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Abstract

Our purpose in this article is to discuss nonlinear operators in Banach spaces which are
related to the resolvents of m-accretive operators and maximal monotone operators. We
first deal with nonexpansive mappings which are deduced from the resolvents of m-accretive
operators in Banach spaces. Fixed point theorems for nonexpansive mappings are well-known.
Next, we define nonlinear operators and nonlinear projections which are deduced from the the
resolvents of maximal monotone operators in Banach spaces. These operators in Banach spaces
are very new. We discuss fixed point theorems for such nonlinear operators in Banach spaces.
Further, using nonlinear projections, we obtain some results which are related to conditional
expectations in the probability theory. Finally, we deal with duality theorems for nonlinear
operators in Banach spaces.
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1 Introduction

Let E be a Banach space and let E* be the dual space of E. Then, the duality mapping J
from E into 2F° is defined by

Jz = {z* € E*: (z,z*) = |lz||” = ||l=*|1?}

for every € E. Let A C E x E be a multi-valued operator with domain D(A) = {z € E :
Az # 0} and range R(A) = |J{Az : z € D(A)}. Then, A C E x E is called accretive if for
each x; € D(A) and y; € Ax;, i = 1,2, there exists j € J(z; — z2) such that (y, —y2,7) > 0.
An accretive operator A is m-accretive if and only if R(I + rA) = E for all = > 0. If
A c FE x E is m-accretive, then for each r > 0 and =z € FE, we can define the resolvent
Jr: R(I+1A) —» D(A) by Jyx = {2 € E:z € z+71Az}. A multi-valued operator A: E — E*
with domain D(A) = {z € E : Az # 0} and range R(A) = |J{Az : z € D(A)} is said to be
monotone if () — z2,y1 — y2) > 0 for each x; € D(A) and y; € Az, ¢ = 1,2. A monotone
operator A is said to be maximal if its graph G(A) = {(z,y) : y € Az} is not properly
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contained in the graph of any other monotone operator. Let E be a reflexive, strictly convex
and smooth Banach space and let A: E — 28" be a monotone operator. Then, A is maximal
if and only if R(J +rA) = E* for all r > 0; see [47]. If A C E x E* is a maximal monotone
operator, then for A > 0 and =z € E, we can consider the following resolvents:

Hr={zeE:0e€ J(z—z)+ AA(2)}

and
Qrxz={z€ E:Jze Jz+ MNA(2)}.

Further, if B C E* x E be a maximal monotone operator, then for A > 0 and = € E, we can
consider the resolvent
Ryx={2z€ E:z€z+ABJ(2)}.

These four resolvents are important and have interesting properties.

Our purpose in this article is to discuss nonlinear operators in Banach spaces which are
related to the resolvents of m-accretive operators and maximal monotone operators. In Section
3, we first consider nonlinear operators which are directly deduced from the resolvents of m-
accretive operators and maximal monotone operators in Banach spaces. Further, from these
operators, we define four nonlinear projections (retractions) and then obtain some results
for the nonlinear projections in Banach spaces. In particular, we obtain results which are
related to conditional expectations in the probability theory. In Section 4, from the nonlinear
operators defined in Section 3, we define more general nonlinear operators in Banach spaces.
One of them is a nonexpansive mapping. The other nonlinear operators are new. In this
section, we obtain fixed point theorems which are different from the fixed point theorems for
nonexpansive mappings. Further, we deal with duality theorems for nonlinear operators in
Banach spaces.

2 Preliminaries

Let E be a real Banach space with norm || - || and let E* be the dual of E. We denote the
value of y* € E* at x € E by (z,y*). When {z,} is a sequence in E, we denote the strong
convergence of {z,} to x € FE by z,, — z and the weak convergence by z,, — z. The modulus
¢ of convexity of F is defined by

. +
o(e) = int {1 =28y <11yl < e - vl 2 €

for every € with 0 < € < 2. A Banach space E is said to be uniformly convex if §(e) > 0 for
every € > 0. A uniformly convex Banach space is strictly convex and reflexive. Let C be a
nonempty closed convex subset of a strictly convex and reflexive Banach space E. Then we
know that for any = € F, there exists a unique element z € C such that ||z — z|| < ||z — y||
for all y € C. Putting z = Pc(x), we call Pc the metric projection of E onto C. The duality
mapping J from E into 28" is defined by

