\ldots n-1)$ which are called the hyperbolic principal curvatures. The hyperbolic Gauss-
Kronecker curvature of $M=X(U)$ at $p=X(u_{0})$ is defined to be $K_{h}^{\pm}(u_{0})=\det S_{p}^{\pm}=$

$\kappa_{1}(p)\cdots\kappa_{n-1}(p)$ . Since $X_{u_{i}}(i=1, \ldots n-1)$ are spacelike vectors, we have the Riemannian
metric given by $ds^{2}= \sum_{i=1}^{n-1}g_{ij}du_{i}du_{j}$ on $M=X(U)$ , where $g_{ij}(u)=\{X_{u_{t}}(u), X_{u_{j}}(u)\}$

and the hyperbolic second fundamental invariant defined by $\overline{h}_{ij}^{\pm}(u)=\{-L_{u_{i}}^{\pm}(u),$ $X_{u_{j}}(u)\rangle$

for any $u\in U$. In [13] the hyperbolic version of the Weingarten formula was shown and
the formula $K_{h}^{\pm}=\det(\overline{h}_{ij}^{\pm})/\det(g_{\alpha\beta})$ was obtained.

In the previous paragraphs we reviewed the properties of hyperbolic Gauss indicatrices
and hyperbolic Gauss-Kronecker curvatures. The original definition of the hyperbolic
Gauss map introduced by Bryant [4] and Epstein [7] is given in the Poincar\’e ball model.
Here, we introduce the corresponding definition in Minkowski model as follows: If $x=$
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$(x_{0}, x_{1}, \ldots , x_{n})$ is a lightlike vector, then $x_{0}\neq 0$ . Therefore we have

$\tilde{x}=(1,$ $\frac{x_{1}}{x_{0}},$

$\ldots,$
$\frac{x_{n}}{x_{0}})\in S_{+}^{n-1}=\{x=(x_{0}, x_{1}, \ldots, x_{n})|\langle x, x\}=0,$ $x_{0}=1\}$ .

We call $S_{+}^{n-1}$ the lightcone $(n-1)$ -sphere. We define a map

$\tilde{L}^{\pm}:Uarrow S_{+}^{n-1}$

by $\tilde{L}^{\pm}(u)=\overline{L^{\pm}(u)}$ and call it the hyperbolic Gauss map of $X$ . Let $N_{\rho}M$ be the pseudo-
normal space of $T_{p}M$ in $T_{p}\mathbb{R}_{1}^{n+1}$ . We have the decomposition $T_{p}\mathbb{R}_{1}^{n+1}=T_{p}M\oplus N_{p}M$ ,
so that we also have the Whitney sum $T\mathbb{R}^{n+1}=TM\oplus NM$. Therefore we have the
canonical projection $\Pi$ : $T\mathbb{R}^{n+1}arrow TM$ . It follows that we have a linear transformation
$\Pi_{p}\circ d\tilde{\mathbb{L}}^{\pm}(u)$ : $T_{p}Marrow T_{p}M$ for $p=X(u)$ by the identification of $U$ and $X(U)=M$ via
X. In [18] the following formula wa.$s$ shown:

Proposition 3.1 Under the above notation we have the following horospherical Wein-
ganen formula:

$\Pi_{p}0\tilde{L}_{u_{t}}^{\pm}=-\sum_{j=1}^{n-1}\frac{1}{\ell_{0}^{\pm}(u)}(\overline{h}^{\pm})_{i}^{i}X_{u_{j}}$ ,

where $L^{\pm}(u)=(\ell_{0}^{\pm}(u), \ell_{1}^{\pm}(u), \ldots , \ell_{n}^{\pm}(u))$ .

We call the linear transformation $\tilde{S}_{p}^{\pm}=-\Pi_{p}\circ d\overline{\mathbb{L}}^{\pm}$ the horospherical shape operator of
$M=X(U)$ . The horospherical Gauss-Kronecker curvature of $X(U)=M$ is defined to be
$\tilde{K}_{h}^{\pm}(u)=\det\tilde{S}_{p}^{\pm}$ . It follows that we have the following relation between the horospherical
Gauss-Kronecker curvature and the hyperbolic Gauss-Kronecker curvature:

$\tilde{K}_{h}^{\pm}(u)=(\frac{1}{\ell_{0}^{\pm}(u)})^{n-1}K_{h}^{\pm}(u)$ .

We remark that $\overline{K}_{h}^{\pm}(u)$ is not invariant under hyperbolic motions but it is an $SO(n)-$

invariant. We also remark that the notion of horospherical curvatures is independent of
the choice of the model of hyperbolic space. For the purpose, we introduce a smooth
function on the unit tangent sphere bundle of hyperbolic space which plays the principal
role of the horospherical geometry. Let $SO_{0}(n, 1)$ be the identity component of the matrix
group

$SO(n, 1)=\{g\in GL(n+1, \mathbb{R})|gI_{n,1^{t}}g=I_{n,1}\}$ ,

where

$I_{n,1}=(\begin{array}{ll}-l 0t0 I_{n}\end{array})\in GL(n+1, \mathbb{R})$ .

It is well-known that $SO_{0}(n, 1)$ acts transitively on $H_{+}^{n}(-1)$ and the isotropic group
at $p=(1,0, \ldots, 0)$ is $SO(n)$ which is naturally embedded in $SO_{0}(n, 1)$ . Moreover the
action induces isometries on $H_{+}^{n}(-1)$ . On the other hand, we consider a submanifold
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$\triangle=\{(v, w)|\langle v, w\}=0\}$ of $H_{+}^{n}(-1)\cross S_{1}^{n}$ and the canonical projection it : $\trianglearrow$

$H_{+}^{n}(-1)$ . Let $\pi$ : $S(TH_{+}^{n}(-1))arrow H^{n}(-1)$ be the unit tangent sphere bundle over
$H_{+}^{n}(-1)$ . For any $v\in H_{+}^{n}(-1)$ , we have the coordinates $(v_{1}, \ldots, v_{n})$ of $H_{+}^{n}(-1)$ such that
$v=$ $(\sqrt{v_{1}^{2}++v_{n}^{2}+1}, v_{1}, \ldots , v_{n})$ . We can canonically identify $\pi$ : $S(TH_{+}^{n}(-1))arrow$

$H_{+}^{n}(-1)$ with $\overline{\pi}$ : $\Deltaarrow H_{+}^{n}(-1)$ . Moreover, the linear action of $SO_{0}(n, 1)$ on $\mathbb{R}_{1}^{n+1}$ in-
duces the canonical action on $\triangle$

$($ i.e., $g(v,$ $w)=(gv,$ $gw)$ for any $g\in SO_{0}(n,$ $1))$ . For any
$(v_{J}w)\in\triangle$ , the first component of $v\pm w$ is given by

$v_{0} \pm w_{0}=\sqrt{v_{1}^{2}++v_{n}^{2}+1}\pm\frac{1}{\sqrt{v_{1}^{2}++v_{n}^{2}+1}}\sum_{i=1}^{n}v_{i}w_{i}$,

so that it can be considered as a function on the unit tangent bundle $S(TH_{+}^{n}(-1))$ .
We now define a function

$\mathcal{N}_{h}:\trianglearrow \mathbb{R};\mathcal{N}_{h}(v, w)=\frac{1}{v_{0}+uJ_{0}}$ .

