The automorphism group of a compact smooth toric variety and its representations on sections of equivariant line bundles

大阪市立大学理学研究科 石田 裕昭 (Hiroaki Ishida) Osaka City University

1 はじめに

本稿では、非特異かつ完備なトーリック多様体上の同変直線束から誘導される、正則な (大域) 切断のなす複素ベクトル空間上の表現について考察する. トーリック多様体の基本 的な性質については [2], [3] や [4] を参照してもらいたい. また, [1] の方法を大いに参考に させていただいた.

一般に、 # G と空間 X 上の(左)G-同変ベクトル東 E を考えるとき、大域切断の空間 $\Gamma(X,E)$ は次のように(左)G-加群になる: 切断 $s\in\Gamma(X,E)$ と $g\in G$ に対し

$$s^g := gsg^{-1},$$

すなわち, 次の図式を可換にするような新たな切断 s^g を定める:

$$L \xrightarrow{g} L$$

$$s \downarrow^{g} := gsg^{-1}$$

$$X \xrightarrow{g} X$$

本稿では X として完備かつ非特異なトーリック多様体, G として X の自己同型群の単位元成分の拡大, E として直線束の場合を論じる.

2 トーリック多様体

定義 2.1. (n 次元) トーリック多様体 X とは,

- X は基礎体 C 上の正規代数多様体.
- X は n 次元代数トーラス (\mathbb{C}^*) n をザリスキ開集合として含む.
- \bullet (\mathbb{C}^*) n 上の群の演算が, X 上の (\mathbb{C}^*) n -作用に拡大する.

を満たす代数多様体のことである.

ここで、作用はすべて代数的、すなわち、各元は(代数多様体としての)自己同型射として 作用するものとする. 以下, トーリック多様体 X の次元は n とする.

例 2.2 (アフィン空間 \mathbb{C}^n). n 次元アフィン空間 \mathbb{C}^n はトーリック多様体である. 明らかに \mathbb{C}^n は代数トーラス $(\mathbb{C}^*)^n$ をザリスキ開集合として含み, $(\mathbb{C}^*)^n$ 上の群の演算は, \mathbb{C}^n 上の次のような $(\mathbb{C}^*)^n$ -作用に拡大する: $(t_1,\ldots,t_n)\in(\mathbb{C}^*)^n$ と $(z_1,\ldots,z_n)\in\mathbb{C}^n$ に対して,

$$(t_1,\ldots,t_n)\cdot(z_1,\ldots,z_n):=(t_1z_1,\ldots,t_nz_n).$$

例 2.3 (複素射影空間 \mathbb{P}^n). n 次元複素射影空間 \mathbb{P}^n は非特異かつ完備なトーリック多様体である. 実際, ザリスキ開集合

$$T := \{ [z_0, \ldots, z_n] \in \mathbb{P}^n |$$
すべての i について $z_i \neq 0 \}$

から (ℂ*)ⁿ への写像

$$[z_0,\ldots,z_n]\mapsto \left(\frac{z_1}{z_0},\ldots,\frac{z_n}{z_0}\right)$$

によって, $T \subset \mathbb{P}^n$ は $(\mathbb{C}^*)^n$ と同型であることが確かめられる(ここで, $[z_0,\ldots,z_n]$ は \mathbb{P}^n の 斉次座標). また, 上の同型射により, \mathbb{P}^n における $(\mathbb{C}^*)^n$ -作用は, $(t_1,\ldots,t_n) \in (\mathbb{C}^*)^n$ と $[z_0,\ldots,z_n] \in \mathbb{P}^n$ に対して,

$$(t_1,\ldots,t_n)\cdot [z_0,\ldots,z_n]:=[z_0,t_1z_1,t_2z_2,\ldots,t_nz_n]$$

と定められる.

以下,トーリック多様体 X は完備かつ非特異なものとする. トーリック多様体 X は,次の情報 $(K; v_1, \ldots, v_m)$ によって完全に決定される:

• X_1, \ldots, X_m を $(\mathbb{C}^*)^n$ -不変な余次元 1 の部分多様体(これを $(\mathbb{C}^*)^n$ -不変因子という)とする. このとき, 頂点集合 [m] 上の(有限)単体複体 K を次で定義する:

$$K := \left\{ I \subset [m]; \bigcap_{i \in I} X_i \neq \emptyset \right\}$$

• 格子ベクトル $a = (a_1, \ldots, a_n) \in \mathbb{Z}^n$ と $t \in \mathbb{C}^*$ に対して,

$$\lambda_a(t) := (t^{a_1}, \dots, t^{a_n}) \in (\mathbb{C}^*)^n$$

と定める. 各 $(\mathbb{C}^*)^n$ -不変因子 X_i に対して、次を満たす格子ベクトル $v_i \in \mathbb{Z}^n$ が一意的に定まる:

