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Abstract
Our purpose in this article is to discuss nonlinear operators in Banach spaces which are

related to the resolvents of m-accretive operators and maximal monotone operators. We
first deal with nonexpansive mappings which are deduced from the resolvents of m-accretive
operators in Banach spaces. Fixed point theorems for nonexpansive mappings are well-known.
Next, we define nonlinear operators and nonlinear projections which are deduced from the the
resolvents of maximal monotone operators in Banach spaces. These operat$0$rs in Banach spaces
are very new. We discuss fixed point theorems for such nonlinear operators in Banach spaces.
Further, using nonlinear projections, we obtain some results which are related to conditional
expectations in the probability theory. Finally, we deal with duality theorems for nonlinear
operators in Banach spaces.
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1 lntroduction

Let $E$ be a Banach space and let $E^{*}$ be the dual space of $E$ . Then, the duality mapping $J$

from $E$ into $2^{E}$ is defined by

$Jx=\{x^{*}\in E^{*}:\langle x, x^{*}\rangle=\Vert x||^{2}=||x^{*}\Vert^{2}\}$

for every $x\in E$ . Let A C $E\cross E$ be a multi-valued operator with domain $D(A)=\{z\in E$ :
$Az\neq\emptyset\}$ and range $R(A)=\cup\{Az : z\in D(A)\}$ . Then, $A\subset E\cross E$ is called accretive if for
each $x_{i}\in D(A)$ and $y_{i}\in Ax_{i},$ $i=1,2$ , there exists $j\in J(x_{1}-x_{2})$ such that $\{y_{1}-y_{2},j\}\geq 0$ .
An accretive operator $A$ is m-accretive if and only if $R(I+rA)=E$ for all $r>0$ . If
$A\subseteq E\cross E$ is m-accretive, then for each $r>0$ and $x\in E$ , we can define the resolvent
$J_{r}:R(I+rA)arrow D(A)$ by $J_{r}x=\{z\in E:x\in z+rAz\}$ . A multi-valued operator $A:Earrow E^{*}$

with domain $D(A)=\{z\in E:Az\neq\emptyset\}$ and range $R(A)=\cup\{Az:z\in D(A)\}$ is said to be
monotone if $\{x_{1}-x_{2},$ $y_{1}-y_{2})\geq 0$ for each $x_{i}\in D(A)$ and $y_{i}\in Ax_{i},$ $i=1,2$ . A monotone
operator $A$ is said to be maximal if its graph $G(A)=\{(x, y) : y\in Ax\}$ is not properly
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contained in the graph of any other monotone operator. Let $E$ be a reflexive, strictly convex
and smooth Banach space and let $A:Earrow 2^{E^{*}}$ be a monotone operator. Then, $A$ is maximal
if and only if $R(J+rA)=E^{*}$ for all $r>0$ ; see [47]. If $A\subset E\cross E^{*}$ is a maximal monotone
operator, then for $\lambda>0$ and $x\in E$ , we can consider the following resolvents:

$J_{\lambda}x=\{z\in E:0\in J(z-x)+\lambda A(z)\}$

and
$Q_{\lambda}x=\{z\in E:Jx\in Jz+\lambda A(z)\}$ .

Further, if $B\subset E^{*}\cross E$ be a maximal monotone operator, then for $\lambda>0$ and $x\in E$ , we can
consider the resolvent

$R_{\lambda}x=\{z\in E:x\in z+\lambda BJ(z)\}$ .

These four resolvents are important and have interesting properties.
Our purpose in this article is to discuss nonlinear operators in Banach spaces which are

related to the resolvents of m-accretive operators and maximal monotone operators. In Section
3, we first consider nonlinear operators which are directly deduced from the resolvents of m-
accretive operators and maximal monotone operators in Banach spaces. Further, from these
operators, we define four nonlinear projections (retractions) and then obtain some results
for the nonlinear projections in Banach spaces. In particular, we obtain results which are
related to conditional expectations in the probability theory. In Section 4, from the nonlinear
operators defined in Section 3, we define more general nonlinear operators in Banach spaces.
One of them is a nonexpansive mapping. The other nonlinear operators are new. In this
section, we obtain fixed point theorems which are different from the fixed point theorems for
nonexpansive mappings. Further, we deal with duality theorems for nonlinear operators in
Banach spaces.