Jz={z* € E*: (z,2") = ||z||* = ||="||?}
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for every x € E. Let U = {z € E : |lz|| = 1}. The norm of F is said to be Gateaux
differentiable if for each z,y € U, the limit

t —
e tyl — e
t—0 t

(2.1)

exists. In the case, F is called smooth. The norm of FE is said to be uniformly Gateaux
differentiable if for each y € U, the limit (2.1) is attained uniformly for x € U. It is also
said to be Fréchet differentiable if for each x € U, the limit (2.1) is attained uniformly for
y € U. A Banach space F is called uniformly smooth if the limit (2.1) is attained uniformly
for z,y € U. It is known that if the norm of E is uniformly Gateaux differentiable, then the
duality mapping J is single valued and uniformly norm to weak* continuous on each bounded
subset of E. We know the following result: Let E be a smooth, strictly convex and reflexive
Banach space. Let C be a nonempty closed convex subset of E and let P be the metric
projection of E onto C. Let zy € C and z; € E. Then, zg = Pc(z;) if and only if

(o —y,J(z1 — 20)) 2 0

for all y € C, where J is the duality mapping of E.
A Banach space F is said to satisfy Opial’s condition [33] if for any sequence {z,} C F,
T, — y implies
liminf |z, — y|| < liminf ||z, — z||
n—oo n—oo

for all z € FE with z # y. A Hilbert space satisfies Opial’s condition.

Let C be a closed convex subset of E. A mapping 7: C — F is said to be nonexpansive if
[Tz — Ty|| < |lz — y|| for all z,y € C. We denote the set of all fixed points of T by F(T). Let
D be a subset of C' and let P be a mapping of C into D. Then P is said to be sunny if

P(Pz + t(z — Pz)) = Pz

whenever Pz + t(z — Pz) € C for x € C and t > 0. A mapping P of C into C is said to be a
retraction if P? = P. We denote the closure of the convex hull of D by coD.

Let E be a Banach space and let A C E x E be a multi-valued operator. Then, AC Ex E
is called accretive if for each z; € D(A) and y; € Ax;, ¢ = 1,2, there exists j € J(z1 — z2) such
that (y1 —y2,7) > 0. An accretive operator A is m-accretive if and only if R(I + rA) = E
forall r > 0. If A C E x E is m-accretive, then for each r > 0 and z € F, we can define
Jr: R(I+r1A) > D(A) by J)a ={2z€ E:z € z+r1Az}. We call such J, = (I +rA)~! the
accretive resolvent of A for r > 0.

A multi-valued operator A: E — E* with domain D(A) = {2 € E : Az # (0} and range
R(A) =|J{Az: 2z € D(A)} is said to be monotone if (z; — z2,y; — y2) > O for each z; € D(A)
and y; € Az, ¢ = 1,2. A monotone operator A is said to be maximal if its graph G(A) =
{(z,y) : y € Az} is not properly contained in the graph of any other monotone operator. The
following theorems are well known; see, for instance, {47].

Theorem 2.1. Let E be a reflezive, strictly convex and smooth Banach space and let A: E —
2F" be a monotone operator. Then A is mazimal if and only if R(J +rA) = E* for allT > 0.

Theorem 2.2. Let E be a strictly convexr and smooth Banach space and let x,y € E. If
(z —y,Jz — Jy) =0, then z = y.

Let E be a reflexive, strictly convex and smooth Banach space and let A C F x E* be a
maximal monotone operator. Then, for A > 0 and =z € FE, consider

Irx={z€eE:0€ J(z—z)+ AA(2)}
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and
Qx={z€ FE:JzeJz+ NA(2)}.

We denote Jy and Qx by Jy = (I + AJ"1A)~1 and Q) = (J + AA)~1J, respectively. We call
such Jy and @, the metric resolvent and the relative resolvent of A for A > 0, respectively.
We also consider another resolvent of a maximal monotone operator. Let B C E* x E be a
maximal monotone operator. Then, for A > 0 and = € F, consider

Ryzx={z€ E:z €2+ ABJ(2)}.