We call $\mathcal{N}_{h}^{\pm}$ a horospherical normalization function on $H_{+}^{n}(-1)$ . Since $v_{1}^{2}+\cdots+v_{n}^{2}+1$ and

$\sum_{i=1}^{n}v_{i}w_{i}$ are $SO(n)$-invariant functions, $\mathcal{N}_{h}$ is an $SO(n)$-invariant function. Therefore, $\mathcal{N}_{h}^{\pm}$

can be considered as a function on the unit tangent sphere bundle over the hyperbolic
space $SO_{0}(n, 1)/SO(n)$ which is independent of the choice of the model space. For any
embedding $X$ : $Uarrow H_{+}^{n}(-1)(U\subset \mathbb{R}^{n-1})$ , we have the unit normal vector field $\mathcal{E}$ :
$Uarrow S_{1}^{n}$ , so that $(X(u), \mathcal{E}(u))\in\Delta$ for any $u\in U$. It follows that

$\tilde{K}_{h}^{\pm}(u)=N_{h}(X(u), \pm \mathcal{E}(u))^{n-1}K_{h}^{\pm}(u)$ .

The right hand side of the above :quality is independent of the choice of the model spa$({}^{t}(\backslash \Lambda\cdot$

We now consider general submanifolds in $H_{+}^{n}(-1)$ (cf., [17]). Let $X$ : $Uarrow H_{+}^{n}(-1)$ be
an embedding of codimension $(s+1)$ , where $U\subset \mathbb{R}^{r}$ is an open subset $(r+s+1=n)$

We also write that $M=X(U)$ and identify $M$ and $U$ through the embedding $X$ . Let
$N_{p}(M)$ be the normal space of $M$ at $p=X(u)$ in $\mathbb{R}_{1}^{n+1}$ and we define $N_{p}^{h}(M)=N_{p}(M)\cap$

$T_{p}H_{+}^{n}(-1)$ . Since the normal bundle $N(M)$ is trivial, we can arbitrarily choose a unit
normal section $N(u)\in S^{s}(N_{p}^{h}(M))$ . We consider the orthogonal projections $\pi^{T}:T_{p}M\oplus$

$N_{p}^{h}(M)arrow T_{p}M$ and $\pi^{N}$ : $T_{p}M\oplus N_{p}^{h}(M)arrow N_{p}^{h}(M)$ . Let $dN$. : $T_{u}Uarrow T_{p}M\oplus N_{p}^{h}(M)$

be the derivative of $N$ . We define that $dN_{u}^{T}=\pi^{T}\circ dN_{u}$ and $dN_{u}^{N}=\pi^{N}\circ dN_{u}$ . Under the
identification of $U$ and $M$, the derivative $dX_{u}$ can be identified with the identity mapping
$id_{T_{p}M}$ . We call the linear transformation $S_{p0}(N)=-(id_{T_{\rho_{0}}M}+dN_{uo}^{T})$ : $T_{p0}Marrow T_{p0}M$

the hyperbolic N-shape operator of $M=X(U)$ at $Po=X(u_{0})$ . The hyperbolic curvature
with respect to $N$ at $p_{0}=X(u_{0})$ is defined to be

$K_{h}(N)(X(u_{0}))=K_{h}(N)_{p0}=\det S_{p0}(N)$ .

We give the following generalized hyperbolic Weingarten formula. Since $X_{u_{i}}(i=1, \ldots r)$

are spacelike vectors, we induce the Riemannian metric (the hyperbolic first fundamental

89



form) $ds^{2}= \sum_{i=1}^{r}g_{ij}du_{i}du_{j}$ on $M=X(U)$ , where $g_{ij}(u)=\langle X_{i}(u),$ $X_{u_{j}}(u)\rangle$ for any
$u\in U$. We also define the hyperbolic second fundamental invariant with respect to the
unit normal vector field $N$ by $\overline{h}_{ij}(N)(u)=\{-(X+N)_{u_{i}}(u), X_{u_{J}}(u)\}$ for any $u\in U$. If
we define the second fundamental invariant with respect to the normal vector field $N$ by
$h_{ij}(N)(u)=-\{N_{u}.(u), X_{u_{j}}(u)\}$ , then we have the following relation:

$\overline{h}_{ij}(N)(u)=-g_{ij}(u)+h_{ij}(N)(u),$ $(i,j=1, \ldots, r)$ .

Proposition 3.2 Under the above notations, we have the following horospherical (or,
hyperbolic) Weingarten fomula with respect to $N$ :

$\pi^{T}\circ(X+N)_{u_{i}}=-\sum_{j=1}^{r}\overline{h}_{i}^{j}(N)X_{u_{j}}$ ,

where $(\overline{h}_{i}^{j}(N))=(\overline{h}_{ik}(N))(g^{kj})$ and $(g^{kj})=(g_{kj})^{-1}$ . It follows that the hyperbolic curva-
ture with respect to $N$ is given by

$K_{h}(N)(X(u))= \frac{\det(\overline{h}_{ij}(N)(u))}{\det(g_{\alpha\beta}(u))}$ .

Since $\langle-(X +N)(u),$ $X_{u_{j}}(u)\rangle=0$ , we have $\overline{h}_{ij}(N)(u)=\{X(u)+N(u), X_{u_{i}u_{j}}(u)\}$ .
Therefore the hyperbolic second fundamental invariant at a point $p_{0}=X(u_{0})$ depends
only on $X(u_{0})+N(u_{0})$ and $X_{u_{i}u_{j}}(u_{0})$ . By the above corollary. the hyperbolic curvature
also depends only on $X(u_{0})+N(u_{0})$ and $X_{u_{i}u_{j}}(u_{0})$ . It is independent on the choice
of the normal vector field $N$ . We write $K_{h}(n)(X(u_{0}))$ as the hyperbolic curvature at
$p_{0}=X(u_{0})$ with respect to $n=N(u_{0})$ $(i.e., K_{h}(n)(X(u_{0}))=K_{h}(N)(X(u_{0})))$ .

4 Total horospherical curvatures
We now consider the global properties of curvatures. We first consider the hypersurface

case. Let $M$ be a closed orientable $(n-1)$-dimensional manifold and $f$ : $Marrow H_{+}^{n}(-1)$

an embedding. We consider the canonical projection $\pi$ : Rj $+1arrow \mathbb{R}^{n}$ defined by
$\pi(x_{0}, x_{1}, \ldots, x_{n})=(0, x_{1}, \ldots, x_{n})$ . Then we have orientation preserving diffeomorphisms
$\pi|H_{+}^{n}(-1)$ : $H_{+}^{n}(-1)arrow \mathbb{R}^{n}$ and $\pi|S_{+}^{n-1}$ : $S_{+}^{n-1}arrow S^{n-1}$ . Consider the outward unit
normal $E$ of $f(M)$ in $H_{+}^{n}(-1)$ , then we define the hyperbolic Gauss indicatrix in the
global

$L^{\pm}:Marrow LC_{+}^{*}$

by
$L^{\pm}(p)=f(p)\pm E(p)$ .