2 Preliminaries

Let $E$ be a real Banach space with norm $\Vert$ . I and let $E^{*}$ be the duai of $E$ . We denote the
value of $y^{*}\in E^{*}$ at $x\in E$ by $\langle x,$ $y^{*}\rangle$ . When $\{x_{n}\}$ is a sequence in $E$ , we denote the strong
convergence of $\{x_{n}\}$ to $x\in E$ by $x_{n}arrow x$ and the weak convergence by $x_{n}arrow x$ . The modulus
$\delta$ of convexity of $E$ is defined by

$\delta(\epsilon)=\inf\{1-\frac{\Vert x+y\Vert}{2}$ : $\Vert x\Vert\leq 1,$ $\Vert y\Vert\leq 1,$ $\Vert x-y\Vert\geq\epsilon\}$

for every $\epsilon$ with $0\leq\epsilon\leq 2$ . A Banach space $E$ is said to be uniformly convex if $\delta(\epsilon)>0$ for
every $\epsilon>0$ . A uniformly convex Banach space is strictly convex and reflexive. Let $C$ be a
nonempty closed convex subset of a strictly convex and reflexive Banach space $E$ . Then we
know that for any $x\in E$ , there exists a unique element $z\in C$ such that $\Vert x-z\Vert\leq\Vert x-y\Vert$

for all $y\in C$ . Putting $z=P_{C}(x)$ , we call $P_{C}$ the metric projection of $E$ onto $C$ . The duality
mapping $J$ from $E$ into $2^{E}$ is defined by

$Jx=\{x^{*}\in E^{*}$ : $\{x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}$
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for every $x\in E$ . Let $U=\{x\in E : \Vert x\Vert=1\}$ . The norm of $E$ is said to be G\^ateaux

differentiable if for each $x,$ $y\in U$ , the limit

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}$ (2.1)

exists. In the case, $E$ is called smooth. The norm of $E$ is said to be uniformly G\^ateaux

differentiable if for each $y\in U$ , the limit (2.1) is attained uniformly for $x\in U$ . It is also
said to be Fr\’echet differentiable if for each $x\in U$ , the limit (2.1) is attained uniformly for
$y\in U$ . A Banach space $E$ is called uniformly smooth if the limit (2.1) is attained uniformly
for $x,$ $y\in U$ . It is known that if the norm of $E$ is uniformly G\^ateaux differentiable, then the
duality mapping $J$ is single valued and uniformly norm to weak $*$ continuous on each bounded
subset of $E$ . We know the following result: Let $E$ be a smooth, strictly convex and reflexive
Banach space. Let $C$ be a nonempty closed convex subset of $E$ and let $P_{C}$ be the metric
projection of $E$ onto $C$ . Let $x_{0}\in C$ and $x_{1}\in E$ . Then, $x_{0}=P_{C}(x_{1})$ if and only if

$\{x_{0}-y,$ $J(x_{1}-x_{0})\rangle\geq 0$

for all $y\in C$ , where $J$ is the duality mapping of $E$ .
A Banach space $E$ is said to satisfy Opial’s condition [33] if for any sequence $\{x_{n}\}\subset E$ ,

$x_{n}arrow y$ implies
$\lim_{narrow}\inf_{\infty}\Vert x_{n}-y\Vert<\lim_{narrow}\inf_{\infty}\Vert x_{n}-z\Vert$

for all $z\in E$ with $z\neq y$ . A Hilbert space satisfies Opial’s condition.
Let $C$ be a closed convex subset of $E$ . A mapping $T:Carrow E$ is said to be nonexpansive if

$||$ Tx–Ty $\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C$ . We denote the set of all fixed points of $T$ by $F(T)$ . Let
$D$ be a subset of $C$ and let $P$ be a mapping of $C$ into $D$ . Then $P$ is said to be sunny if

$P(Px+t(x-Px))=Px$

whenever $Px+t(x-Px)\in C$ for $x\in C$ and $t\geq 0.$ $A$ mapping $P$ of $C$ into $C$ is said to be a
retraction if $P^{2}=P$ . We denote the closure of the convex hull of $D$ by $\overline{co}D$ .

Let $E$ be a Banach space and let $A\subset E\cross E$ be a multi-valued operator. Then, $A\subset E\cross E$

is called accretive if for each $x_{i}\in D(A)$ and $y_{i}\in Ax_{i},$ $i=1,2$ , there exists $j\in J(x_{1}-x_{2})$ such
that $\langle y_{1}-y_{2},j\rangle\geq 0$ . An accretive operator $A$ is m-accretive if and only if $R(I+rA)=E$
for all $r>0$ . If $A\subset E\cross E$ is $rn$-accretive, then for each $r>0$ and $x\in E$ , we can define
$J_{r}:R(I+rA)arrow D(A)$ by $J_{r}x=\{z\in E:x\in z+rAz\}$ . We call such $J_{r}=(I+rA)^{-1}$ the
accretive resolvent of $A$ for $r>0$ .

A multi-valued operator $A:Earrow E^{*}$ with domain $D(A)=\{z\in E:Az\neq\emptyset\}$ and range
$R(A)=\cup\{Az:z\in D(A)\}$ is said to be monotone if $\langle x_{1}-x_{2},$ $y_{1}-y_{2}\}\geq 0$ for each $x_{i}\in D(A)$

and $y_{i}\in Ax_{i},$ $i=1,2$ . A monotone operator $A$ is said to be maximal if its graph $G(A)=$
$\{(x, y) : y\in Ax\}$ is not properly contained in the graph of any other monotone operator. The
following theorems are well known; see, for instance, [47].

