The reduced length of a polynomial with complex or real coefficients

by

A. Schinzel (Warszawa)

Let for a polynomial $P \in \mathbb{C}[x]$, $P(x) = \sum_{i=0}^{d} a_i x^{d-i} = a_0 \prod_{i=1}^{d} (x-\alpha_i)$, $P^*(x) = \sum_{i=0}^{d} a_i x^{d-i}$, $L(P) = \sum_{i=0}^{d} |a_i|$, $M(P) = |a_0| \prod_{i=1}^{d} \max\{1, |a_i|\}$ and let $\mathbb{C}[x]^1$, $\mathbb{R}[x]^1$ denote the set of monic polynomials over \mathbb{C} or \mathbb{R}, respectively.

$L(P)$ is called the length of P. Following A. Dubickas [1] we consider $l(P)$, the reduced length of P defined by the formula

$$l(P) = \inf_{G \in \mathbb{C}[x]^1} L(PG),$$

which for $P \in \mathbb{R}[x]$ reduces to

$$(1) \quad l(P) = \inf_{G \in \mathbb{R}[x]^1} L(PG).$$

Actually Dubickas considered only the case $P \in \mathbb{R}[x]$ and called the reduced length of P the quantity $\min\{l(P), l(P^*)\}$. For $P \in \mathbb{R}[x]$ some of the following results of [6] are due to him.

Proposition 1. Suppose that $\omega, \eta, \psi \in \mathbb{C}$, $|\omega| \geq 1$, $|\eta| < 1$, then for every $Q \in \mathbb{C}[x]$

(i) $l(\psi Q) = |\psi| l(Q),$

(ii) $l(x + \omega) = 1 + |\omega|,$

(iii) if $T(x) = Q(x)(x - \eta)$, then $l(T) = l(Q),$

(iv) $l(\overline{Q}) = l(Q)$, where \overline{Q} denotes the complex conjugate of $Q.$
Proposition 2. For all \(P, Q \) in \(\mathbb{C}[x]^1 \), all \(\eta \in \mathbb{C} \) with \(|\eta| = 1\) and all positive integers \(k \)

(i) \(\max\{l(P), l(Q)\} \leq l(PQ) \leq l(P)l(Q) \),
(ii) \(M(P) \leq l(P) \),
(iii) \(l(P(\eta x)) = l(P(x)) \),
(iv) \(l(P(x^k)) = l(P(x)) \).

The main problem consists in finding an algorithm of computing \(l(P) \) for a given \(P \). An apparently similar problem in which \(P \) and \(G \) in formula (1) are restricted to polynomials with integer coefficients has been considered in [2] and [3], however the restriction makes a great difference. Coming back to our problem Proposition 1 (iii) shows that it is enough to consider \(P \) with no zeros inside the unit circle. The case of zeros on the unit circle is treated in the following two theorems.

Theorem 1. Let \(P \in \mathbb{C}[x], Q \in \mathbb{C}[x]^1 \) and \(Q \) have all zeros on the unit circle. Then for all \(m \in \mathbb{N} \)

\[l(PQ^m) = l(PQ). \]

Theorem 2. If \(P \in \mathbb{C}[x]^1 \setminus \mathbb{C} \) has all zeros on the unit circle, then \(l(P) = 2 \) with \(l(P) \) attained, if all zeros are roots of unity and simple \(l(P) \) is attained means that \(l(P) = L(Q) \), where \(Q/P \in \mathbb{C}[x]^1 \).

Proofs for \(P \in \mathbb{R}[x] \) are given in [4], proofs for \(P \in \mathbb{C}[x] \) are essentially the same. We have further (see [6]).

Theorem 3. Let \(P = P_0P_1 \), where \(P_0 \in \mathbb{C}[x], \ P_1 \in \mathbb{C}[x]^1, \ L(P_0) \leq 2|P_0(0)| \). Then

\[l(P) \geq L(P_0) + (2|P_0(0)| - L(P_0))(l(P_1) - 1). \]

Corollary 1. If \(P \in \mathbb{C}[x] \) and \(L(P) \leq 2|P(0)| \), then

\[l(P) = L(P). \]

Conversely, if \(l(P) = L(P) \) and all coefficients of \(P \) are real and positive, then \(L(P) \leq 2P(0) \).
Corollary 2. If \(P(x) = (x - \alpha)(x - \beta) \), where \(|\alpha| \geq |\beta| \geq 1 \), then
\[
l(P) \geq 1 + |\alpha| - |\beta| + |\alpha \beta|
\]
with equality if \(\alpha/\beta \in \mathbb{R} \) and either \(\alpha/\beta < 0 \) or \(|\beta| = 1 \).

Corollary 3. Let \(P = P_0P_1 \), where \(P_\nu \in \mathbb{C}[x] \ (\nu = 0, 1) \), \(\deg P_1 \geq 1 \) and all zeros \(z \) of \(P_\nu \) satisfy \(|z| > 1 \) for \(\nu = 0 \), \(|z| = 1 \) for \(\nu = 1 \). If
\[
l (P_0) = L (P_0),
\]
then
\[
l (P) \geq 2M (P).
\]

It remains a problem, whether (3) holds without the assumption (2). The following results of [6] point towards an affirmative answer.

Theorem 4. If \(P \in \mathbb{C}[x] \setminus \{0\} \) has a zero \(z \) with \(|z| = 1 \), then
\[
L(P) > \sqrt{2}M(P), \quad l(P) \geq \sqrt{2}M(P).
\]

Theorem 5. If \(P(x) = (x - \alpha)(x - \beta)(x - 1) \), where \(\alpha, \beta \) are real and at least one of them is positive, then (3) holds.

The question of validity of (3) for all polynomials \(P \) on \(\mathbb{C} \) is equivalent to the following

Problem 1. Is it true that for all polynomials \(P \) in \(\mathbb{C}[x] \) with a zero on the unit circle \(L(P) \geq 2M(P) \)?

The following theorems like Theorem 5 concern \(P \) in \(\mathbb{R}[x] \).

Theorem 6 ([4], Theorem 1). If \(P \in \mathbb{R}[x] \) is of degree \(d \) with \(P(0) \neq 0 \), then \(l(P) = \inf_{Q \in S_d(P)} L(Q) \), where \(S_d(P) \) is the set of all polynomials in \(\mathbb{R}[x] \) divisible by \(P \) with \(Q(0) \neq 0 \) and with at most \(d + 1 \) non-zero coefficients, all belonging to the field \(K(P) \), generated by the coefficients of \(P \).

Theorem 7 ([4], Theorem 2). If \(P \in \mathbb{R}[x] \) has all zeros outside the unit circle, then \(l(P) \) is attained and effectively computable, moreover \(l(P) \in K(P) \).
Theorem 8 ([5], Theorem 1). Let $P(x) = \prod_{i=1}^{3}(x - \alpha_{i})$, where α_{i} distinct, $|\alpha_{1}| \geq |\alpha_{2}| > |\alpha_{3}| = 1$. Then $l(P)$ is effectively computable.

Theorem 9 ([5], Theorem 2). Let $P(x) = (x - \alpha)(x^{2} - \varepsilon)$, where $|\alpha| > 1$, $\varepsilon = \pm 1$. Then

$$l(P) = 2(|\alpha| + 1 - |\alpha|^{-1}).$$

The following problem remains open

Problem 2. How to compute $l(2x^{3} + 3x^{2} + 4)$?

References