The global hyperbolic Gauss-Kronecker curvature function $\mathcal{K}_{h}$ : $Marrow \mathbb{R}$ is then defined
in the usual way in terms of the global hyperbolic Gauss indicatrix L. We also define the
hyperbolic Gauss map in the global

$\tilde{L}^{\pm}:Marrow S_{+}^{n-1}$
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by
$\overline{L^{\pm}}(p)=\overline{L^{\pm}(p)}$ .

We now define a global horospherical Gauss-Kronecker curvature function $\tilde{\mathcal{K}}_{h}^{\pm}$ : $Marrow$

$\mathbb{R}$ by
$\overline{\mathcal{K}}_{h}^{\pm}(p)=\mathcal{N}_{h}(f(p), \pm E(p))^{n-1}\mathcal{K}_{h}^{\pm}(p)$ .

In $[$ 19$]$ the following Gauss-Bonnet type theorem for the horospherical Gauss-Kronecker
curvature was shown.

Theorem 4.1 If $M$ is a closed orientable even-dimensional hypersurface in hyperbolic
n-space, then

$\int_{M}\tilde{\mathcal{K}}_{h}^{\pm}d\mathfrak{v}_{M}=\frac{1}{2}\gamma_{n-1}\chi(M)$

where $\chi(M)$ is the Euler characteristic of $M,$ $do_{M}$ is the volume form of $M$ and the
constant $\gamma_{n-1}$ is the volume of the unit $(n-1)$ -sphere $S^{n-1}$ .

In order to prove the above theorem, it has been shown that $\tilde{\mathcal{K}}_{h}^{\pm}d\mathfrak{v}_{M}=(\tilde{L}^{\pm})^{*}d\mathfrak{v}_{s_{+}^{n-1}}$ , where
$d\mathfrak{v}_{s_{+}^{n-1}}$ is the canonical volume form of $S_{+}^{n-1}[19]$ . Let $D\subset S_{+}^{n-1}$ denote the set of regular
values of $\tilde{L}^{\pm}$ . Since $M$ is compact, $D$ is open and, by Sard’s theorem, the complement of
$D$ in $S_{+}^{n-1}$ has null measure. We define the integer valued map $\eta^{\pm}:Darrow \mathcal{E}$ by setting

$\eta^{\pm}(v)=$ the number of elements of $(\tilde{L}^{\pm})^{-1}(v)$ ,

which turns out to be continuous. We have the following theorem.

Theorem 4.2 Let $f$ : $M^{n-1}arrow H_{+}^{n}(-1)$ be an immersion of the compact manifold $M^{n-1}$ .
Then

$\int_{M}|\tilde{\mathcal{K}}_{h}^{\pm}|d\mathfrak{v}_{M}=\int_{D}\eta^{\pm}(v)d\mathfrak{v}_{s_{+}^{n-1}}$ .

For the surface $M\subset H_{+}^{3}(-1)$ , we have shown the following theorem as an application of
Theorem 4.2 ([5])

Theorem 4.3 Let $M^{2}$ be an embedded closed surface in $H_{+}^{3}(-1)$ , then

$\int_{Af}|\tilde{\mathcal{K}}_{h}^{\pm}|da_{M}\geq 2\pi(4-\chi(M))$ .

We remark that the right hand side of the inequality will }$)e$ much more complicated if we
consider a hypersurfacc $M\subset H_{+}^{n}(-1)$ . Actually we need somo information on the Betti
numbers of $\Lambda f$ and the volumc of the unit sphere $S^{n-1}$ . However, we have the following
rough estimate:
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Theorem 4.4 Let $f$ : $Marrow H_{+}^{n}(-1)$ be an embedding from a closed orientable manifold
with dimension $n-1$ . Then we have

$\int_{M}|\overline{\mathcal{K}}_{h}^{\pm}|d\mathfrak{v}_{M}\geq\gamma_{n-1\prime}$

where $\gamma_{n-1}$ is the volume of the unit sphere $S_{+}^{n-1}$ . The equality holds if and only if $\tilde{L}^{\pm}$ is
bijective on the regular values.

We now define the total absolute $horospher^{J}ical$ curvature for an embedding $f$ : $Marrow$

$H_{+}^{n}(-1)$ from a closed orientable manifold with dimension $n-1$ by

$\tau_{h}^{\pm}(f;M)=\frac{1}{\gamma_{n-1}}\int_{M}|\tilde{\mathcal{K}}_{h}^{\pm}|d\mathfrak{v}_{M}$ .

On the other hand, we consider general $\backslash \neg\backslash 111$ )$\iota na\iota lifolds$ in $H_{+}^{n}(-1)$ . Let $M$ be a coinpact
r-dimensional manifold and $f$ : $M^{r}arrow H_{+}^{n}(-1)$ denotes an immersion of codimension
$(s+1)$ . Let $\nu^{1}(M)$ denote the unitary normal bundle of the immersion $f$ , i.e.:

$\iota/^{1}(M)=\{(p, \xi);\xi\in N_{p}^{h}(M)$ and $\{\xi, \xi\rangle=1\}$ .

The horosphert,$cal$ Gauss map $\tilde{L}$ : $\nu^{1}(M)arrow S_{+}^{n-1}$ of the immersion $f$ : $M^{s}arrow H_{+}^{n}(-1)$ is
defined by the following commutative diagram

$\nu^{1}(M)\tilde{L}LC_{+}^{*}\vec{\backslash ^{L}}|$

$\prod_{-,S_{+}^{n1}}$

where $L$ : $\nu^{1}(M)arrow LC_{+}^{*};L(p, \xi)=f(p)+\xi$ is called the hyperbolic Gauss $indicatr x$ of
the immersion $f$ and $\Pi(v)=\tilde{v}$ . The horospherical Gauss map lead us to a curvature
in the framework of horospherical geometry. Let $T_{(x,n)}\iota/^{1}(M)$ be the tangent space of
$\iota/^{1}(M)$ at $(x, n)$ . We have the canonical identification $T_{(x,n)}\nu^{1}(M)=T_{X}\Lambda l\oplus T_{n}S^{s}\subset$

$T_{X}M\oplus N_{X}M=T_{X}\mathbb{R}_{1}^{n+1}$ , where $N_{X}M$ is the normal vector space of $M$ at $x$ in $\mathbb{R}_{1}^{n+1}$ . Let
$P:\tilde{L}^{*}T\mathbb{R}_{1}^{n+1}=T\nu^{1}(M)\oplus \mathbb{R}^{2}arrow T\nu^{1}(M)$ be the canonical projection. It follows that we
have a linear transformation

$P_{\tilde{L}(x,n)}\circ d\tilde{\mathbb{L}}:T_{(x_{I}n)}\nu^{1}(M)arrow T_{(x,n)}\nu^{1}(M)$ .