Theorem 2.1. Let $E$ be a reflexive, strictly convex and smooth Banach space and let $A:Earrow$
$2^{E}$ be a monotone operator. Then $A$ is maximal if and only if $R(J+rA)=E^{*}$ for all $r>0$ .

Theorem 2.2. Let $E$ be a strictly convex and smooth Banach space and let $x,$ $y\in E.$ If
$\{x-y$ , Jx–Jy$)$ $=0$ , then $x=y$ .

Let $E$ be a reflexive, strictly convex and smooth Banach space and let A C $E\cross E^{*}$ be a
maximal rnonotone operator. Then, for $\lambda>0$ and $x\in E$ , consider

$J_{\lambda}x=\{z\in E:0\in J(z-x)+\lambda A(z)\}$
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and
$Q_{\lambda}x=\{z\in E:Jx\in Jz+\lambda A(z)\}$ .

We denote $J_{\lambda}$ and $Q_{\lambda}$ by $J_{\lambda}=(I+\lambda J^{-1}A)^{-1}$ and $Q_{\lambda}=(J+\lambda A)^{-1}J$ , respectively. We call
such $J_{\lambda}$ and $Q_{\lambda}$ the metric resolvent and the relative resolvent of $A$ for $\lambda>0$ , respectively.
We also consider another resolvent of a maximal monotone operator. Let B C $E^{*}\cross E$ be a
maximal monotone operator. Then, for $\lambda>0$ and $x\in E$ , consider

$R_{\lambda}x=\{z\in E:x\in z+\lambda BJ(z)\}$ .

We denote $R_{\lambda}$ by $R_{\lambda}=(I+\lambda BJ)^{-1}$ . We call such $R_{\lambda}$ the generalized resolvent of $B$ for
$\lambda>0$ .

3 Nonlinear Operators and Nonlinear Projections

In this section, we first define nonlinear operators which are deduced from m-accretive
operators and maximal monotone operators in a Banach space. Let $E$ be a reflexive, strictly
convex and smooth Banach space. The function $\phi:E\cross Earrow$ $(-$ oo $\infty)$ is defined by

$\phi(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$

for $x,$ $y\in E$ , where $J$ is the duality mapping of $E$ ; see [1] and [19]. If A C $E\cross E$ is m-
accretive, then for each $\lambda>0$ and $x\in E$ , we can define the accretive resolvent $J_{\lambda}:Earrow D(A)$

by $J_{\lambda}x=\{z\in E:x\in z+\lambda Az\}$ . If $J_{\lambda}=(I+\lambda A)^{-1}$ is the accretive resolvent, then we can
show that

$0\leq\langle x-J_{\lambda}x-(y-J_{\lambda}y),$ $J(J_{\lambda}x-J_{\lambda}y)\rangle$

for all $x,$ $y\in E$ . Let $C$ be a subset of $E$ . Then, a nonlinear operator $T$ : $Carrow C$ is called
firmly nonexpansive if

$0\leq$ (x–Tx–(y–Ty), $J(Tx-Ty)\rangle$

for all $x,$ $y\in C$ . If $A\subset E\cross E^{*}$ is a maximal monotone operator, then for $\lambda>0$ and $x\in E$ ,
we define the metric resolvent $J_{\lambda}x=\{z\in E:0\in J(z-x)+\lambda A(z)\}$ . If $J_{\lambda}=(I+\lambda J^{-1}A)^{-1}$

is the metric resolvent, then we have

$0\leq\langle J_{\lambda}x-J_{\lambda}y,$ $J(x-J_{\lambda}x)-J(y-J_{\lambda}y)\rangle$

for all $x,$ $y\in E$ ; see, for instance, [2]. In general, a nonlinear operator $T$ : $Carrow C$ is called
firmly metric if

$0\leq$ {Tx--Ty, $J(x-Tx)-J(y-Ty)\rangle$

for all $x,$ $y\in C$ . If AC $E\cross E^{*}$ is a maximal monotone operator, then for $\lambda>0$ and $x\in E$ , we
can consider the relative resolvent $Q_{\lambda}x=\{z\in E:Jx\in Jz+\lambda A(z)\}$ . If $Q_{\lambda}=(J+\lambda A)^{-1}J$

is the relative resolvent, then we have

$0\leq\{J_{\lambda}x-J_{\lambda}y,$ $Jx-JJ_{\lambda}x-(Jy-JJ_{\lambda}y)\rangle$

for all $x,$ $y\in E$ . In general, a nonlinear operator $T:Carrow C$ is firmly relative nonexpansive if

$0\leq$ $\langle$Tx–Ty, $Jx-JTx-(Jy-JTy)\rangle$
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for all $x,$ $y\in C$ . We can define another nonlinear operator. If B C $E^{*}\cross E$ is a maximal
monotone operator, then for $\lambda>0$ and $x\in E$ , we can consider the generalized resolvent
$R_{\lambda}x=\{z\in E:x\in z+\lambda BJ(z)\}$ . If $R_{\lambda}=(I+\lambda BJ)^{-1}$ is the generalized resolvent, then we
know that

