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1 Motivation and Question

In 1930, Matukuma introduced the following semilinear elliptic equation

$- \triangle u(x)=\frac{u(x)^{p}}{1+\Vert x\Vert^{2}}$ in $\mathbb{R}^{3}$

to study a gravitational potential $u$ of a globular cluster of stars. Here $\triangle$ is
the Laplacian, $\Vert x\Vert$ the Euclidean norm of a point $x$ , and $p>1$ is a constant.
This equation was deduced from Poisson’s equation under several hypotheses
in astrophysics. For details, see [8].

For the last several decades, many mathematicians have studied the exis-
tence of positive solutions of semilinear elliptic equations of the form

$-\triangle u(x)=V(x)u(x)^{p}$ in $\Omega$ , (1.1)

where $V$ is a measurable function on a domain $\Omega$ in $\mathbb{R}^{n}$ with appropriate prop-
erties and the equation is understood in the sense of distributions. There are a
great number of papers, but we mention only results relating to this talk.

$\bullet$ Kenig and Ni [4] studied (1.1) in the case of $\Omega=\mathbb{R}^{n}(n\geq 3)$ . Indeed,
they proved that if $V$ is a measurab]e function on $\mathbb{R}^{n}$ such that

$|V(x)| \leq\frac{A}{(1+\Vert x\Vert^{2})^{1+\epsilon}}$
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for some $\in>0$ and $A>0$ , then (1.1) has bounded positive solutions.

$\bullet$ Zhao [7] generalized their result as follows. Let $\Omega$ be an unbounded do-
main in $\mathbb{R}$“ $(n\geq 3)$ with a compact Lipschitz boundary or $\Omega=\mathbb{R}^{n}$ . If $V$

is a Green-tight function on $\Omega$ and $c:l>0$ is sufficiently small, then there
are positive solutions $u$ of (1.1) satisfying

$\lim_{xarrow\infty}u(x)=\alpha$ .

$\bullet$ The corresponding result for two dimensions was obtained by Ufuktepe
and Zhao [6]. Let $\Omega$ be an unbounded domain in $\mathbb{R}^{2}$ with a compact
boundary consisting of finitely many Jordan curves. If $V$ is a Green-tight
function on $\Omega$ and $\alpha>0$ is sufficiently small, then there are positive
solutions $u$ of (1.1) satisfying

$\lim_{xarrow\infty}\frac{u(x)}{\log\Vert x\Vert}=\alpha$ .

In view of the last two results, the following question arises naturally.

Question. Let $\Omega$ be an unbounded domain in $\mathbb{R}^{n}(n\geq 2)$ with a compact
boundary or $\Omega=\mathbb{R}^{n}$ and let $V$ be a nonnegative measurable function on $\Omega$

with appropriate properties. Does every positive solution $u$ of (1.1) satisfy

$\lim_{xarrow\infty}u(x)=\alpha$ $(n\geq 3)$

$or$

$\lim_{xarrow\infty}\frac{u(x)}{\log\Vert x\Vert}=\alpha$ $(n=2)$

for some $\alpha\geq 0$ ?

Remark 1.1. When $n\geq 3$ and $V$ is a negative function with suitable properties,
there is a positive solution $u$ of $-\triangle u=Vu^{p}$ in $\mathbb{R}^{n}$ such that $u(x)arrow+\infty$ as
$\Vert x\Vertarrow+\infty$ . See [1, 5] (ODE or PDE) and [2] (potential theoretic proof), etc.
Thus the above question is significant in the case that $V$ is nonnegative.
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2 Notation and Convention

In the rest of this note, we let $n\geq 2$ and suppose that $\Omega$ is an unbounded
domain in $\mathbb{R}^{n}$ with a compact boundary or $\Omega=\mathbb{R}^{n}$ . The symbol $A$ stands
for an absolute positive constant whose value is unimportant and may change
from line to line. Denote by $B(x, r)$ the open ball of center $x$ and radius $r$ . A
function $u:\Omegaarrow(-\infty, +\infty]$ is called superharmonic if

(i) $u\not\equiv+\infty$ ,

(ii) $u$ is lower semicontinuous on $\Omega$ ,

(iii) $u(x) \geq\frac{1}{\nu_{n}r^{n}}\int_{B(xr)}u(y)dy)$ whenever $B(x, r)\subset\Omega$ .

Here $l_{n}$ is the volume of the unit ball in $\mathbb{R}^{n}$ . It is well known that for a su-
perharmonic function $u$ on $\Omega$ , there is a unique nonnegative measure $\mu_{u}$ such
that

$\int_{\Omega}\phi(x)d\mu_{u}(x)=\int_{\Omega}u(x)(-\triangle\phi(x))dx$ for all $\phi\in C_{0}^{\infty}(\Omega)$ .

We discuss superharmonic functions $u$ such that $\mu_{u}$ is absolutely continuous
with respect to the Lebesgue measure on $\mathbb{R}^{n}$ Then the Radon-Nykod\’ym
derivative is denoted by $f_{u}$ . It is obvious that $f_{u}=$ -Au for $u\in C^{2}(\Omega)$ .

3 Main Results

This section presents our main results (answers to the question in Section 1).

Theorem 3.1. Let $n\geq 3$ . Suppose that

$0 \leq p<\frac{n}{n-2}$ .

If $u$ is a positive superharmonicfunction on $\Omega$ satisfying

$f_{u}(x) \leq\frac{c}{\Vert x\Vert^{2}}u(x)^{p}$ for $a.e$ . $x\in\Omega\backslash B(0, R)$

with some $c>0$ and $R>0$ , then $u$ has afinite limit at infinity.
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As seen in the following, the bound $p<n/(n-2)$ is nearly optimal in
Theorem 3.1. The case $p=n/(n-2)$ is still unsolved.

