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Let for a polynomial $P\in \mathbb{C}[x],$ $P(x)= \sum_{i=0}^{d}a_{i}x^{d-i}=a_{0}\prod_{i=1}^{d}(x-\alpha_{i}),$ $P^{*}(x)=$

$\sum_{i=0}^{d}a_{i}x^{i},$ $L(P)= \sum_{i=0}^{d}|a_{i}|,$ $M(P)=|a_{0}| \prod_{i=1}^{d}\max\{1, |a_{i}|\}$ and let $\mathbb{C}[x]^{1},$ $\mathbb{R}[x]^{1}$

denote the set of monic polynomials over $\mathbb{C}$ or $\mathbb{R}$ , respectively.
$L(P)$ is called the length of $P$ . Following A. Dubickas [1] we consider

$l(P)$ , the reduced length of $P$ defined by the formula

$l(P)= \inf_{G\in \mathbb{C}[x]^{1}}L(PG)$ ,

which for $P\in \mathbb{R}[x]$ reduces to

(1) $l(P)= \inf_{G\in \mathbb{R}[x]^{1}}L(PG)$ .

Actually Dubickas considered only the case $P\in \mathbb{R}[x]$ and called the reduced
length of $P$ the quantity $\min\{l(P), l(P^{*})\}$ . For $P\in \mathbb{R}[x]$ some of the following
results of [6] are due to him.

Proposition 1. Suppose that $\omega,$ $\eta,$ $\psi\in \mathbb{C},$ $|\omega|\geq 1_{f}|\eta|<1$ , then for every
$Q\in \mathbb{C}[x]$

(i) $l(\psi Q)=|\psi|l(Q)$ ,

(ii) $l(x+\omega)=1+|\omega|$ ,

(iii) if $T(x)=Q(x)(x-\eta)$ , then $l(T)=l(Q)_{f}$

(iv) $l(\overline{Q})=l(Q)$ , where $\overline{Q}$ denotes the complex conjugate$\cdot$ of $Q$ .
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Proposition 2. For all $P,$ $Q$ in $\mathbb{C}[x]^{1}$ , all $\eta\in \mathbb{C}$ with $|\eta|=1$ and all positive
integers $k$

(i) $\max\{l(P), l(Q)\}\leq l(PQ)\leq l(P)l(Q)$ ,

(ii) $M(P)\leq l(P)$ ,

(iii) $l(P(\eta x))=l(P(x))$ ,

(iv) $l(P(x^{k}))=l(P(x))$ .

The main problem consists in finding an algorithm of computing $l(P)$ for
a given $P$ . An apparently similar problem in which $P$ and $G$ in formula (1)
are restricted to polynomials with integer coefficients has been considered in
[2] and [3], however the restriction makes a great difference. Coming back to
our problem Proposition 1 (iii) shows that it is enough to consider $P$ with
no zeros inside the unit circle. The case of zeros on the unit circle is treated
in the following two theorems.

Theorem 1. Let $P\in \mathbb{C}[x],Q\in \mathbb{C}[x]^{1}$ and $Q$ have all zeros on the unit circle.
Then for all $m\in \mathbb{N}$

$l(PQ^{m})=l(PQ)$ .

Theorem 2. If $P\in \mathbb{C}[x]^{1}\backslash \mathbb{C}$ has all zeros on the unit circle, then $l(P)=2$
with $l(P)$ attained, if all zeros are roots of unity and simple $(l(P)$ is attained
means that $l(P)=L(Q)$ , where $Q/P\in \mathbb{C}[x]^{1})$ .

Proofs for $P\in \mathbb{R}[x]$ are given in [4], proofs for $P\in \mathbb{C}[x]$ are essentially
the same. We have further (see [6]).

Theorem 3. Let $P=P_{0}P_{1}$ , where $P_{0}\in \mathbb{C}[x],$ $P_{1}\in \mathbb{C}[x]^{1},$ $L(P_{0})\leq 2|P_{0}(0)|$ .
Then

$l(P)\geq L(P_{0})+(2|P_{0}(0)|-L(P_{0}))(l(P_{1})-1)$ .

Corollary 1. If $P\in \mathbb{C}[x]$ and $L(P)\leq 2|P(0)|_{j}$ then

$l(P)=L(P)$ .

Conversely, if $l(P)=L(P)$ and all coeff cients of $P$ are real and positive,
then $L(P)\leq 2P(0)$ .
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Corollary 2. If $P(x)=(x-\alpha)(x-\beta)$ , where $|\alpha|\geq|\beta|\geq 1$ , then

$l(P)\geq 1+|\alpha|-|\beta|+|\alpha\beta|$

with equality if $\alpha/\beta\in \mathbb{R}$ and either $\alpha/\beta<0$ or $|\beta|=1$ .

Corollary 3. Let $P=P_{0}P_{1}$ , where $P_{\nu}\in \mathbb{C}[x](\nu=0,1),$ $\deg P_{1}\geq 1$ and all
zeros $z$ of $P_{\nu}$ satisfy $|z|>1$ for $\nu=0,$ $|z|=1$ for $\nu=1$ . If
(2) $l(P_{0})=L(P_{0})$ ,

then
(3) $l(P)\geq 2M(P)$ .

It remains a problem, whether (3) holds without the assumption (2). The
following results of [6] point towards an affirmative answer.

Theorem 4. If $P\in \mathbb{C}[x]\backslash \{0\}$ has a zero $z$ with $|z|=1$ , then

$L(P)>\sqrt{2}\Lambda I(P)$ , $l(P)\geq\sqrt{2}M(P)$ .

Theorem 5. If $P(x)=(x-\alpha)(x-\beta)(x-1)$ , where $\alpha,$
$\beta$ are real and at

least one of them is positive, then (3) holds.

The question of validity of (3) for all polynomials $P$ on $\mathbb{C}$ is equivalent to
the following

Problem 1. Is it true that for all polynomials $P$ in $\mathbb{C}[x]$ with a zero on the
unit circle $L(P)\geq 2M(P)$ ?

The following theorems like Theorem 5 concern $P$ in $\mathbb{R}[x]$ .

Theorem 6 ([4], Theorem 1). If $P\in \mathbb{R}[x]^{1}$ is of degree $d$ with $P(O)\neq 0$ ,
then $l(P)=Q\in S_{d}(P)i_{11}fL(Q)_{f}$ where $S_{d}(P)$ is the set of all polynomials in $\mathbb{R}[x]^{1}$

divisible by $P$ with $Q(O)\neq 0$ and with at most $d+1$ non-zero coefficients, all
belonging to the field $K(P)$ , generated by the coefficients of $P$ .

Theorem 7 ([4], Theorem 2). If $P\in \mathbb{R}[x]$ has all zeros outside the unit
circle, then $l(P)$ is attained and effectively computable, moreover $l(P)\in$

$K(P)$ .
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Theorem 8 ([5], Theorem 1). Let $P(x)= \prod_{i=1}^{3}(x-\alpha_{i})$ , where $\alpha_{i}$ distinct,

$|\alpha_{1}|\geq|\alpha_{2}|>|\alpha_{3}|=1$ . Then $l(P)$ is effectively computable.

Theorem 9 ([5], Theorem 2). Let $P(x)=(x-\alpha)(x^{2}-\in)$ , where $|\alpha|>1$ ,
$\in=\pm 1$ . Then

$l(P)=2(|\alpha|+1-|\alpha|^{-1})$ .

The following problem remains open

Problem 2. How to compute $l(2x^{3}+3x^{2}+4)$ ?
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