$0\leq\langle x-J_{\lambda}x-(y-J_{\lambda}y),$ $JJ_{\lambda}x-JJ_{\lambda}y\}$

for all $x,$ $y\in E$ . In general, a nonlinear operator $T:Carrow C$ is firmly generalized nonexpansive
if

$0\leq$ $\langle$x–Tx–(y–Ty), $JTx-JTy\rangle$

for all $x,$ $y\in C$ .
Next, we define four projections in a Banach space. Let $E$ be a reflexive, smooth and strictly

convex Banach space. We know that $T:Carrow C$ is firmly nonexpansive if

$0\leq$ $\langle$x–Tx–(y–Ty), $J(Tx-Ty)\rangle$

for all $x,$ $y\in C$ . If $F(T)$ is nonempty, then we have that

$0\leq$ $\langle$x–Tx, $J(Tx-y)\rangle$

for all $x\in C$ and $y\in F(T)$ . If $P$ is a retraction of $E$ onto $C$ , then $P$ is called sunny
nonexpansive if

$0\leq$ $\langle$x–Px, $J(Px-y)\rangle$

for all $x\in E$ and $y\in C$ . We know that $T:Carrow C$ is a firmly metric operator if

$0\leq$ lTx–Ty, $J(x-Tx)-J(y-Ty)\rangle$

for all $x,$ $y\in C$ . If $F(T)$ is nonempty, then we have that

$0\leq$ {Tx--y, $J(x-Tx)\rangle$

for all $x\in C$ and $y\in F(T)$ . A retraction $P$ of $E$ onto $C$ is called metric if

$0\leq$ $\langle$ Px–y, $J$(x–Px) $)$

for all $x\in E$ and $y\in C$ . If $T:Carrow C$ is firmly relative nonexpansive, then we have

$0\leq$ {Tx--Ty, Jx–JTx–(Jy–JTy)}

for all $x,$ $y\in C$ . If $F(T)$ is nonempty, then we have that

$0\leq$ $\langle$Tx–y, Jx–JTx)

for all $x\in C$ and $y\in F(T)$ . A retraction $\Pi_{C}$ of $E$ onto $C$ is called generalized if

$0\leq\langle\Pi_{C}x-y,$ $Jx-J\Pi_{C}x\rangle$

for all $x\in E$ and $y\in C$ . If $T:Carrow C$ is firmly generalized nonexpansive, we have

$0\leq$ $\langle$x–Tx–(y–Ty), JTx–JTy}
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for all $x,$ $y\in C$ . If $F(T)$ is nonempty, then we have

$0\leq$ {x--Tx, $JTx-Jy\rangle$

for all $x\in C$ and $y\in F(T)$ . A retraction $R$ of $E$ onto $C$ is called sunny generalized nonex-
pansive if

$0\leq$ {x--Rx, JRx–Jy}

for all $x\in E$ and $y\in C$ .
Kohsaka and Takahashi [23] proved the following two theorems.

Theorem 3.1 (Kohsaka and Takahashi [23]). Let $E$ be a smooth, strictly convex and reflexive
Banach space and let $C^{*}$ be a nonempty closed convex subset of $E^{*}$ . Suppose that $\Pi_{C_{*}}$ is the
generalized projection of $E^{*}$ onto $C_{*}$ . Then, $R$ defined by $R=J^{-1}\Pi_{C}.J$ is a sunny generalized
nonexpansive retraction of $E$ onto $J^{-1}C_{*}$ .

Theorem 3.2 (Kohsaka and Takahashi [23]). Let $E$ be a smooth, strictly convex and reflexive
Banach space and let $D$ be a nonempty subset of E. Then, the following conditions are
equivalent

(1) $D$ is a sunny generalized nonexpansive retract of $E$ ;
(2) $D$ is a generalized nonexpansive retract of $E$ ;
(3) $JD$ is closed and convex.

In this case, $D$ is closed.

Motivated by these theorenis, we define the following nonlinear operator: Let $E$ be a reflex-
ive, strictly convex and smooth Banach space and let $J$ be the normalized duality mapping
from $E$ onto $E^{*}$ . Suppose that $Y^{*}$ is a closed linear subspace of the dual space $E^{*}$ of $E$ . Then,
the generalized conditional expectation $E_{Y^{*}}$ with respect to $Y^{*}$ is defined as follows:

$E_{Y}\cdot=J^{-J}\Pi_{Y}\cdot J$,

where $\Pi_{Y^{e}}$ is the generalized projection from $E^{*}$ onto $Y^{*}$ .
Let $E$ be a normed linear space and let $x,$ $y\in E$ . We say that $x$ is orthogonal to $y$ in the

sense of Birkhoff-James, denoted by $x\perp y$ , if

$|1x\Vert\leq\Vert x+\lambda y\Vert$

for all $\lambda\in$ R. We know that for $x,$ $y\in E,$ $x\perp y$ if and only if there exists $f\in J(x)$

with $\{y,$ $f\rangle=0$ . In general, $x\perp y$ does not imply $y\perp x$ . An operator $T$ of $E$ into itself
is called left-orthogonal (resp. right-orthogonal) if for each $x\in E,$ $Tx\perp$ (x–Tx) (resp.
$(x-Tx)\perp Tx)$ .