Theorem 3.2. Let $n\geq 3$ and $c>0$ . If
$p> \frac{n}{n-2})$

then for each $\beta>0$ , there is a positive function $u\in C^{2}(\mathbb{R}^{n})$ such that

$0 \leq-\triangle u(x)\leq\frac{c}{1+\Vert x\Vert^{2}}u(x)^{p}$ $in$ $\mathbb{R}^{n}$

and
$\lim_{xarrow}\sup_{\infty}\frac{u(x)}{\Vert x\Vert^{\beta}}=+\infty$ .

Two dimensional result corresponding to Theorem 3.1 is as follows.

Theorem 3.3. Let $n=2$ and let $p\geq 0$ be arbitrary constant. If $u$ is a positive
superharmonic function on $\Omega$ satisfying

$f_{u}(x) \leq\frac{c}{\Vert x\Vert^{2}(\log\Vert x\Vert)^{p}}u(x)^{p}$ for $a.e$ . $x\in\Omega\backslash B(0, R)$ (3.1)

with some $c>0$ and $R>1$ , then $u(x)/\log\Vert x\Vert$ has afinite limit at infinity.

4 Outline of proofs of Theorems 3.1 and 3.3

In this section, we give a sketch of the proof of Theorem 3.1 as well as Theorem
3.3. For details, see [3].

Lemma 4.1. Let $\{z_{i}\}$ be a sequence in $\Omega$ with $z_{i}arrow\infty(iarrow+\infty)$ . If $v$ is a
positive superharmonic function on $\Omega$ such that

$f_{v}(x) \leq\frac{A}{\Vert x\Vert^{2}}$ for $a.e$ . $x \in\bigcup_{i}B(z_{i}, \rho\Vert z_{i})$

with some $A>0$ and $0<\rho\leq 1/2$ , then the following hold:

(i) if $n\geq 3$ , then $v(z_{i})$ has afinite limit as $iarrow\infty$ ;

(ii) if $n=2$ , then $v(z_{i})/\log$ I $z_{i}\Vert$ has afinite limit as $iarrow\infty$ .
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Here the value of the limit is independent of $\{z_{i}\}$ .

Indeed, this lemma is a specia] case $p=0$ of Theorems 3.1 and 3.3. When
$p>0$ , the following Iemma plays an essential role.

Lemma 4.2. Let $n\geq 3$ . Suppose that

$0<p< \frac{n}{n-2}$ .

Let $u$ be a positive superharmonicfunction on $\Omega$ satisfying

$f_{u}(x) \leq\frac{c}{\Vert x\Vert^{2}}u(x)^{t)}$ for $a.e$ . $x\in\Omega\backslash B(0, R)$

with some $c>0$ and $R>0$ . If $\{z_{i}\}$ is a sequence in $\Omega$ with $z_{i}arrow\infty$

$(iarrow+\infty)$ , then there exist $A>0$ and $i_{0},$ $\ell\in N$ such that

$u\leq A$ $on$
$\bigcup_{i\geq i_{0}}B(z_{i}, 2^{-\ell-3}\Vert z_{i}\Vert)$

.

The proof is based on arguments of minimal fine topology and nonlinear
analysis. The corresponding result for two dimensions is as follows.

Lemma 4.3. Let $n=2$ and let $p>0$ be arbitrary constant. Let $u$ be a positive
superharmonic function on $\Omega$ satisfying

$f_{u}(x) \leq\frac{c}{\Vert x\Vert^{2}(\log\Vert x\Vert)^{p-1}}u(x)^{p}$ for $a.e$ . $x\in\Omega\backslash B(0, R)$

with some $c>0$ and $R>1$ . If $\{z_{i}\}$ is a sequence in $\Omega$ with $z_{i}arrow\infty$

$(iarrow+\infty)$ , then there exist $A>0$ and $i_{0}\in \mathbb{N}$ such that

$\frac{u(x)}{\log\Vert x\Vert}\leq A$

$forx \in\bigcup_{i\geq i_{0}}B(z_{i}, 2^{-5}\Vert z_{i}\Vert)$
.

Now, Theorem 3.1 is proved immediate]y. Let $\{z_{i}\}$ be arbitrary sequence
in $\Omega$ with $z_{i}arrow\infty(iarrow+\infty)$ . By Lemma 4.2,

$f_{u}(x) \leq\frac{c}{\Vert x\Vert^{2}}u(x)^{p}$

$\leq\frac{A}{\Vert x\Vert^{2}}$ for a.e.
$x \in\bigcup_{i\geq i_{0}}B(z_{i}, 2^{-\ell-3}\Vert z_{i}\Vert)$

.

By Lemma 4.1, $u(z_{i})$ has a finite limit and its value is independent of $\{z_{i}\}$ .
Thus Theorem 3.1 follows.

The proof of Theorem 3.3 is simi $lar$ .
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5 Conjecture

In the proof of Lemma 4.2, we assumed $p< \frac{n}{n-2}$ to use the fact

$\Vert\cdot\Vert^{2-n}\in L_{lor}^{q}$ for some $q>p$ .

I do not have other techniques, but we expect that

Theorem 3.1 holds for $p= \frac{n}{n-2}$ as well.

i.e.
$f_{u}(x) \leq\frac{c}{\Vert x\Vert^{2}}u(x)^{\frac{7l}{?\iota-\underline{)}}}$
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