We denote Ry by Ry = (I + ABJ)™!. We call such R, the generalized resolvent of B for
A>0.

3 Nonlinear Operators and Nonlinear Projections

In this section, we first define nonlinear operators which are deduced from m-accretive
operators and maximal monotone operators in a Banach space. Let E be a reflexive, strictly
convex and smooth Banach space. The function ¢: E x E — (—00,00) is defined by

¢(z,y) = llzl|* — 2(z, Jy) + |ly||®

for z,y € E, where J is the duality mapping of F; see [1] and [19]. If A C E x E is m-
accretive, then for each A > 0 and =z € F, we can define the accretive resolvent Jy: E — D(A)
by Jxx ={z€ E:xz € z+ AAz}. If Jy = (I + MA)~! is the accretive resolvent, then we can
show that

0<(z— Jaz— (y— Iry),J(Jaz — Jry))

for all z,y € E. Let C be a subset of E. Then, a nonlinear operator T': C — C is called

firmly nonexpansive if
0<(z—-Tz—-(y—Ty),J(Tz —Ty))

forallz,y € C. If A C E x E* is a maximal monotone operator, then for A > 0 and z € E,
we define the metric resolvent Jyz = {z € E: 0 € J(z — z) + MA(2)}. If Jy = (I +AJ"1A4)7!
is the metric resolvent, then we have

0< (J)‘.?I - J,\y, J(:B - J,\IE) - J(y— J)\y))

for all z,y € E; see, for instance, [2]. In general, a nonlinear operator T': C — C is called
firmly metric if
0<(Tz-Ty,J(z—Tz) - J(y—Ty))

forallz,y € C. If A C E x E* is a maximal monotone operator, then for A > 0 and z € FE, we
can consider the relative resolvent Q xz = {z € E : Jrz € Jz + MA(2)}. If QA = (J + AA)~1J
is the relative resolvent, then we have

0 < (rz — Iy, Jz — JIrz — (Jy — JIhy))
for all z,y € E. In general, a nonlinear operator T : C — C is firmly relative nonexpansive if

0< Tz —-Ty,Jx — JTx — (Jy — JTy))
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for all z,y € C. We can define another nonlinear operator. If B C E* x F is a maximal
monotone operator, then for A > 0 and z € E, we can consider the generalized resolvent
Ryz={z2€E:z€z+ABJ(2)}. If Ry = (I + ABJ)™! is the generalized resolvent, then we
know that

0 < (z—Jnz—(y — hy), JIaz — Jay)
for all z,y € E. In general, a nonlinear operator T': C' — C'is firmly generalized nonexpansive
if
0<{(z—-Tz—(y—Ty),JTz — JTy)

for all z,y € C.
Next, we define four projections in a Banach space. Let E be a reflexive, smooth and strictly
convex Banach space. We know that 7' : C — C is firmly nonexpansive if

0<(x—-Tz—(y—Ty), JTz-Ty))
for all z,y € C. If F(T) is nonempty, then we have that
0<({z—Tz, J(Tz —y))

for all z € C and y € F(T'). If P is a retraction of E onto C, then P is called sunny
nonexpansive if
0 <{z - Pz, J(Pz —y))

forall z € F and y € C. We know that T : C — C is a firmly metric operator if
0<(Tz - Ty, J(z—Tz) - J(y - Ty))
for all z,y € C. If F(T) is nonempty, then we have that
0< (Tz —y, J(x —Tx))
forall z € C and y € F(T). A retraction P of E onto C is called metric if
0<(Pzx—vy, J(x— Px))
foralz € Fandye C. If T:C — C is firmly relative nonexpansive, then we have
0<(Tz—-Ty, Jx—JTz - (Jy — JTy))
for all z,y € C. If F(T) is nonempty, then we have that
0< Tz -y, Jx — JTx)
for all z € C and y € F(T). A retraction Il of E onto C is called generalized if
0< gz —vy, Jx— Jlcz)
forallz e Fandye C. If T: C — C is firmly generalized nonexpansive, we have

0<{(z-Tz—- (y—Ty), JTx — JTy)
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for all z,y € C. If F(T) is nonempty, then we have
0<{x—Tz, JTz — Jy)

for all z € C and y € F(T'). A retraction R of E onto C is called sunny generalized nonex-
pansive if

0 <{z— Rz, JRx — Jy)

forallz € F and y € C.
Kohsaka and Takahashi [23] proved the following two theorems.

