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Spaces of maps from the closed
Riemann surface into the 2-sphere

BEXEEKXRT WWA#HF (Kohhei Yamaguchi)*
University of Electro-Communications

1 Introduction.

For connected spaces X and Y, let Map(X,Y) (resp. Map*(X,Y)) de-
note the space consisting of all continuous (resp. based continuous) maps
f : X — Y with compact-open topology. Let T, denote the closed Rie-
mann surface of genus g. Then for each integer d € Z = wo(Map(7T,, S?))
we denote by Map,(T,, S?) (resp. by Map}(7,,S?)) the corresponding
path-component of Map(Ty, S?) (resp. Map*(Ty, S?)) consisting of all
maps (resp. of base-point preserving maps) f : T, — S? of degree d.
Similarly, we denote by Holy(7,, S?) the subspace of Map,(T,, S?) of all
holomorphic maps f : T, — S? of degree d, and by Hol}(T,, S?) the
corresponding subspace of Map};(Ty, S?) of all base-point preserving holo-
morphic maps of degree d. Note that Holg(7y, S?) = 0 if d < 0 and that
any holomorphic map f : T, — S? of degree zero is a constant map. So in
this paper we always assume that d > 1 and recall the following results.

Theorem 1.1 (L. Larmore and E. Thomas, [7]). (i) If g = 0, Ty =
S? and there are isomorphisms

Wl(Mapd(Sz,Sz)) =~ 7Z/2d, Wl(MapZ(Sz, Sz)) =~ 7.
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(ii) If g > 1, there are isomorphisms

{MMapd(Tg,S?)) (. € (1 < j < 29)|[ex, exrq] = @ 0% = 1),
m1(Map}(T,, S?)) = (a,e; (1 < j < 29)|[ex, errq) = ?),

where k =1,2,--- ,g, and [z,y] = zyz~ 1y~ L. O

Theorem 1.2 (G. Segal, [9]). The inclusion maps

iq : Hol3(Ty, S?) — Map;(Ty, S?)
ja : Holy(T,, S?) — Map,(T,, S?)

are homotopy equivalences up to dimension d if g = 0, and they are
homology equivalences up to dimension D(d;g) =d — 2g if g > 1. O

Theorem 1.3 (S. Kallel, [6]). If d > 2g and g > 1, the inclusion maps
iq and jq induce tsomorphisms

igy : T (Hol(Ty, S%)) = m1(Map(T,, S%)),
Jan : m1(Holg(Ty, %)) = m(Mapy(Ty, $%)). O

Remark. A map f: X — Y iscalled a homotopy (resp. homology) equiv-
alence up to dimension D if f, : m(X) — 7 (Y) (resp. fi: Hp(X,Z) —
H(Y,Z)) is an isomorphism for any &k < D and epimorphism for k£ = D.

We expect that the inclusions ¢4 and j; will be homotopy equivalences
up to dimension D(d;g) for g > 1. For example, Theorem 1.3 supports
that this might be true, and it seems valuable to investigate the homotopy
types of the universal coverings of Hol (T}, S?) and Holy(T,, S?).

The main purpose of this note is to announce the recent work of the
author given in [13], in which we shall study the homotopy types of uni-
versal coverings of the above spaces. Let X denote the universal covering
of a connected space X. Then we can state our results as follows.

Theorem 1.4 ([13]). If d > 1, there is a homotopy equivalence
&y : S® x Holy(T,, S?) = Holy(T,, S?).

Corollary 1.5 (([1], (8], [ 2])). Ifg =0 and d > 1, there is a homotopy
equivalence ®q : S® x Hold(S2 S?) = Hold(Sz S?). O
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Let ¢ : Holj(Ty, S?) — Holg(T,, S?) be an inclusion map and let ev :
Holy(T,, S?) — S? denote the evaluation map given by ev(f) = f(to),
where ty € T, is the base-point of T,. Then it is known that there is a
evaluation fibration sequence (e.g. [6])

Hol’(T,, S?) -C—> Holy(T,, S?) —=— 52,

Corollary 1.6 ([13]). If k > 2 and d > 1, the above sequence induces a
split short exact sequence :

0 — 7 (Hol%(T,, §%)) = mp(Holg(Ty, S2)) <5 m(S?) — 0.
Theorem 1.7 ([13]). Let d > 1 be an integer.
(i) There is a homotopy equivalence
& : % x Map (T, S®) = Mapy(T,, S?)
and there is a fibration sequence (up to homotopy equivalence)
025%(3) — Map (T, S°) — (25%)%,
where S3(3) denotes the 3-connective covering of S3.
(ii) For any k > 2, there is an isomorphism

me(Map (Ty, $%)) 22 mes2(S°) @ mrar (5%)%%.