The following theorems are in Honda and Takahashi [10].

Theorem 3.3 (Honda and Takahashi [10]). Let $E$ be a normed linear space and let $T$ be an
operator of $E$ into itself such that

$T(Tx+\beta(x-Tx))=Tx$

for any $x\in E$ and $\beta\in R$ . Then, the following conditions are equivalent:

(1) $\Vert Tx\Vert\leq\Vert x\Vert$ for all $x\in E$ ;
(2) $T$ is left-orthogonal.
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Theorem 3.4 (Honda and Takahashi [10]). Let $E$ be a reflexive, strictly convex and smooth
Banach space and let $Y^{*}$ be a closed linear subspace of the dual space $E^{*}$ . Then, $E_{Y}$ . with
respect to $Y^{*}$ is left-orthogonal, i. e., for any $x\in E$ ,

$E_{Y}$ . $x\perp(x-E_{Y}\cdot x)$ .

Let $Y$ be a nonempty subset of a Banach space $E$ and let $Y^{*}$ be a nonempty subset of the
dual space $E^{*}$ . Then, we define the annihilator $Y_{\perp}^{*}$ of $Y^{*}$ and the annihilator $Y^{\perp}$ of $Y$ as
follows:

$Y_{\perp}^{*}=\{x\in E:f(x)=0$ for all $f\in Y^{*}\}$

and
$Y^{\perp}=\{f\in E^{*}$ : $f(x)=0$ for all $x\in Y\}$ .

The following theorems are also in Honda and Takahashi [10].

Theorem 3.5 (Honda and Takahashi [10]). Let $E$ be a reflexive, strictly convex and smooth
Banach space and let I be the identity operator of $E$ into itself. Suppose that $Y^{*}$ is a closed
linear subspace of the dual space $E^{*}$ and $E_{Y}$ . is the genemlized conditional expectation with
respect to $\}^{r*}$ . Then, the mapping $I-E_{Y}$ . is the metric projection of $E$ onto $Y_{\perp}^{*}$ .

Further, suppose that $Y$ is a closed linear subspace of $E$ and $P_{Y}$ is the metric projection of
$E$ onto Y. Then, $I-P_{Y}$ is the generalized conditional expectation $E_{Y}\perp$ , i. e., $I-P_{Y}=E_{Y}\perp$ .

Let $E$ be a normed linear space and let $Y_{1}$ and $Y_{2}CE$ be closed linear subspaces. If
$Y_{1}\cap Y_{2}=\{0\}$ and for any $x\in E$ there exists a unique pair $y_{1}\in Y_{1},$ $y_{2}\in Y_{2}$ such that

$x=y1+y_{2}$ ,

and any element of $Y_{1}$ is BJ-orthogonal to any element of $Y_{2}$ , i.e., $y_{1}\perp y_{2}$ for any $y1\in Y_{1},$ $y_{2}\in$

$Y_{2}$ , then we represent the space $E$ as

$E=Y_{1}\oplus Y_{2}$ and $Y_{1}\perp Y_{2}$ .

The kernel of an operator $T:Earrow E$ is denoted by $ker(T)$ , i.e.,

$ker(T)=\{x\in E:Tx=0\}$ .

Theorem 3.6 (Honda and Takahashi [10]). Let $E$ be a strectly convex, reflexive and smooth
Banach space and let $Y^{*}$ be a closed linear subspace of the dual space $E^{*}$ of $E$ such that for
any $y_{1},$ $y_{2}\in J^{-1}Y^{*},$ $y_{1}+y_{2}\in J^{-1}Y^{*}$ . Then, $J^{-1}Y^{*}$ is a closed linear subspace of $E$ and
the generalized conditional expectation $E_{Y}$ . is a norm one linear projection from $E$ to $J^{-1}Y^{*}$ .
Further, the following hold:

(1) $E=J^{-1}Y^{*}\oplus ker(E_{Y}\cdot)$ and $J^{-1}Y^{*}\perp ker(E_{Y}\cdot)$ ;
(2) $I-E_{Y}$ . is the $met_{7}nc$ projection of $E$ onto $ker(E_{Y^{k}})$ .

Using Theorem 3.6, Honda and Takahashi [11] obtained the following two theorems.

Theorem 3.7 (Honda and Takahashi [11]). Let $E$ be a strictly convex, reflexive and smooth
Banach space and let $P:Earrow E$ be a norm one projection with $Y=\{Px:x\in E\}$ . Then, $JY$

is a closed linear subspace of $E^{*}$ and $P$ is the generalized conditional expectation $E_{JY}$ with
respect to $JY$ , i. e., $P=J^{-1}\Pi_{JY}J$ .
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Theorem 3.8 (Honda and Takahashi [11]). Let $E$ be a strictly convex, reflexive and smooth
Banach space and let $Y^{*}$ be a closed linear subspace of $E^{*}$ Suppose that $P$ is a projection of $E$

onto $J^{-1}Y^{*}$ such that $\Vert Px-m\Vert\leq\Vert x-m\Vert$ for all $x\in E$ and $m\in J^{-1}Y^{*}$ . Then, $J^{-1}Y^{*}$ is
a closed linear subspace of $E$ and $P$ is the generalized conditional expectation $E_{Y^{*}}$ . Further,
$P$ is a norm one linear projection.