The horospherical curvature with respect to $n$ at $x$ is defined to be

$\tilde{K}_{h}(x, n)=\det(P_{\tilde{L}(x,n)^{\circ}}(-d\overline{\mathbb{L}}))$ .

In [5] we have shown that

$\tilde{K}_{h}(x, n)(p)=\mathcal{N}_{h}^{n-1}(x, n)K_{h}(n)(f(p))$ .
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and
$(\tilde{L}^{*}d\mathfrak{v}_{s_{+}^{n-1}})_{(x_{7}n)}=|\overline{K}_{h}(x, n)|do_{\nu^{1}(M)}$ .

The total absolute horospherical curvature of the immersion $f$ is defined by

$\tau_{h}(f;M)=\frac{1}{\gamma_{n-1}}\int_{1}(M)\overline{L}^{*}\sigma$.

It follows from the above formula that we have

$\tau_{h}(f;M)=\frac{1}{\gamma_{n-1}}\int_{\nu^{1}(M)}|\overline{K}_{h}(x, n)|d0_{\nu^{1}(M)}$ ,

In [5] we have shown the followiiig Chern-Lashof type theorem.

Theorem 4.5 Let $f$ : $M^{\Gamma}arrow H_{+}^{n}(-1)$ be an immersion of the compact manifold M. Then

1. $\tau_{h}(f;M)\geq\gamma(M)\geq 2,\cdot$

2. if $\tau_{h}(f;M)<3$ then $M$ is homeomorphic to the sphere $S^{r}$ .

It has been posed the following question in [5]:

Question 4.6 How is the geometry of $f(M)\subset H_{+}^{n}(-1)$ if $\tau_{h}(f;M)=2$?

We have also given an answer to this question in [6].

Remark 4.7 If $r=n-1$ , then $\nu^{1}(M)$ is a double covering over $M$ , so that $\tilde{L}(p, \pm \mathcal{E}(p))=$

$f(p)\pm \mathcal{E}(p)=\tilde{L}^{\pm}(p)$ $(i.e., L(p, \pm \mathcal{E}(p))=L^{\pm}(p))$ . Therefore, we have the following weaker
inequality as a corollary of Theorem 3.5:

$\tau_{h}^{+}(f;M)+\tau_{h}^{-}(f;M)=\frac{1}{\gamma_{n-1}}(\int_{M}|\tilde{\mathcal{K}}_{h}^{+}|do_{M}+\int_{M}|\overline{\mathcal{K}}_{h}^{-}|dU_{M})=\tau_{h}(f;M)\geq 2$ .

In \S 6 we give one of the examples of curves in $H_{+}^{2}(-1)$ such that

$\int_{M}|\tilde{\mathcal{K}}_{h}^{+}|d\mathfrak{v}_{\Lambda I}\neq\int_{M}|\tilde{\mathcal{K}}_{h}^{-}|d\mathfrak{v}_{M}$ .

5 Horo-tight immersions of spheres
What are the horo-tight immersions of spheres? We address this section to this question

proposed by Thomas E. Cecil and Patrick J. Ryan in ([10], pg 236). The notion of horo-
tightness was introduced in [9], whose main subjects are tight and taut immersions into
hyperbolic space. In [6] we have shown Theorems 5.2, 5.3, 5.5 and 5.7 which give several
characterizations on horo-tight spheres in hyperbolic space. These results give a complete
answer to the question of Cecil and Ryan.
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We first define two families of functions

$H^{h}:M\cross S_{+}^{n-1}arrow \mathbb{R}$

by $H^{h}(p, v)=\langle f(p),$ $v\}$ and
$H^{d}:M\cross S_{1}^{n}arrow \mathbb{R}$

by $H^{d}(p, v)=\{f(p), v\}$ . We call $H^{h}$ a horospherical height functions family and $H^{d}$ a $de$

Sitter height functions family on $f$ : $Marrow H_{+}^{n}(-1)$ . Each $h_{v_{0}}^{h}(p)=H^{h}(p, v_{0})$ for fixed
$v_{0}\in S_{+}^{n-1}$ (respectively, $h_{v0}^{d}(p)=H^{d}(p,$ $v_{0})$ for fixed $v_{0}\in S_{1}^{n}$ ) is called a horospherical
height function (respectively, de Sitter height function). We denote the Hessian matrix
of the horospherical height function $h_{v_{0}}^{h}$ at $p_{0}\in M$ by $Hess(h_{v_{0}}^{h})(p_{0})$ . We say that the
critical point $p\in M$ of $h_{v_{0}}^{h}$ is non-degenemte if det Hess $(h_{v_{0}}^{h})(u_{0})\neq 0$ . We say that a
function $f$ : $Marrow \mathbb{R}$ is non-degenerate if $f$ has only non-degenerate critical points. An
immersion $f$ : $Marrow H_{+}^{n}(-1)$ is said to be hyperbolic tight (H-tight for short) if every
non-degenerate de Sitter height function $h_{v}^{d}$ has the minimum number of critical points
required by the Morse inequalities. We also say that $f$ : $Marrow H_{+}^{n}(-1)$ is horospherical
tight (horo-tight for short) if every non-degenerate horospherical height function $h_{v}^{h}$ has
the minimum number of critical points required by the Morse inequalities.

Remark 5.1 In [8] a function $L_{h}$ : $H_{+}^{n}(-1)arrow \mathbb{R}$ has been defined to be $L_{h}(p)=$

$\ln(-h_{v}^{h}(p))$ which is called the distance function from $p$ to the hyperhorosphere $HS(v, -1)$
for $v\in S^{n-1}$ . Therefore the minimum of $L_{h}$ corresponds to the maximum of $h_{v}^{h}$ (i.e., the
minimum of $-h_{v}^{h}$ ).

The main results in this section are the following.

Theorem 5.2 Let $f$ : $S^{r}arrow H_{+}^{n}(-1)$ be an immersion. Then $f$ is horo-tight if and only
if $f$ is H-tight.

We remark that the above theorem gives an answer to the question of Cecil and Ryan.
For $n>r+1$ this theorem is a corollary of the following characterization of horo-tight
embeddings of spheres in higher codimension.

Theorem 5.3 Let $f$ : $S^{r}arrow H_{+}^{r+k}(-1),$ $k>1$ be an immersion. Then $f$ is horo-tight if
and only if $f$ embeds $S^{r}$ as an r-dimensional metric sphere.

The following properties of horo-tight immersions of manifolds into hyperbolic space
can be found in [3].

Theorem 5.4 [Bolton, Theorem 1] Let $f:Marrow H_{+}^{n}(-1)$ be an immersion of a compact
manifold into the hyperbolic space. The following $conditioi^{r}\iota s$ are equivalent:
(i) $M$ is homeomorphic to a sphere and $f(M)$ is horo-tight.
(ii) $f(M)$ lies in only one side of any tangent hyperhorosphere.
(iii) The horosphertcal Gauss map $\tilde{L}$ : $\nu^{1}(M)arrow S_{+}^{n-1}$ takes every regular value exactly
twice.
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We can give an answer to Question 4.6 as follows.