2 The idea of the proofs.

Let X, Y and Z be connected spaces and let f : X — Y be a map.
Define the map f# : Map(Y, Z) — Map(X, Z) by f#(g) = go f for g €
Map(Y, Z). Similarly, we define the map f# : Map*(Y, Z) — Map*(X, Z2)
by the restriction. It is well known that there is a cofiber sequence

(1) Sl __‘_pi) V2gsl i ; Tg dg S2 Tpg \/2952

where m1(V29S?) is the free group on 2g generators {a;,b; : 1 < j < g}
and @, = [a1, bi][ag, bo] - - - [ay, b,] € m (VHST).
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Lemma 2.1. ¢ : m(Q3S%) — me(Mapj(Ty, S?)) is a monomorphism
for any k > 1.

Proof. By using an easy diagram chasing we can show the assertion. [
Consider the commutative diagram of evaluation fibration sequences
Mapj(5?, 5%) —Z— Map,(5?, 5%) > §?

(2) | | li
Map3(T,, 5?) —5—> Mapy(T,, $?) —=%- 52
Lemma 2.2. evy, : mo(Mapy(X, S?)) — m2(S?) is trivial for X € {S?,T,}.

Proof. If X = S?, we can easily show the assertion by using Whitehead’s
Theorem [11] concerning the boundary operator of the homotopy exact
sequence induced from the evaluation fibartion. By using this with the
diagram chasing of (2), we can also prove the assertion for X =7,. 0O

Lemma 2.3. The induced homomorphisms

iz, : 12(Map}(Ty, 5?)) — m3(Mapy(Ty, 5?))
iy ma(Hol (T}, S2)) — ma(Holy(T}, S?))

are epimorphisms.

Proof. The proof follows from the diagram chasing and Lemma 2.2. O

If we identify S2 = CP!, the group SU(2) acts on S? by the right
matrix multiplication. By using this right matrix multiplication, define
the map

(3) ® : SU(2) x Map}(Ty, S?) — Mapy(Ty, 5?)

by (®(4, ))(t) = f(t) - A for (4, f,t) € SU(2) x Mapy(Ty, S?) x Ty.
Since ®(SU(2) x Hol}(T,, S?)) C Hol4(T,, S?), we can define the map

(4) By : SU(2) x Hol}(T,, S%) — Holy(T,, S?)

by the restriction ®4 = ®|SU(2) x Hol};(T,, S?).
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Theorem 2.4 ([13]). &4, : 7(SU(2) xHol}(Ty, $2)) — mx(Holy(T,, 52))

18 an isomorphism for any k > 2.
Proof. The detail is omitted and see [13] in detail.

Now we can prove Theorem 1.4 by using Theorem 2.4.

Proof of Theorem 1.4. Let

7 - Holy(Ty, §2) — Holy(T,, %)
'« Hol(T,, S?) — Hol%(Ty, S2)

denote projection maps of the universal coverings. If we identify SU(2) =
S3, it is easy see that the universal covering of SU(2) x Hol}(T,,S?)
is given by 1 x 7’ : §% x HN(ﬂ;(Tg,Sz) — SU(2) x Hol}(T,, S?). Then
because 7 is a projection of the universal covering, there is a lifting
By : S x ﬁ(ﬁ;(Tg, $2) — Holy(T,, S?) such that the following diagram is
commutative.

S3 x Holy(Ty, 52)  —24 Holy(T,, S?)
lxw’l . ﬂ’l
SU(2) x Hol’(T,, S?) —2> Holy(Ty, S?)

Since 7 (P,4) is an isomorphism for any k& > 2, an easy diagram chasing
shows that m;(®4) is also an isomorphism for any k > 2. Because S3 x
ﬁBiZ(Tg,s2) and Holy(T}, S?) are simply connected, ®4 is a homotopy
equivalence. O

By using the completely similar way as above, we can see that there is
a fibration sequence (up to homotopy equivalence)

(5) S' — SU(2) x Mapj(Ty, S*) — Mapy(Ty, 52).

Theorem 2.5 ([13]). ®, : 1, (SU(2) xMap}(T,, S?)) — mx(Mapy(T,, 52))
1$ an isomorphism for any k > 2.

Proof. The proof is analogous to that of Theorem 2.4. ]
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Corollary 2.6 ([13]). There is a homotopy equivalence
Mapy(T,, 5%) ~ S* x Mapy(T,, $%). O
Lemma 2.7. There is a homotopy fibration sequence
0’S*(3) — Map (T, S°) — (25%)*.

Proof. This can be proved by using tedious diagram chasing and the
detail is omitted. O

Proof of Theorem 1.7. (i) By using Corollary 2.6 and Lemma 2.7, to
prove (i) it is sufficient to show that there is a homotopy equivalence

(6) Map (Ty, S%) =~ Mapy(Ty, S2).

However, by using a similar manner as that of the previous Theorem we
can prove the assertion (i) and the detail is omitted.

(ii) Assume that k > 2. Since there is a homotopy equivalence T, ~
V29 S1+k v §2+k and S° is a Lie group, Map*(7Ty, S®) is an H-space. Hence,
the assertion (ii) easily follows. O
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