Theorem 3.1 (Kohsaka and Takahashi [23]). Let E be a smooth, strictly convezr and reflezive
Banach space and let C* be a nonempty closed convex subset of E*. Suppose that Ilc, is the
generalized projection of E* onto C,. Then, R defined by R = J I, J is a sunny generalized
nonezxpansive retraction of E onto J~1C,.

Theorem 3.2 (Kohsaka and Takahashi [23]). Let E be a smooth, strictly convex and reflexive
Banach space and let D be a nonempty subset of E. Then, the following conditions are
equivalent

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

Motivated by these theorems, we define the following nonlinear operator: Let E be a reflex-
ive, strictly convex and smooth Banach space and let J be the normalized duality mapping
from E onto E*. Suppose that Y* is a closed linear subspace of the dual space E* of E. Then,
the generalized conditional expectation Ey. with respect to Y* is defined as follows:

Ey. = J Iy J,

where ITy~ is the generalized projection from E* onto Y*.
Let E be a normed linear space and let z,y € E. We say that x is orthogonal to y in the
sense of Birkhoff-James, denoted by z L y, if

lzll < llz + Ayl

for all A € R. We know that for z,y € F, x L y if and only if there exists f € J(x)
with (y, f) = 0. In general, z L y does not imply y L z. An operator T of E into itself
is called left-orthogonal (resp. right-orthogonal) if for each z € E, Tx L (z — T'x) (resp.
(z —Tz) L Tx).

The following theorems are in Honda and Takahashi [10].

Theorem 3.3 (Honda and Takahashi [10]). Let E be a normed linear space and let T be an
operator of E into itself such that

T(Tz+ p(x—Tz)) =Tx

for any x € E and B € R. Then, the following conditions are equivalent:

(1) || Tz|| < ||z| for all x € E;
(2) T is left-orthogonal.
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Theorem 3.4 (Honda and Takahashi [10]). Let E be a reflexive, strictly conver and smooth
Banach space and let Y* be a closed linear subspace of the dual space E*. Then, Fy. with
respect to Y* is left-orthogonal, i.e., for any z € F,

Ey.xz | (x — Ey.x).

Let Y be a nonempty subset of a Banach space E and let Y* be a nonempty subset of the
dual space E*. Then, we define the annihilator Y} of Y* and the annihilator Y+ of Y as
follows:

Y!={ze€FE: f(x)=0forall feY"}

and
Yt ={feE*:f(z)=0forallzeY}.

The following theorems are also in Honda and Takahashi [10].

Theorem 3.5 (Honda and Takahashi [10]). Let E be a reflexive, strictly convex and smooth
Banach space and let I be the identity operator of E into itself. Suppose that Y* is a closed
linear subspace of the dual space E* and Ey-. is the generalized conditional expectation with
respect to Y*. Then, the mapping I — Ey- is the metric projection of E onto Y.

Further, suppose that 'Y is a closed linear subspace of E and Py is the metric projection of
E ontoY. Then, I — Py is the generalized conditional expectation Fy ., t.e., I — Py = Fy ..

Let F be a normed linear space and let Y; and Y, C F be closed linear subspaces. If
Y1 NY; = {0} and for any = € E there exists a unique pair y; € Y7,y2 € Y3 such that

-7::?/1“*‘3/2,

and any element of Y7 is BJ-orthogonal to any element of Y5, i.e., y; L y2 for any y; € Y1,y2 €
Y5, then we represent the space E as

E=Y1®dY,and Y; L Y5.
The kernel of an operator T : E — E is denoted by ker(7), i.e.,
ker(T) = {x € E: Tz = 0}.