Theorem 5.5 Let $f$ : $Marrow H_{+}^{n}(-1)$ be an $immersior|$, of a compact manifold into the
hyperbolic space. Then $M$ is homeomorphic to a sphere and $f(M)$ is horo-tight if $(\iota\gamma\iota d$

only if
$\tau_{h}(f;M)=2$ .

Proposition 5.6 Let $f$ : $M^{r}arrow H_{+}^{n}(-1),$ $n>r+1$ be an immersion of a compact
manifold into the hyperbolic space. If one of the above conditions (i) to (iii) (and hence
all of them) of Theorem 5.4 holds, then $f(M)$ lies in one hyperhorosphere.

We now consider the characterization of hyperspheres in hyperbolic space which attend
the minimum of the total absolute horospherical curvature. We first consider the case
of hypersurfaces in hyperbolic space. Let $f$ : $Marrow H_{+}^{n}(-1)$ be an embedding from
an $(n-1)$-dimensional manifold. In the first place, we recall that the minimum for the
total absolute curvature of a hypersphere in Euclidean space $\mathbb{R}^{n}$ is 1 and this minimum is
attained precisely when the image is the convex hypersphere. Moreover, for codimension
one embeddings of spheres in Euclidean spaces, the property of attending the minimum
of the total absolute curvature is equivalent to the notion of tightness. We have obtained
a similar result for the image of hyperspheres in hyperbolic space in [6].

A set $X\subset H_{+}^{n}(-1)$ is convex if for any pair of points in $X$ the gcodesic segincnt
joining them is contained in $X$ . Every hyperhorosphere $\mathcal{H}$ in $H_{+}^{n}(-1)$ is the boundary
of a closed convex region of $H_{+}^{n}(-1)$ . These convex subsets are called h-convex. We say
that a submaiiifold (or, an immersion) $f$ : $Marrow H_{+}^{n}(-1)$ is $horospher\dot{t}t,\cdot al$ convex $(ho7$ 0-

convex for short) if for any $p\in M$ , one of the h-convex sets determined } $)y$ its tangent
hyperhorosphere at $f(p)$ contains $f(M)$ entirely.

Theorem 5.7 For an immersion $f$ : $S^{n-1}arrow H_{+}^{n}(-1)$ , the following conditions are
equivalent:

(1) $f$ is horo-convex.
(2) $\tau_{h}^{+}(f;S^{n-1})=\tau_{h}^{-}(f;S^{n-1})=1$ .

(3) $\tau_{h}(f;S^{n-1})=2$ .
(4) Both mappings $\tilde{L}^{+}$ and $\tilde{L}^{-}$ are bijective on the regular values.
(5) $f$ is horo-tight.
(6) $f$ is H-tight.

6 Horospherical flat surfaces
In this section we investigate a special class of surfaces in hyperbolic 3-space which

are called horospherical flat surfaces. We say that a surface $M=X(U)$ is horospherical
flat (briefly, horo-fiat) if $\tilde{K}_{h}(p)=0$ at any point $p\in M$ . By a direct consequence of the
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relation in \S 3, $K_{h}(p)=0$ if and only if $\overline{K}_{h}(p)=0$ , so that the horospherical flatness
is a hyperbolic invariant. Moreover, there is an important class of surfaces called linear
Weingarten surfaces which satisfy the relation $aK_{I}+b(2H-2)=0((a, b)\neq(0,0))$ . In
[11], the Weierstrass-Bryant type representation formula for such surfaces with $a+b\neq 0$

(called, a linear Weingarten surface of Bryant type) was shown. This class of surfaces
contains flat surfaces $(i.e., a\neq 0, b=0)$ and CMC-I(constant mean curvature one)
surfaces $(a=0, b\neq 0)$ . In the celebrated paper [4], Bryant showed the Weierstrass type
representation formula for CMC-I surfaces in hyperbolic space. This is the reason why the
class of the surface with $a+b\neq 0$ is called of Bryant type. By using such representation
formula, there are a lot of results on such surfaces. We only refer [11, 22, 23, 25, 26] here.
The horospherical flat surface is one of the linear Weingarten surfaces. It is, however, the
exceptional case (a linear Weingarten surface of non-Bryant type: $a+b=0$). There
are no Weierstarass-Bryant type representation formula for such surfaces so far as we
know. Therefore the horospherical flat surfaces are also very important subjects in the
hyperbolic geometry. If we suppose that a surface is umbilically free, then we have the
following expression: Let $X$ : $Uarrow H_{+}^{3}(-1)$ be a horospherical surface without umbilical
points, where $U\subset \mathbb{R}^{2}$ is a neighborhood around the origin. In this case, we have two
lines of curvature at each point and one of which corresponds to the vanishing hyperbolic
principal curvature. We may assume that both the u-curve and the v-curve are the
lines of curvature for the coordinate system $(\uparrow\nu, n)\in U$. Moreover, we assume that the
u-curve corresponds to the vanishing hyperbolic principal curvature. By the hyperbolic
Weingarten formula, we have

$L_{u}(u, v)=0$ $L_{v}(u, v)=-\overline{\kappa}(u, v)X_{v}(u, v)$ ,

where $\overline{\kappa}(u, v)\neq 0$ . It follows that $L(O, v)=L(u, v)$ . We define a function $F:H_{+}^{3}(-1)\cross$

$(-\epsilon, \epsilon)arrow \mathbb{R}$ by $F(X, v)=\{L(O, v), X\}+1$ , for sufficiently small $\in>0$ . For any fixed
$v\in(-\in, \epsilon)$ , we have a horosphere $HS^{2}(L(o’, v), -1)$ , so that $F=0$ define a one-parameter
family of horospheres. In [20] we have shown that the surface $M=X(U)$ is the envelope
of the family of horospheres defined by $F=0$ .

On the other hand, we consider a surface $\overline{X}$ : $I\cross Jarrow H_{+}^{3}(-1)$ defined by

$\tilde{X}(s, v)=X(0, v)+s\frac{X_{u}(0,v)}{\Vert X_{u}(0,v)\Vert}+\frac{s^{2}}{2}L(0, v)$ ,

where $I,$ $J\subset \mathbb{R}$ are open intervals. We have also shown that the surface $\overline{M}=\tilde{X}(I\cross J)$

is the envelope of the family of horospheres defined by $F=0$ . It follows that a horo-flat
surface can be reparametrized (at least locally) by $\tilde{X}(s, v)$ . If we fix $v=v_{0}$ , we denote
that $a_{0}=X(0, v_{0}),$ $a_{1}=X_{u}(0, v_{0})/\Vert X_{u}(0, v_{0})\Vert,$ $a_{2}=e(0, v_{0})$ . Then we have a curve

$\gamma(s)=a_{0}+sa_{1}+\frac{s^{2}}{2}(a_{0}+a_{2})$ .

