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Limits at infinity of superharmonic functions and
solutions of semilinear elliptic equations of
Matukuma type

Kentaro Hirata*

Akita University

1 Motivation and Question

In 1930, Matukuma introduced the following semilinear elliptic equation
__u(=)?

L [ef?
to study a gravitational potential u of a globular cluster of stars. Here A is
the Laplacian, |z|| the Euclidean norm of a point , and p > 1 is a constant.
This equation was deduced from Poisson’s equation under several hypotheses

in R3

—Au(x)

in astrophysics. For details, see [8].
For the last several decades, many mathematicians have studied the exis-
tence of positive solutions of semilinear elliptic equations of the form

—Au(z) = V(z)u(z)? inQQ, (1.1)

where V' is a measurable function on a domain €2 in R™ with appropriate prop-
erties and the equation is understood in the sense of distributions. There are a
great number of papers, but we mention only results relating to this talk.

 Kenig and Ni [4] studied (1.1) in the case of 2 = R™ (n > 3). Indeed,
they proved that if V' is a measurable function on R" such that
A
(1 + llz]|?)t+e

V()| <
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for some € > 0 and A > 0, then (1.1) has bounded positive solutions.

e Zhao [7] generalized their result as follows. Let {2 be an unbounded do-
main in R™ (n > 3) with a compact Lipschitz boundary or {2 = R". If V
is a Green-tight function on €2 and « > 0 is sufficiently small, then there
are positive solutions v of (1.1) satisfying

lim u(z) = a.

e The corresponding result for two dimensions was obtained by Ufuktepe
and Zhao [6]. Let 2 be an unbounded domain in R? with a compact
boundary consisting of finitely many Jordan curves. If V' is a Green-tight

function on €2 and a > 0 is sufficiently small, then there are positive
solutions u of (1.1) satisfying
u(z)

11 =
2200 log ||z

In view of the last two results, the following question arises naturally.

Question. Let Q2 be an unbounded domain in R" (n > 2) with a compact

boundary or 2 = R™ and let V be a nonnegative measurable function on

with appropriate properties. Does every positive solution u of (1.1) satisfy
lim u(z) =a (n > 3)

or

lim u(z) =

z—o0 log ||z ||

(n=2)
for some oo > 07

Remark 1.1. Whenn > 3 and V is a negative function with suitable properties,
there is a positive solution u of —Awu = VP in R™ such that u(z) — +o0 as
llz|| — +o00. See [1, 5] (ODE or PDE) and [2] (potential theoretic proof), etc.
Thus the above question is significant in the case that V' is nonnegative.
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2 Notation and Convention

In the rest of this note, we let n > 2 and suppose that {2 is an unbounded
domain in R”™ with a compact boundary or {2 = R". The symbol A stands
for an absolute positive constant whose value is unimportant and may change
from line to line. Denote by B(z, ) the open ball of center z and radius r. A
function u : 2 — (—o00, +00] is called superharmonic if

(i) u # +o0,

(i1) u is lower semicontinuous on ),
1

(iii) u(z) > g

/ u(y) dy whenever B(z,r) C Q.
B(z,r)

Here v,, is the volume of the unit ball in R™. It is well known that for a su-
perharmonic function u on {2, there is a unique nonnegative measure p, such
that

/ d(z) dpy(z) = / u(z)(—A¢(z))dz forall ¢ € C5° ().
Q Q

We discuss superharmonic functions v such that p,, is absolutely continuous
with respect to the Lebesgue measure on R™. Then the Radon-Nykodym
derivative is denoted by f,,. It is obvious that f, = —Awu for u € C%(0).

3 Main Results

This section presents our main results (answers to the question in Section 1).
Theorem 3.1. Let n > 3. Suppose that

n
0<p< ——.
n — 2

If u is a positive superharmonic function on ) satisfying

c

fulz) < e u(z)? forae. .z €N\ B(0,R)

with some ¢ > 0 and R > 0, then u has a finite limit at infinity.



95

As seen in the following, the bound p < n/(n — 2) is nearly optimal in
Theorem 3.1. The case p = n/(n — 2) is still unsolved.

Theorem 3.2. Letn > 3andc > 0. If

n
n—2’

p >

then for each 3 > 0, there is a positive function u € C*(R") such that

c
0<-A < ——u(x)? inR"”
S Al S T e
and
lim sup u(z) = 400
P [ -

Two dimensional result corresponding to Theorem 3.1 is as follows.

Theorem 3.3. Let n = 2 and let p > 0 be arbitrary constant. If u is a positive
superharmonic function on 1 satisfying

fu(z) <

lz|*(log ||z )

with some ¢ > 0 and R > 1, then u(z)/ log ||z|| has a finite limit at infinity.

> u(z)? forae . x € Q\ B(0,R) (3.1)

4 Outline of proofs of Theorems 3.1 and 3.3

In this section, we give a sketch of the proof of Theorem 3.1 as well as Theorem
3.3. For details, see [3].

Lemma 4.1. Let {2;} be a sequence in S) with z; — oo (1 — +00). Ifvisa
positive superharmonic function on ) such that

fo(z) < forae.z € UB(zi,pHZiH)

lz]|?
with some A > 0 and 0 < p < 1/2, then the following hold:
(i) if n > 3, then v(z;) has a finite limit as 1 — 00;

(il) if n = 2, then v(z;)/ log ||zi|| has a finite limit as 1 — oo.



56

Here the value of the limit is independent of {z;}.

Indeed, this lemma is a special case p = 0 of Theorems 3.1 and 3.3. When
p > 0, the following lemma plays an essential role.

Lemma 4.2. Let n > 3. Suppose that

n
O<p<——.
P n— 2
Let u be a positive superharmonic function on S satisfying
c
fulz) < e u(z)’ forae xz €N\ B(0,R)
z

with some ¢ > 0 and R > 0. If {z} is a sequence in Q with z; — oo
(1 — +00), then there exist A > 0 and 19, ¢ € N such that
u< A on U B(z;, 27573 z])).
>4
The proof is based on arguments of minimal fine topology and nonlinear
analysis. The corresponding result for two dimensions is as follows.

Lemma 4.3. Letn = 2 and let p > 0 be arbitrary constant. Let u be a positive
superharmonic function on §Q satisfying

fulz) < ||:1:|]2(logcl|3:||)7"1 u(z)? forae z € Q\ B(0,R)

with some ¢ > 0 and R > 1. If {z} is a sequence in Q with z;, — o0
(1 — +00), then there exist A > 0 and 1y € N such that

Tog 2] <A forze U B(zi,2_5||zi||).

1210
Now, Theorem 3.1 is proved immediately. Let {z;} be arbitrary sequence
in (2 with z; — 00 (1 — 4+00). By Lemma 4.2,

ful@) < llffIIQ u(z)?
A

~ lz]?

forae.x € U B(z, 2773 z1)).
i>ig
By Lemma 4.1, u(z;) has a finite limit and its value is independent of {z;}.
Thus Theorem 3.1 follows.
The proof of Theorem 3.3 is similar.
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S Conjecture

to use the fact

In the proof of Lemma 4.2, we assumed p <

Il e LT for some g > p.

loc

I do not have other techniques, but we expect that

Theorem 3.1 holds for p = as well.
n —_—
i.e.
fulz) < ” C“zu(f’s)'ﬁ—z —  lim u(x) exists.
s —00
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