4 Four Nonlinear Operators in Banach Spaces

Let $E$ be a reflexive, smooth and strictly convex Banach space. Let $C$ be a closed convex
subset of $E$ and let $T$ be a mapping of $C$ into itself. Then, since

$\phi(x, y)=\Vert x\Vert^{2}-2\{x, Jy\}+\Vert y\Vert^{2}$

for $x,$ $y\in E$ , we know that for any $x,$ $y\in C$ ,

$0\leq$ $\langle$x–Tx–(y–Ty), $J$ (Tx–Ty) $\}$

$<\Rightarrow\Vert Tx-Ty\Vert^{2}\leq\langle x-y,$ $J$ (Tx–Ty) $)$

$\Leftrightarrow 2\Vert Tx-Ty\Vert^{2}\leq 2\langle x-y,$ $J(Tx-Ty)\rangle$

$\Leftrightarrow 2\Vert$Tx–Ty $\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert Tx-Ty\Vert^{2}-\phi$($x-y$ , Tx–Ty).

So, from a firmly nonexpansive mapping $T$ of $C$ into itself, we can define a nonexpansive
mapping. That is, $T:Carrow C$ is called a nonexpansive mapping if I $Tx-Ty\Vert\leq\Vert x-y\Vert$ for
all $x,$ $y\in C$ . An operator $T:Carrow C$ is firmly metric if

$0\leq$ {Tx--Ty, $J(x-Tx)-J(y-Ty)\rangle$

for all $x,$ $y\in C$ . Since

$\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z$ , Jz–Jy$\}$

for $x,$ $y,$ $z\in E$ , we have that for any $x,$ $y\in C$ ,

$0\leq$ $\{$Tx–Ty,$J(x-Tx)-J$(y–Ty) $\}$

$\doteqdot\Rightarrow 0\leq 2\{$Tx–Ty, $J(x-Tx)-J$(y–Ty) $\}$

$\Leftrightarrow 2$ {x--Tx--(y--Ty), $J(x-Tx)-J(y-Ty)\rangle$

$\leq 2\{x-y, J(x-Tx)-J(y- Ty)\}$

$\Leftrightarrow\phi(x-y-Tx, Sy)+\phi(y-Ty, x- Tx)$

$\leq\phi(x, y-Ty)+\phi(y, x-Tx)-\phi(x, x-Tx)-\phi$ ( $y$ , y–Ty)

$\Rightarrow\phi(x-Tx, y-Ty)+\phi(y-Ty, x- Tx)$ $\leq\phi(x, y-Ty)+\phi$ ( $y$ , x–Tx).

So, from a firmly metric operator, we can define a metric operator. That is, $T$ : $Carrow C$ is
called a metric operator if

$\phi(x-Tx, y-Ty)+\phi(y-Ty, x- Tx)$

$\leq\phi(x, y-Ty)+\phi$ ( $y$ , x–Ty)
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for all $x,$ $y\in C$ . In the case that $H$ is a Hilbert space and $C$ is a closed convex subset of $H$ ,
$T:Carrow C$ is firmly nonexpansive if

$||$ Tx–Ty $\Vert^{2}\leq$ $\langle$Tx–Ty, $x-y\rangle$

for all $x,$ $y\in C$ . Further, $T:Carrow C$ is a metric operator if for any $x,$ $y\in C$ ,

$2\Vert x-Tx-(y-Ty)\Vert^{2}\leq\Vert x-(y-Ty)\Vert^{2}+\Vert y-(x-Ty)\Vert^{2}$ .

This inequality is equivalent to

2 $\{x-y, Tx-Ty\rangle+2\langle Tx, Ty\}\geq\Vert$Tx–Ty $\Vert^{2}$ .

An operator $T:Carrow C$ is firmly relatively nonexpansive if

$0\leq$ $\langle$Tx–Ty, Jx–JTx–(Jy–JTy) $\}$

for all $x,$ $y\in C$ . Then, we know that for any $x,$ $y\in C$ ,

$0\leq$ $\langle$Tx–Ty, $Jx-JTx-(Jy-JTy)\rangle$
$\Leftrightarrow$ {Tx--Ty, $JTx-JTy\rangle\leq$ $\langle$Tx–Ty, Jx–Jy}
$\Leftrightarrow\phi(Tx, Ty)+\phi(Ty, Tx)$

$\leq\phi(Tx, y)+\phi(Ty, x)-\phi(Tx, x)-\phi(Ty, y)$ .