We can show that $\gamma(s)$ is a horocycle. Moreover, any horocyclic has the above parametriza-
tion. Therefore the horo-flat surface is given by the one-parameter family of horocycles.
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We say that a surface is a horocyclic surface if it is (at least locally) parametrized by
one-parameter families of horocycles around any point. Eventually we have the following
theorem[20]:

Theorem 6.1 If $M\subset H_{+}^{3}(-1)$ is an umbilically free horo-flat surface, it is a horocyclic
surface. Moreover, each horocycle is the line of curvatures with the vanishing hyperbolic
principal curvature.

It follows that our main subjects are the horocyclic surfaces. Let $\gamma$ : $Iarrow H_{+}^{3}(-1)$

be a smooth map and $a_{i}$ : $Iarrow S_{1}^{3}(i=1,2)$ be smooth mappings from an open
interval $I$ with $\{\gamma(t), a_{i}(t)\rangle=\langle a_{1}(t), a_{2}(t)\}=0$ . We define a unit spacelike vector $a_{3}(t)=$

$\gamma(t)\wedge a_{1}(t)\wedge a_{2}(t)$ , so that we have a pseudo-orthonormal frame $\{\gamma_{7}a_{1}, a_{2}, a_{3}\}$ of $\mathbb{R}_{1}^{4}$ .
We now define a mapping

$F_{(\gamma,a_{1},a_{2})}:\mathbb{R}\cross Iarrow H_{+}^{3}(-1)$ ; $F_{(\gamma_{t}a1,a2)}(s, t)= \gamma(t)+sa_{1}(t)+\frac{s^{2}}{2}l(t)$ ,

where $\ell(t)=\gamma(t)+a_{2}(t)$ . We call $F_{(\gamma,a_{1},a_{2})}$ (or the image of it) a horocyclic snrfrxc$(,J$ . Each
horocycle $F_{(\gamma)a_{1},a_{2})}(s, t_{0})$ is called a generating horocycle. By using the above pseudo-
orthonorinal frame, we define the following fundamental invariaiits:

$c_{1}(t)=\langle\gamma’(t),$ $a_{1}(t)\rangle=-\{\gamma(t),$ $a_{1}’(t)\rangle$ , $c_{4}(t)=\{a_{1}’(t),$ $a_{2}(t)\rangle=-\{a_{1}(t), a_{2}’(t)\}$ ,
$c_{2}(t)=\{\gamma’(t), a_{2}(t)\}=-\langle\gamma(t),$ $a_{2}’(t)\}$ , $c_{5}(t)=\langle a_{1}’(t),$ $a_{3}(t)\}=-\langle a_{1}(t),$ $a_{3}’(t)\}$ ,
$c_{3}(t)=\{\gamma’(t), a_{3}(t)\}=-\{\gamma(t),$ $a_{3}’(t)\rangle$ , $c_{6}(t)=\{a_{2}’(t),$ $a_{3}(t)\rangle=-\{a_{2}(t),$ $a_{3}’(t)\rangle$ .

We can show that the following fundamental differential equations for the horocyclic
surface:

$(a_{2}’aa_{3}’\gamma_{1}’(((ttt))=(\begin{array}{llll}0 c_{1}(t) c_{2}(t) c_{3}l(t)c_{1}(t) 0 c_{4}(t) c_{5}(t)c_{2}(t) -c_{4}(t) 0 c_{6}(t)c_{3}(t) -c_{5}(t) -c_{6}(t) 0\end{array})(\begin{array}{l}\gamma(t)a_{1}(t)a_{2}(t)a_{3}(t)\end{array})$ .

We remark that

$C(t)=(\begin{array}{llll}0 c_{1}(t) c_{2}(t) c_{3}(t)c_{1}(t) 0 c_{4}(t) c_{5}(t)c_{2}(t) -c_{4}(t) 0 c_{6}(t)c_{3}(t) -c_{5}(t) -c_{6}(t) 0\end{array})\in\epsilon 0(3,1)$ ,

where so (3, 1) is the Lie algebra of the Lorentzian group $SO_{0}(3,1)$ . If $\{\gamma(t), a_{1}(t), a_{2}(t)ia_{3}(t)\}$

is a pseudo-orthonormal frame field as the above, the $4\cross 4$-matrix determined by the
frame defines a smooth curve $A$ : $Iarrow SO_{0}(3,1)$ . Therefore we have the relation that
$A’(t)=C(t)A(t)$ . For the converse, let $A:Iarrow SO_{0}(3,1)$ be a smooth curve, then we
can show that $A’(t)A(t)^{-1}\in\epsilon o(3,1)$ . Moreover, for any smooth curve $C:Iarrow$ so(3, 1),
we apply the existence theorem on the linear systems of ordinary differential equations,
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so that there exists a unique curve $A:Iarrow SO_{0}(3,1)$ such that $C(t)=A’(t)A(t)^{-1}$ with
an initial data $A(t_{0})\in SO_{0}(3,1)$ . Therefore, a smooth curve $C:Iarrow$ so(3, 1) might be
identified with a horocyclic surface in $H_{+}^{3}(-1)$ . Let $C:Iarrow\epsilon 0(3,1)$ be a smooth curve
with $C(t)=A’(t)A(t)^{-1}$ and $B\in SO_{0}(3,1)$ , then we have $C(t)=(A(t)B)’(A(t)B)^{-1}$ .
This means that the curve $C$ : $Iarrow$ so(3, 1) is a hyperbolic invariant of the pseudo-
orthonormal frame $\{\gamma(t), a_{1}(t), a_{2}(t), a_{3}(t)\}$ , so that it is a hyperbolic invariant of the
corresponding horocyclic surface. Let $C^{\infty}$ ( $I$ , so (3, 1)) be the space of smooth curves into
$5o(3,1)$ equipped with Whitney $C^{\infty}$ -topology. By the above arguments, we may regard
$C^{\infty}(I,\epsilon 0(3,1))$ as the space of horocyclic surfaces, where $I$ is an open interval or the unit
circle.

On the other hand, we consider the singularities of horocyclic surfaces. By a straight-
forward calculation, $(s, t)$ is a singular point of $F_{(\gamma,a_{1},a_{2})}(s, t)$ if and only if

$c_{2}(t)+s(c_{4}(t)-c_{1}(t))=0$ , $(1+ \frac{s^{2}}{2})c_{3}(t)+sc_{5}(t)+\frac{s^{2}}{2}c_{6}(t)=0$.

On the other hand, we have also shown in [20] that $F_{(\gamma_{t}a_{1},a_{2})}(s, t)$ is horo-flat if and only
if $c_{2}(t)=c_{4}(t)-c_{1}(t)=0$ . In this case each generating horocycle $F_{(\gamma,a_{1},a_{2})}(s, t_{0})$ is a line
of curvature. Therefore, the first equation for the singularities is automatically satisfied
for a horo-flat horocyclic surface. In this case, the singular set is given by a family if
quadratic equations $\sigma_{C}(s, t)=(c_{3}(t)+c_{6}(t))s^{2}+2C_{5}(t)s+2c_{3}(t)=0$.