Theorem 3.6 (Honda and Takahashi [10]). Let F be a strictly convez, reflerive and smooth
Banach space and let Y* be a closed linear subspace of the dual space E* of E such that for
any y1,y2 € J7IY*, y1 +y2 € J7IY*. Then, J7Y* is a closed linear subspace of E and
the generalized conditional expectation Ey- is a norm one linear projection from E to J~'Y™*.
Further, the following hold:

(1) E=J7'Y* @ ker(Ey-) and J7'Y* L ker(Ey.);
(2) I — Ey. is the metric projection of E onto ker(Ey.).
Using Theorem 3.6, Honda and Takahashi [11] obtained the following two theorems.

Theorem 3.7 (Honda and Takahashi [11]). Let E be a strictly convez, reflexive and smooth
Banach space and let P : E — E be a norm one projection withY = {Pzx : xz € E}. Then, JY
is a closed linear subspace of E* and P is the generalized conditional expectation E ;v with
respect to JY , i.e., P = J I,y J.
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Theorem 3.8 (Honda and Takahashi [11]). Let E be a strictly convez, reflezive and smooth
Banach space and let Y* be a closed linear subspace of E* Suppose that P is a projection of £
onto J7YY™* such that |Pz —m| < ||t —m|| for allz € E and m € J='Y*. Then, J~1Y* is
a closed linear subspace of E and P is the generalized conditional expectation Ey.. Further,
P is a norm one linear projection.

4  Four Nonlinear Operators in Banach Spaces

Let E be a reflexive, smooth and strictly convex Banach space. Let C be a closed convex
subset of E' and let T' be a mapping of C into itself. Then, since

o(z,y) = |lzl|® - 2(z, Jy) + lly|I?
for z,y € E, we know that for any z,y € C,

0<(z Tz~ (y—Ty), J(Tz — Ty))
e Tz -Ty|? < (& —y, J(Tz - Ty))
= 2||Tz - Ty|® < 2(z —y, J(Tz — Ty))
= 2||Tz - Tyl” < |z — ylI*> + | Tz — Ty||” - ¢(z — y, Tz - Ty).
So, from a firmly nonexpansive mapping T of C into itself, we can define a nonexpansive

mapping. That is, T : C — C is called a nonexpansive mapping if ||Tz — Ty| < ||z — y| for
all x,y € C. An operator T : C — C is firmly metric if

0<(Tz-Ty, J—Tz) - J(y—Ty))
for all z,y € C. Since
¢(z,y) = d(z,2) + d(2,9) + 2(z — 2z, Jz — Jy)
for xz,y,z € E, we have that for any z,y € C,
0<(Tz —Ty,J(z -~ Tz) — J(y — Ty))
<= 0<2(Tx — Ty, J(x — Tz) — J(y — Ty))
< 2z ~Tz—(y—Ty), J(z—Tz) — J(y — Ty))
<2z -y, Jz—Tz)— J(y — Ty))
= ¢z —y—Tz,Sy) + ¢y — Ty, z — Tx)
< ¢(x,y - Ty) + d(y,z — Tx) — d(z,z — Tz) — ¢(y,y — Ty)
= ¢z —Tz,y - Ty)+ ¢y — Ty, x — Tx) < $(z,y — Ty) + ¢(y,z — Tx).

So, from a firmly metric operator, we can define a metric operator. That is, T': C — C is
called a metric operator if

¢z — Tz, y — Ty)+¢(y — Ty,z — Tx)
< ¢z, y -~ Ty) + oy, z — Ty)
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for all z,y € C. In the case that H is a Hilbert space and C is a closed convex subset of H,
T : C — C is firmly nonexpansive if

|Tz — Ty|* < (Tz — Ty, = —y)
for all z,y € C. Further, T : C — C is a metric operator if for any z,y € C,
20z =Tz — (y = Ty)lI? < e — (y = TYI* + lly — (= - Ty)|*.
This inequality is equivalent to
2z —y, Tz — Ty) + 2(Tz, Ty) > | Tz — Ty|>
An operator T : C — C is firmly relatively nonexpansive if
0<(Tz—Ty, Jx —JTz — (Jy — JTy))
for all z,y € C. Then, we know that for any z,y € C,

0<(Tz—Ty, Jx — JTz — (Jy — JTy))
> (T2 —Ty, JTex - JTy) < Tz —Ty, Jx — Jy)
= ¢(Tz,Ty) + ¢(Ty, Tx) '
< ¢(Tz,y) + ¢(Ty,z) — ¢(Tz,z) — $(Ty,y).

