On solutions of quasilinear elliptic equations with general structure

Takayori ONO (小野太幹)

Fukuyama University (福山大学)

$\S1$. Introduction and preliminaries

Let G be an open set in \mathbb{R}^N $(N \ge 2)$ and 1 . We considerquasi-linear second order elliptic differential equations of the form

(E_T) $-\operatorname{div} \mathcal{A}(x, \nabla u) + \mathcal{B}(x, u) = T$

in G. Here, T is a distribution, $\mathcal{A} : \mathbf{R}^N \times \mathbf{R}^N \to \mathbf{R}^N$ and $\mathcal{B} : \mathbf{R}^N \times \mathbf{R} \to \mathbf{R}$ satisfy the following conditions :

- (A.1) $x \mapsto \mathcal{A}(x,\xi)$ is measurable on \mathbb{R}^N for every $\xi \in \mathbb{R}^N$ and $\xi \mapsto \mathcal{A}(x,\xi)$ is continuous for a.e. $x \in \mathbb{R}^N$;
- (A.2) $\mathcal{A}(x,\xi) \cdot \xi \ge \alpha_1 |\xi|^p$ for all $\xi \in \mathbf{R}^N$ and a.e. $x \in \mathbf{R}^N$ with a constant $\alpha_1 > 0$;
- (A.3) $|\mathcal{A}(x,\xi)| \leq \alpha_2 |\xi|^{p-1}$ for all $\xi \in \mathbf{R}^N$ and a.e. $x \in \mathbf{R}^N$ with a constant $\alpha_2 > 0$;
- (B.1) $x \mapsto \mathcal{B}(x,t)$ is measurable on \mathbb{R}^N for every $t \in \mathbb{R}$ and $t \mapsto \mathcal{B}(x,t)$ is continuous for a.e. $x \in \mathbb{R}^N$;
- (B.2) For any bounded open set D in \mathbb{R}^N , there is a constant $\alpha_3(D) \ge 0$ such that $|\mathcal{B}(x,t)| \le \alpha_3(D)(|t|^{p-1}+1)$ for all $t \in \mathbb{R}$ and a.e. $x \in D$;

A prototype of the equation (E_T) is

$$-\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) + b|u|^{p-2}u = T$$

with a locally bounded function b in G.

As a matter of fact, we treat the following two topics: (i) Hölder continuity of a solution of the equation of (E_T) (section 2); (ii) Integrability of the gradients of a solution of the equation of (E_T) (section 3).

Throughout this paper, we use some standard notation without explanation.

$\S2$. Hölder continuity of a solution

In this section, we suppose the following monotoneity conditions on \mathcal{A} : $\mathbf{R}^N \times \mathbf{R}^N \to \mathbf{R}^N$ and \mathcal{B} : $\mathbf{R}^N \times \mathbf{R} \to \mathbf{R}$:

(A.4)
$$\left(\mathcal{A}(x,\xi_1) - \mathcal{A}(x,\xi_2)\right) \cdot \left(\xi_1 - \xi_2\right) > 0$$
 whenever $\xi_1, \ \xi_2 \in \mathbf{R}^N, \ \xi_1 \neq \xi_2,$ for a.e. $x \in \mathbf{R}^N$;

(B.3) $t \mapsto \mathcal{B}(x,t)$ is nondecreasing on **R** for a.e. $x \in \mathbf{R}^N$.

We consider elliptic quasi-linear equations of the form

(E₀)
$$-\operatorname{div} \mathcal{A}(x, \nabla u(x)) + \mathcal{B}(x, u(x)) = 0.$$

For an open subset G of \mathbb{R}^N , we consider the Sobolev spaces $W^{1,p}(G)$, $W_0^{1,p}(G)$ and $W_{\text{loc}}^{1,p}(G)$.

Let G be an open subset of \mathbb{R}^N . A function $u \in W^{1,p}_{loc}(G)$ is said to be a (weak) solution of (\mathcal{E}_0) in G if

$$\int_{G} \mathcal{A}(x, \nabla u) \cdot \nabla \varphi \, dx + \int_{G} \mathcal{B}(x, u) \varphi \, dx = 0$$

for all $\varphi \in C_0^{\infty}(G)$.

A continuous solution of (E_0) in an open subset G is called $(\mathcal{A}, \mathcal{B})$ harmonic in G. For any $(\mathcal{A}, \mathcal{B})$ -harmonic functions, the following locally Hölder continuity estimate holds ([7; Theorem 4.7] or [8; Proposition 2.1]) :

Proposition 1. Let G be an open set. Then there are constants c and $0 < \lambda \leq 1$ such that for $B(x_0, R) \in G$ and for every $(\mathcal{A}, \mathcal{B})$ -harmonic function h in G with $|h| \leq L$ in $B(x_0, R)$,

$$osc(h, B(x_0, r)) \leq c\left(\frac{r}{R}\right)^{\lambda} (osc(h, B(x_0, R)) + R),$$

whenever $0 < r < R \leq 1$. Here c depends only on $N, p, \alpha_1, \alpha_2, \alpha_3(G)$ and L and λ depends only on N, p, α_1, α_2 and $\alpha_3(G)$.