We now consider the space of horo-flat horocyclic surfaces. Remember that $C^{\infty}$ ( $I$ , so (3, 1))
is the space of horocyclic surfaces. We consider a linear subspace of so(3, 1) defined by

$\mathfrak{h}f(3,1)=1^{C=}(\begin{array}{llll}0 c_{1} c_{2} c_{3}c_{1} 0 c_{4} c_{5}c_{2} -c_{4} 0 c_{6}c_{3} -c_{5} -c_{6} 0\end{array})\in\epsilon 0(3,1)|c_{2}=c_{1}-c_{4}=0\}$

By the previous arguments, the space of horo-flat horocyclic surfaces is defined to be the
space $C^{\infty}(I, \mathfrak{h}f(3,1))$ with Whitney $C^{\infty}$ -topology. We expect the analogous properties of
developable surfaces in $\mathbb{R}^{3}$ which are ruled surfaces with vanishing Gaussian curvature.
However the situation is quite different. In Euclidean space, complete non-singular devel-
opable surfaces are cylindrical surfaces [12]. There are various kinds of horo-flat horocyclic
surfaces even if these are regular surfaces. We only give some interesting examples of reg-
ular horo-flat horocyclic surfaces and which suggest that the situation is quite different
form the developable surfaces in Euclidean space. Suppose that $\gamma(t)$ is a unit speed curve
with $\kappa_{h}(t)\neq 0$ . Then we have the Frenet-type frame $\{\gamma(t), t(t), n(t), e(t)\}$ . Define

$F_{(\gamma_{1}e,\pm n)}(s, t)= \gamma(t)+se+\frac{s^{2}}{2}(\gamma(t)\pm n(t))$

which is called a binomal horocyclic surface of a hyperbolic plane curve $\gamma$ . By a straight-
forward calculation, the first fundamental form is given by $I_{h}=ds^{2}+(1+s^{2}(1\mp\kappa_{h}(t))/2)^{2}dt^{2}$ .
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Here, $t(t)=\gamma(t)\pm n(t)$ is the lightlike normal vector field along the surface. Then we
have

$-f^{f}(t)== \frac{-2\pm 2\kappa_{h}(t)}{2+s^{2}(1\mp\kappa_{h}(t))}\frac{\partial F_{(\gamma,e,\pm n)}}{\partial t}(.9, i)$

It follow that the de Sitter principal curvatures are 1 and $1-(2\mp 2\kappa_{h}(t))/(2+s^{2}(1\mp\kappa_{h}(t)))$ .
Since $\kappa_{h}(t)>0,$ $F_{(\gamma_{7}e,-n)}$ is always umbilically free. We can draw the pictures of such
surfaces in the Poincar\’e ball (cf., Fig. 9). However, $F_{(\gamma,e_{2}n)}$ has umbilical points where

Horo-torus Banana Croissant
( $\gamma$ : circle, $a_{1}=$constant) ( $\gamma$ : equidistant curve, $a_{1}=$constant) ( $\gamma$ : horocycle, $a_{1}=$constant)

Fig. 9.

$\kappa_{h}(t)=1$ . We can draw a horocylindrical surface which has umbilical points along the
horocycle through $(0,0,0)$ in Fig. 10.

Fig. 10: Hips $(\kappa_{h}(0)=1 of \gamma, a_{1}=constant)$

This gives a concrete example of the surface with a constant principal curvature which
is not umbilically free ([1], Example 2.1) which is a counter example of the hyperbolic
version of the Shiohama-Takagi theorem[24, 28]. If $\kappa_{h}\equiv 1$ ( $i.e.,$ $\gamma(t)$ is a horocycle), then
$F_{(\gamma_{1}e,n)}$ is totally umbilical (i.e., a horosphere).

7 Singularities of horo-flat horocyclic surfaces
In this section we consider a $hor\mathfrak{c}\succ flat$ horocyclic suface $F_{(\gamma.a_{1,a2})}$ with singularities. Since

the singularities satisfy the equation $\sigma_{C}(s, t)=0,$ $F_{(\gamma,aa)}1,2$ has at most two branches of
singularities under the condition that $c_{3}(t)+c_{4}(t)\neq 0$ . We suppose that one of the branches
of the singularities is given by $\overline{\gamma}(t)=\gamma(t)+s(t)a_{1}(t)+(s(t)^{2}/2)l(t)$ , where $s=s(t)$ is one
of the real solutions of $\sigma_{C}(s, t)$ for any $t$ . In this case we can reparametrize the horocyclic
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surface by $\overline{a}_{1}(t),\overline{a}_{2}(t)$ and $S=s-s(t),$ $T=t$ , then we have $F_{(\gamma,a_{1},a_{2})}(s, t)=F_{\overline{\gamma},\overline{a}_{1},\overline{a}_{2}}(S, T)$ ,
$where\overline{a}_{1}(t)=a_{1}(t)+s(t)\ell(t)$ and $\overline{a}_{2}(t)=l(t)-\overline{\gamma}(t)$ . We can directly show that $c_{2}(t)=$

$c_{1}(t)-c_{4}(t)=0$ if and only if $\overline{c}_{2}(t)=\overline{c}_{1}(t)-\overline{c}_{4}(t)=0$ , so that one of thc branch of the
singularities is located on the curve $S=0$ . Therefore, we may always assume that one of
the branch of singularities are located on $\gamma(t)$ . In this case, such singularities satisfy the
condition $c_{3}(t)=0$ . Moreover, another branch of the singularities is given by the equation
2$c_{5}(t)+sc_{6}(t)=0$ . If $c_{6}(t)\neq 0$ , we denote that $\gamma^{\}(t)=\gamma(t)+s(t)a_{1}(t)+(s(t)^{2}/2)t(t)$ ,
where $s(t)=-2c_{5}(t)/c_{6}(t)$ . We remark that the conditon $c_{6}(t)\neq 0$ is a generic condition
for $C(t)\in C^{\infty}(I, \mathfrak{h}1(3,1))$ .

A cone is one of the typical developable surfaces in Euclidean space which has very
simple singularities (conical singularities). We have $hor(\succ flat$ horocyclic surfaces with
analogous properties with cones, but the situation is complicated too. We call $F_{(\gamma,a_{1},a_{2})}$ is
a genemlized horo-cone if $\gamma(t)$ is constant, $a_{1}’(t)=c_{5}(t)a_{3}(t)$ and $a_{2}’(t)=c_{6}(t)a_{3}(t)$ . This
condition is equivalent to the condition that $c_{1}(t)=c_{2}(t)=c_{3}(t)=c_{4}(t)=0$ . We say
that a generalized horo-cone $F_{(\gamma,a_{1},a_{2})}$ is a horo-cone with a single vertex if $c_{1}(t)=c_{2}(t)=$

$c_{3}(t)=c_{4}(t)=c_{5}(t)=0$ and $c_{6}(t)\neq 0$ . In this case, both of $\gamma(t)$ and $\gamma^{\#}(t)$ are constant
and $\gamma=\gamma^{\#}$ . A generalized horo-cone $F_{(\gamma,a\iota,a_{2})}$ is called a horo-cone with two vertices if both
of $\gamma(t)$ and $\gamma^{\#}(t)$ are constant and $\gamma\neq\gamma^{\#}$ . By the calculation of the derivative of $\gamma^{\#}(t)$ ,
the above condition is equivalent to the condition that $c_{1}(t)=c_{2}(t)=c_{3}(t)=c_{4}(t)=0$ ,
$c_{5}(t)\neq 0$ and there exists a real number $\lambda$ such that $c_{5}(t)=\lambda c_{6}(t)$ . If the condition
$c_{1}(t)=c_{2}(t)=c_{3}(t)=c_{4}(t)=c_{6}(t)=0,$ $c_{5}(t)\neq 0$ is satisfied, then $a_{2}(t)$ is constant.
It follows that the image of the generalized horo-cone $F_{(\gamma)a_{1},a_{2})}$ is a part of a horosphere
(i.e., we call it a conical horosphere). We simply call $F_{(\gamma,a\iota,a_{2})}$ a horo-cone if it is one of
the above three cases. We can draw the pictures of horo-cones in the Poincar\’e ball (Fig.
11).