So, from a firmly relatively nonexpansive operator, we can define a nonspreading operator.
That $i_{S_{t}}T:Carrow C$ is a nonspreading operator if

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(Tx, y)+\phi(Ty, x)$

for all $x,$ $y\in C$ . In the case that $H$ is a Hilbert space and $C$ is a closed convex subset of $H$ ,
an operator $T:Carrow C$ is firmly nonexpansive if

$2\Vert Tx-Ty\Vert^{2}\leq\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}-\Vert Tx-x\Vert^{2}-\Vert Ty-y\Vert^{2}$

for all $x,$ $y\in C$ . Further, an operator $T:Carrow H$ is nonspreading if

$2\Vert Tx-Ty\Vert^{2}\leq||Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$

for all $x,$ $y\in C$ . This inequality is equivalent to

$||$ Tx–Ty $\Vert^{2}\leq\Vert x-y\Vert^{2}+2$ {x--Tx, $y-Ty\rangle$

for all $x,$ $y\in C$ . An operator $T:Carrow C$ is firmly generalized nonexpansive if

$0\leq$ $\langle$x–Tx–(y–Ty), $JTx-JTy\rangle$

for all $x,$ $y\in C$ . Then, we know that for any $x,$ $y\in C$ ,

$0\leq$ $\langle$x–Tx–(y–Ty), JTx–JTy)
$\Leftrightarrow$ $\langle$Tx–Ty, $JTx-JTy\rangle\leq\langle x-y,$ $JTx-JTy\rangle$

$\Leftrightarrow\phi(Tx, Ty)+\phi(Ty, Tx)$

$\leq\phi(x, Ty)+\phi(y, Tx)-\phi(x, Tx)-\phi(y, Ty)$ .
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So, from a firmly generalized nonexpansive operator, we can define a generalized nonexpansive
type operator. That is, $T:Carrow C$ is a generalized nonexpansive type operator if

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(x, Ty)+\phi(y, Tx)$

for all $x,$ $y\in C$ .
The following is Kohsaka and Takahashi’s fixed point theorem [25].

Theorem 4.1 (Kohsaka and Takahashi [25]). Let $E$ be a smooth, strictly convex, and re-
flexive Banach space and let $C$ is a closed convex subset of E. Suppose that $T:Carrow C$ is
nonspreading, i. e., for all $x,$ $y\in C$ ,

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(Tx, y)+\phi(Ty, x)$ .

Then the following are equivalent:

(1) There exists $x\in C$ such that $\{T^{n}x\}$ is bounded;
(2) $F(T)$ is nonempty.

In the case that $E$ is a Hilbert space, we have the following theorem.

Theorem 4.2 (Kohsaka and Takahashi [25]). Let $H$ be a Hilbert space and let $C$ be a closed
convex subset of H. Suppose that $T:Carrow C\iota s$ nonspreading, i. e., for all $x,$ $y\in C$ ,

$2\Vert Tx-Ty\Vert^{2}\leq\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$ .

Then the following are equivalent:

(1) There exists $x\in C$ such that $\{T^{n}x\}$ is bounded;
(2) $F(T)$ is nonempty.

5 Four Nonlinear Operators with Fixed Points

Let $E$ be a reflexive, smooth and strictly convex Banach space and let $C$ be a closed convex
subset of $E$ . Let $T:Carrow C$ be nonexpansive, i.e.,

$\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$

for all $x,$ $y\in C$ . If $F(T)\neq\emptyset$ , then

$\Vert Tx-y\Vert\leq\Vert x-y\Vert$

for all $x\in C$ and $y\in F(T)$ . Such $T$ is called quasi-nonexpansive. Let $T:Carrow C$ be a metric
operator, i.e.,

$\phi(x-Tx, y-Ty)+\phi(y-Ty, x- Tx)$ $\leq\phi(x, y-Ty)+\phi$ ( $y$ , $x$ – $Tx$ )

for all $x,$ $y\in C$ . If $F(T)\neq\emptyset$ , then

$2\Vert x-Tx\Vert^{2}\leq\Vert x\Vert^{2}+\Vert y-(x-Tx)\Vert^{2}$

for all $x\in C$ and $y\in F(T)$ . Such $T$ is called a quasi-metric operator. Let $T:Carrow C$ be
nonspreading, i.e.,

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(Tx, y)+\phi(Ty, x)$
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for all $x,$ $y\in C$ . If $F(T)\neq\emptyset$ , then

$\phi(Tx, y)+\phi(y, Tx)\leq\phi(Tx, y)+\phi(y, x)$

for all $x,$ $y\in C$ . This implies that

$\phi(y, Tx)\leq\phi(y, x)$

for all $x\in C$ and $y\in F(T)$ . Such $T$ is called a quasi relatively nonexpansive operator. Let
$T:Carrow C$ be a generalized nonexpansive type operator, i.e.,