So, from a firmly relatively nonexpansive operator, we can define a nonspreading operator.
That is, T : C — C is a nonspreading operator if

¢(Tx,Ty) + ¢(Ty, Tx) < ¢(Tx,y) + ¢(Ty, x)

for all z,y € C. In the case that H is a Hilbert space and C is a closed convex subset of H,
an operator T : C — C is firmly nonexpansive if

2| Tx — Ty||? < Tz — yl® + ITy — «|1? — Tz — «||* - [Ty — ylI°

for all z,y € C. Further, an operator T : C — H is nonspreading if

2Tz - Ty||* < | Tz - ylI* + | Ty — z||®
for all z,y € C. This inequality is equivalent to

|Tz — Tyl < |l — y||? + 2(z — Tz,y — Ty)
for all z,y € C. An operator T : C — C is firmly generalized nonexpansive if
0<{(z—-Tz—(y—Ty), JTz — JTy)

for all z,y € C. Then, we know that for any z,y € C,

0<{x—Tzx—(y—Ty), JTz — JTy)
> (Tx—-Ty, JTz —JTy) <(z -y, JTx - JTy)
> ¢(Tz,Ty) + ¢(Ty, Tx)
< ¢(z,Ty) + ¢(y, Tz) — ¢(z, Tz) — ¢(y, Ty).
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So, from a firmly generalized nonexpansive operator, we can define a generalized nonexpansive
type operator. That is, T': C' — C is a generalized nonexpansive type operator if

¢(Tz,Ty) + ¢(Ty, Tx) < $(x, Ty) + é(y,TT)

for all z,y € C.
The following is Kohsaka and Takahashi’s fixed point theorem [25].

Theorem 4.1 (Kohsaka and Takahashi [25]). Let E be a smooth, strictly convex, and re-
flezive Banach space and let C is a closed convex subset of E. Suppose that T: C — C 1is
nonspreading, ti.e., for all xz,y € C,

¢(Tz, Ty) + ¢(Ty, Tz) < ¢(Tz,y) + ¢(Ty, z).
Then the following are equivalent:

(1) There exists x € C such that {T"z} is bounded;
(2) F(T) is nonempty.

In the case that F is a Hilbert space, we have the following theorem.

Theorem 4.2 (Kohsaka and Takahashi [25]). Let H be a Hilbert space and let C be a closed
convex subset of H. Suppose that T: C — C is nonspreading, t.e., for all z,y € C,

2||Tx — Tyl* < | Tz - y|I” + || Ty — =||*.
Then the following are equivalent:

(1) There exists x € C such that {T"z} is bounded;
(2) F(T) is nonempty.

5 Four Nonlinear Operators with Fixed Points

Let F be a reflexive, smooth and strictly convex Banach space and let C be a closed convex
subset of E. Let T : C — C be nonexpansive, i.e.,

Tz — Tyl < ||z -yl
for all z,y € C. If F(T) # 0, then
1Tz —yll < llz —yll

forallz € C and y € F(.T). Such T is called quasi-nonexpansive. Let T': C — C be a metric
operator, i.e.,

¢(z — Tz,y — Ty) + ¢(y — Ty, z — Tz) < ¢(z,y — Ty) + ¢(y,z — Tx)
for all z,y € C. If F(T) # 0, then
2|z - Tz|* < ||z|* + |ly — (z — Tz)||”

for all z € C and y € F(T). Such T is called a quasi-metric operator. Let T : C — C be
nonspreading, i.e.,

&(Tz,Ty) + ¢(Ty, Tz) < ¢(Tz,y) + ¢(Ty, x)
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for all z,y € C. If F(T) # ), then

&(Tz,y) + ¢(y, Tz) < ¢(Tz,y) + ¢(y, x)

for all z,y € C. This implies that

¢(y,Tz) < ¢(y, x)

for all z € C and y € F(T). Such T is called a quasi relatively nonexpansive operator. Let
T : C — C be a generalized nonexpansive type operator, i.e.,