In the case of $\mathcal{A}(x,\xi) = |\xi|^{p-2}\xi$ and $\mathcal{B} = 0$, namely for the *p*-Laplace equation, we can choose $\lambda = 1$ ([3; Lemma 2.1]).

Suppose that ν is a signed Radon measure on G. Hölder continuity of a solution to the equation of the form

$$(\mathbf{E}_{\nu}) \qquad \qquad -\operatorname{div}\mathcal{A}(x,\,\nabla u(x)) + \mathcal{B}(x,\,u(x)) = \nu$$

was investigated in [9], [2] and [3]. In [6], Kilpeläinen and Zhong showed that, for the equation

(1)
$$-\operatorname{div} \mathcal{A}(x, \nabla u(x)) = \nu$$

$$\nu(B(x_0, r)) \le M r^{N-p+\beta(p-1)}$$

whenever $B(x, 3r) \subset G$, where λ is the number in Proposition 1 above, then a solution to the equation (1) is Hölder continuous with the same exponent β . We can extend this result to the case of the equation (E_{ν}) and of the signed Radon measure ([8]).

Theorem 1. Let G be an open set and $u \in W^{1,p}_{loc}(G)$ be a solution of (E_{ν}) in G. If ν is a signed Radon measure on G such that there exist constants M > 0 and $0 < \beta < \lambda$, where $\lambda = \lambda(N, p, \alpha_1, \alpha_2, \alpha_3(G)) > 0$ is the number in Proposition 1 above, with

$$|\nu|(B(x,r)) \le M \ r^{N-p+\beta(p-1)}$$

whenever $B(x,3r) \subset G$, then u is locally Hölder continuous in G with the exponent β .

$\S3$. Global integrability of the gradient of a solution

In this section, we treat the higher integrability of the gradient of a solution of (E_T) in a bounded open set G. In [9], Rakotoson and Ziemer showed the local integrability of the gradient of a solution of (E_T) with $T \in W_{\text{loc}}^{-1,p'+\delta}(G)$ for some $\delta > 0$. In [4], Kilpeläinen and Koskela treated the global integrability of the gradient of a solution of the equation (1) in the previous section under the condition the complement of G satisfies the uniformly thickness.

A set E is said to be uniformly p-thick with constants c_0 and $r_0 > 0$, if

$$\operatorname{cap}_p(\overline{B}(x_0,r)\cap E, B(x_0,2r)) \ge c_0 \operatorname{cap}_p(\overline{B}(x_0,r), B(x_0,2r))$$

for all $x_0 \in E$ and for all $0 < r < r_0$. For the notion of *p*-capacity cap_p, we refer to [1; Chapter 2].

We can show the following global integrability of the gradient of a solution of (E_T) .

Theorem 2. Suppose that G is a bounded open set, CG is uniformly p-thick with constants $c_0, r_0 > 0$ and u is a solution of (E_T) in G such that $u - \theta \in W_0^{1,p}(G)$. Then there exists $\delta_0 = \delta(N, p, \alpha_1, \alpha_2, \alpha_3(G), c_0)$ such that $|\nabla u| \in L^{p+\delta}(G)$ whenever $T \in W^{-1,p'+\delta}(G)$ and $|\nabla \theta| \in L^{p+\delta}(G)$ for $0 < \delta < \delta_0$. **Remark 1.** The uniformly thickness condition cannot be suppressed in Theorem 2. (see [4; Remark 3.3])

References

- [1] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Claredon Press, 1993.
- G. M. Lieberman, Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations involving measures, Comm. P. D. E. 18 (1993), 1191-1212.
- [3] T. Kilpeläinen, Hölder continuity of solutions to quasilinear elliptic equations involving measures, Potential Anal. 3 (1994), 265-272.
- [4] T. Kilpeläinen, P. Koskela, Global integrability of the gradients of solutions to partial differential equations, Nonlinear Anal., Theory Methods Appl. 23 (1994), 899-909.
- [5] T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. **172** (1994), 137-161.
- [6] T. Kilpeläinen and X. Zhong, Removable sets for continuous solutions of quasilinear elliptic equations, Proc. Am. Math. Soc. 130, (2002), 1681-1688.
- [7] T. Ono, On solutions of quasi-linear partial differential equations $-\operatorname{div}\mathcal{A}(x,\nabla u) + \mathcal{B}(x,u) = 0$, RIMS Kōkyūroku 1016 (1997), 146–165.
- [8] T. Ono, Hölder continuity of solutions to quasilinear elliptic equations with measure data, Studies in Pure Mathematics 44 (2006), 327-338.
- [9] J.M. Rakotoson and W. P. Ziemer, Local behavior of solutions of quasilinear elliptic equations with general structure Trans. Amer. Math. Soc. 319 (1990), 747-775.