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(x, Ty)+\phi(y, Tx)$

for all $x,$ $y\in C$ . If $F(T)\neq\emptyset$ , then

$\phi(Tx, y)+\phi(y, Tx)\leq\phi(x, y)+\phi(y, Tx)$

for all $x\in C$ and $y\in F(T)$ . This implies that

$\phi(Tx, y)\leq\phi(y, x)$

for all $x\in C$ and $y\in F(T)$ . Such $T$ is called a generalized nonexpansive operator. Let $E$

be a Banach space and let $C$ be a closed convex subset of $E$ . Let $T:Carrow C$ be a mapping.
Then, $p\in C$ is called an asymptotic fixed point of $T$ if there exists $\{x_{n}\}$ such that $x_{n}arrow p$ ,
$1ini_{narrow\infty}\Vert x_{n}-Tx_{n}\Vert=0$ . We denote by $F(T)$ the set of fixed points of $T$ and by $\hat{F}(T)$ the
set of asymptotic fixed points of $T$ . Matsushita and Takahashi [28] also gave the following
definition: An operator $T:Carrow C$ is relatively nonexpansive if $F(T)\neq\emptyset,\hat{F}(T)=F(T)$ and

$\phi(y, Tx)\leq\phi(y, x)$

for all $x\in C$ and $y\in F(T)$ .
The following theorems are in Kohsaka and Takahashi [25].

Theorem 5.1 (Kohsaka and Takahashi [25]). Let $E$ be a stnctly convex Banach space whose
norm is uniformly G\^ateaux differentiable and let $C$ be a closed convex subset of E. Suppose
that $T:Carrow C$ is nonspreading, i. e.,

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(Tx, y)+\phi(Ty, x)$

for all $x,$ $y\in C$ . Then, $\hat{F}(T)=F(T)$ .

Theorem 5.2 (Kohsaka and Takahashi [25]). Let $E$ be a strictly convex Banach space whose
norm is uniformly G\^ateaux differentiable and let $C$ be a closed convex subset of E. Suppose
$T:Carrow C$ is nonspreading, i. e.,

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(Tx, y)+\phi(Ty, x)$

for all $x,$ $y\in C$ and $F(T)$ is nonempty. Then, $T:Carrow C$ is relatively nonexpansive.

Finally, we deal with the duality theorems for nonlinear operators in a Banach space. Let
$E$ be a smooth, strictly convex, and reflexive Banach space and let $T$ be a mapping of $E$ into
itself. Define $\tau*$ : $E^{*}arrow E^{*}$ as follows:

$T^{*}x^{*}=JTJ^{-1}x^{*}$ ,
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where $J$ is the duality mapping on $E$ and $J^{-1}$ is the duality mapping on $E^{*}$ . A mapping $\tau*$ is
called the duality mapping of $T$ . Let $E$ be a smooth Banach space and let $C$ be a closed convex
subset of $E$ . Let $T$ : $Carrow C$ be a mapping. Then, $p\in C$ is called a generalized asymptotic
fixed point of $T$ if there exists $\{x_{n}\}CC$ such that $Jx_{n}arrow Jp,$ $\lim_{narrow\infty}$ I $Jx_{n}-JTx_{n}\Vert=0$ .
We denote by $\check{F}(T)$ the set of generalized asymptotic fixed points of $T$ .

Theorem 5.3 (Honda, Ibaraki and Takahashi [9]). Let $E$ be a smooth, strictly convex, and
reflexive Banach space and let $T$ be a mapping of $E$ into itself. Then the following hold:

(i) $JF(T)=F(T^{*})$ ;
(ii) $J\hat{F}(T)=\check{F}(T^{*})$ ;
(iii) $J\check{F}(T)=\hat{F}(T^{*})$ .

Theorem 5.4 (Honda, Ibaraki and Takahashi [9]). Let $E$ be a smooth, strictly convex, and
reflexive Banach space and let $T$ be a relatively nonexpansive mapping of $E$ into itself. Let $\tau*$

be the duality mapping of T. Then $\tau*$ is generalized nonexpansive and $\check{F}(T^{*})=F(T^{*})$ .

Theorem 5.5 (Honda, Ibaraki and Takahashi [9]). Let $E$ be a smooth, strictly convex, and
reflexive Banach space and let $T$ be a generalized nonexpansive mapping of $E$ into itself such
that

$\check{F}(T)=F(T^{*})$

is nonempty. Let $\tau*$ be the duality mapping of T. Then $\tau*$ is relatively nonexpansive and

$\hat{F}(T)=F(T^{*})$

is nonempty.

Using ideas of such duality theorems, we can prove the following theorem.

Theorem 5.6 (Dhompongsa, Fupinwong and Takahashi). Let $E$ be a smooth, $st_{7\dot{V}i}$ctly convex,
and reflexive Banach space and let $C$ be a closed subset of $E$ such that $J(C)$ is closed and
convex. Suppose that $T:Carrow C$ is a generalized nonexpansive type operator, i. e.,

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(x, Ty)+\phi(y, Tx)$

for all $x,$ $y\in C$ . Then the following are equivalent:

(1) There exists $x\in C$ such that $\{T^{n}x\}$ is bounded;
(2) $F(T)$ is nonempty.
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