#(Tz,Ty) + ¢(Ty, Tz) < ¢(z,Ty) + ¢(y, Tx)
for all z,y € C. If F(T) # 0, then

¢(Tz,y) + ¢(y, Tx) < $(z,y) + ¢(y, T'z)
for all z € C and y € F(T). This implies that

¢(Tz,y) < ¢(y,x)

for all z € C and y € F(T). Such T is called a generalized nonexpansive operator. Let E
be a Banach space and let C be a closed convex subset of E. Let T : C — C be a mapping.
Then, p € C is called an asymptotic fixed point of T if there exists {z,} such that z, — p,
limp—co ||Tn — Tzn|l = 0. We denote by F(T') the set of fixed points of T and by F(T) the
set of asymptotic fixed points of T. Matsushita and Takahashi [28] also gave the following

definition: An operator T : C — C is relatively nonexpansive if F(T) # 0, F(T) = F(T) and

¢y, Tz) < Py, )

forall z € C and y € F(T).
The following theorems are in Kohsaka and Takahashi [25].

Theorem 5.1 (Kohsaka and Takahashi [25]). Let E be a strictly convex Banach space whose
norm s uniformly Gateauz differentiable and let C be a closed conver subset of E. Suppose
that T: C — C is nonspreading, i.e.,

&(Tz,Ty) + ¢(Ty, Tx) < ¢(Tx,y) + ¢(Ty, x)

for all z,y € C. Then, F(T) = F(T).

Theorem 5.2 (Kohsaka and Takahashi [25]). Let E be a strictly convex Banach space whose
norm is uniformly Gateauzx differentiable and let C be a closed convexr subset of E. Suppose
T :C — C is nonspreading, i.e.,

#(Tz,Ty) + ¢(Ty, Tx) < $(Tz,y) + ¢(Ty, x)
for all x,y € C and F(T) is nonempty. Then, T : C — C is relatively nonexpansive.

Finally, we deal with the duality theorems for nonlinear operators in a Banach space. Let
E be a smooth, strictly convex, and reflexive Banach space and let T be a mapping of F into
itself. Define T* : E* — E* as follows:

T*z* = JTJ 'z,
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where J is the duality mapping on E and J~! is the duality mapping on E*. A mapping T™* is
called the duality mapping of T. Let E be a smooth Banach space and let C be a closed convex
subset of E. Let T : C — C be a mapping. Then, p € C is called a generalized asymptotic
fixed point of T if there exists {z,} C C such that Jz, — Jp, limp_, ||JZn — JTZx|| = 0.
We denote by F(T) the set of generalized asymptotic fixed points of T.

Theorem 5.3 (Honda, Ibaraki and Takahashi [9]). Let E be a smooth, strictly convez, and
reflexive Banach space and let T be a mapping of E into itself. Then the following hold:

(i) JF(T) = F(T*);

(i) JF(T) = F(T*);

(iii) JF(T) = F(T*).
Theorem 5.4 (Honda, Ibaraki and Takahashi [9]). Let E be a smooth, strictly convez, and

reflexive Banach space and let T' be a relatively nonexpansive mapping of_E into itself. Let T*
be the duality mapping of T. Then T* is generalized nonezpansive and F(T*) = F(T™*).

Theorem 5.5 (Honda, Ibaraki and Takahashi [9]). Let E be a smooth, strictly convez, and

reflexive Banach space and let T be a generalized nonezpansive mapping of E into itself such
that

F(T) = F(T*)
is nonempty. Let T* be the duality mapping of T. Then T* is relatively nonerpansive and
F(T) = F(T*)
is nonempty.
Using ideas of such duality theorems, we can prove the following theorem.

Theorem 5.6 (Dhompongsa, Fupinwong and Takahashi). Let E be a smooth, strictly convez,
and reflexive Banach space and let C be a closed subset of E such that J(C) is closed and
convez. Suppose that T: C — C is a generalized nonerpansive type operator, i.e.,

¢(Tz,Ty) + ¢(Ty, Tz) < ¢(z,Ty) + ¢(y, T'z)
for all xz,y € C. Then the following are equivalent:

(1) There exists x € C such that {T"z} is bounded;
(2) F(T) is nonempty.
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