Conical horosphere Horo-cone with a single vertex Horo-cone with two vertices

Half cut of horo-cone with a shifted single vertex Half cut of horo-cone with shifted two vertices
Fig. 11.

We also have the notion of semi-horo-cones which belongs to the class of generalized horo-
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cones. However, we omit the detail. Finally, we say that $F_{(\gamma,a_{1},a_{2})}$ is a horo-flat tangent
horocyclic surface if both of $\gamma$ and $\gamma^{\#}$ are not constant or $\gamma$ is not constant and $c_{6}(t)=0$ .
In the last case, the end is an isolated point and $F_{(\gamma,aa)}1,2$ is a subset of the horosphere (a
one parameter family of horocycles which are tangent to $\gamma$ on a horosphere).

By the above arguments, we also consider the linear subspace of $5o(3,1)$ defined by

$\mathfrak{h}f_{\sigma}(3,1)=\{C=(\begin{array}{llll}0 c_{1} c_{\prime 2} c_{3}c_{1} 0 c_{4} c_{\prime 5}c_{2} -c_{4} 0 c_{6}c_{3} -Cr_{)} -c_{6} 0\end{array})\in\epsilon 0(3,1)|c_{2}=c_{1}-c_{4}=c_{3}=0\}$ .

Therefore the space of horo-flat horocyclic surfaces with curve singularities can be re-
garded as the space $C^{\infty}(I, \mathfrak{h}f_{\sigma}(3_{\eta}1))$ with Whitney $C^{\infty}$-topology. In this terminology, one
of the branches of the singularities of the horo-flat surface is always located OIl the image
of $\gamma$ . In this space the condition $e_{5}(t)=0$ is a co($li\iota ne\iota ision$ one condition (in the suffi-
ciently higher order jet space $J^{\ell}(I, \mathfrak{h}f_{\sigma}(3,1))$ . Therefore, we cannot generically avoid the
points where $c_{5}(t)=0$ . Two branches of the singularities meet at such points. This fact
suggests us the situation is quite different from the singularities of genoral wavefront sets
or tangcnt developables in Euclidean space. In[20] we have shown the following $t$ } $i\backslash$,

Theorem 7.1 Let $F_{(\gamma_{l}a_{1},a_{2})}$ be a $f\iota or\cdot 0$-flat tangent $f\iota 07^{\cdot}ocyclic$ surface with singulariti,$es$

along $\gamma$ .

(A) Suppose that $c_{5}(t_{0})\neq 0$ and $c_{6}(t_{0})\neq 0$ , then both the points $(0, t_{0})$ and $(-s(t_{0}), t_{0})$

are singularities, where $s(t)=2c_{5}(t)/c_{6}(t)$ . In this case we have the following:
(1) The point $(0, t_{0})$ is the cuspidal edge if and only if $c_{1}(t_{0})\neq 0$ .
(2) The point $(0, t_{0})\iota s$ the swallowtail if and only if $c_{1}(t_{0})=0$ and $c_{1}’(t_{0})\neq 0$ .

(3) The point $(-9(t_{0}), t_{0})$ is the cuspidal edge if and only if $(c_{1}-s’)(t_{0})\neq 0$ .
(4) The point $(-s(t_{0}), t_{0})$ is the swallowtail if and only if

$(c_{1}-s’)(t_{0})=0$ and $(c_{1}-s’)’(t_{0})\neq 0$ .

(B) Suppose that $c_{5}(t_{0})=0$ and $c_{6}(t_{0})\neq 0$ , then $s(t_{0})=0$ , so that $(0, t_{0})=(-s(t_{0})7t_{0})$ is a
singular point. In this case, the point $(0, t_{0})$ is the cuspidal beaks if and only if $c_{5}’(t_{0})\neq 0$ ,
$c_{1}(t_{0})\neq 0$ and $(c_{1}-s’)(t_{0})\neq 0$ .

(C) Suppose that $c_{5}(t_{0})\neq 0$ and $c_{6}(t_{0})=0$ , then the point $(0, t_{0})$ is the cuspidal cross cap
if and only if $c_{l}(t_{0})\neq 0$ and $c_{6}(t_{0})\neq 0$ . In this case, $\gamma(t_{0})$ is the only singular point on
the generating horocycle $F_{(\gamma,a_{1},a_{2})}(s, t_{0})$ .

Here, the cuspidal edge is a germ of surface diffeomorphic to $CE=\{(x_{1}, x_{2}, x_{3})|x_{1^{2}}=$

$x_{2^{3}}\}$ , the swallowtail is a germ of surface diffeomorphic to $SW=\{(x_{1}, x_{2}, x_{3})|x_{1}=3u^{4}+$

$u^{2}v,$ $x_{2}=4u^{3}+2uv,$ $x_{3}=v\}$ , the cuspidal cross cap is a germ of surface diffeomorphic to
$CCR=\{(x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3}|x_{1}=u, x_{2}=uv^{3}, x_{3}=v^{2}\}$ and the cuspidal beaks is a germ of
surface diffeomorphic to $CBK=\{(x_{1}, x_{2}, x_{3})|x_{1}=v, x_{2}=-2u^{3}+v^{2}u, x_{3}=3u^{4}-v^{2}u^{2}\}$ .
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By Thom’s jet-transversality theorem, we can show that the above conditions on $C(t)$ is
generic in the space $C^{\infty}(I, \mathfrak{h}f_{\sigma}(3,1))$ . This means that the conditions in the above theorem
is generic in the space of horo-flat tangent horocyclic surfaces. Moreover, we emphasize
that the above conditons on $C(t)$ are the exact conditions for the above singularities, so
that we can easily recognize the singularities for given horo-flat horocyclic surfaces.

cuspidal edge swallowtail cuspidal cross cap cuspidal beaks

Fig. 12.
The singularities in the above theorem are depicted in Fig. 12. We remark that the cusp-
idal beaks appears as the center of one of the generic one-parameter bifurcations of wave
front sets[27]. Usually it bifurcates into two swallowtails or two cuspidal edges. How-
ever, it never bifurcates under any small perturbations in the space of horo-flat horocyclic
surfaces.
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