- すべての点 $x \in X_i$ と $t \in \mathbb{C}^*$ に対して, $\lambda_{v_i}(t) \cdot x = x$.
- すべての点 $x \in X_i$, $\xi \in T_x X/T_x X_i$ と $t \in \mathbb{C}^*$ に対して, $(\lambda_{v_i}(t))_*(\xi) = t\xi$.

定義 2.4. $\Sigma := (K; v_1, \dots, v_n)$ をトーリック多様体 X の扇 (fan) という.

非特異かつ完備なトーリック多様体 X の扇 Σ について. 次が知られている:

命題 2.5. 1. K の (n-1) 次元単体 I について, $\{v_i\}_{i\in I}$ は \mathbb{Z}^n の基底をなす.

2. 単体 $I = \{i_1, \ldots, i_k\} \in K$ に対して, \mathbb{R}^n の部分集合 σ_I を

$$\sigma_I := \{a_1 v_{i_1} + \dots + a_k v_{i_k}; \forall \land \land \circlearrowleft j \ \ \ \sigma_j \ge 0\}$$

で定義する(これを, 扇 Σ の**錐**という). このとき, 任意の 2 つの単体 $I,J \in K$ について,

$$\sigma_I \cap \sigma_J = \sigma_{I \cap J}$$

が成り立つ.

3. 扇 Σ のすべての錐の和集合は \mathbb{R}^n 全体になる. すなわち,

$$\bigcup_{I\in K}\sigma_I=\mathbb{R}^n.$$

扇 Σ から完備かつ非特異なトーリック多様体 X が完全に復元される. 添字の集合 $I\subset [m]$ に対して、

$$U_I := \{z = (z_1, \dots, z_m) \in \mathbb{C}^m; i \notin I$$
 に対し, $z_i \neq 0\}$

とし、頂点集合 [m] 上の単体複体 K に対して

$$U(K) := \bigcup_{I \in K} U_I \subset \mathbb{C}^m$$

と定義する.

定義 2.6. U(K) を coordinate subspace arrangement complement in \mathbb{C}^m という.

注意 2.7. U(K) は非特異なトーリック多様体である。これは、トーリック多様体 \mathbb{C}^m の $(\mathbb{C}^*)^m$ -不変なザリスキ開部分集合であることからわかる。

 $(\mathbb{C}^*)^m$ から $(\mathbb{C}^*)^n$ への準同型

$$\mathcal{V}(t_1,\ldots,t_m):=\prod_{i=1}^n \lambda_{v_i}(t_i)$$

を考える. このとき,

定理 2.8. $\mathcal{V}: (\mathbb{C}^*)^m \to (\mathbb{C}^*)^n$ は, $\ker \mathcal{V} \cong (\mathbb{C}^*)^{m-n}$ をファイバーに持つ主ファイバー束 $\widetilde{\mathcal{V}}: U(K) \to X$ に拡張する.

$$U(K) \xrightarrow{\widetilde{\mathcal{V}}} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\mathbb{C}^*)^m \xrightarrow{\mathcal{V}} (\mathbb{C}^*)^n$$

注意 2.9. 実は X が完備, 非特異でなくても, 次の 2 条件を満たせば定理 2.8 がいえる:

- *X* は軌道体 (*orbifold*) である.
- $\bullet v_1, \ldots, v_m$ が \mathbb{Z}^n を張る.

もちろん, X が完備かつ非特異であれば上の2条件を満足している.

系 2.10. 特に, $X \cong U(K)/\ker \mathcal{V}$.

3 トーリック多様体上の直線束

次の事実が知られている:

命題 3.1. トーリック多様体 X 上の複素直線束 $L \to X$ に対し, 全空間 L への (\mathbb{C}^*) n -作用 で, 底空間 X への作用の制限が, X における (\mathbb{C}^*) n -作用と一致するものが存在する.

この事実から、次がわかる:

命題 3.2. 全空間 L はトーリック多様体である.

証明. 命題 3.1 より, L に $(\mathbb{C}^*)^n$ が効果的に作用しているとする. 示すべきことは, L に $(\mathbb{C}^*)^{n+1}$ の埋め込みとその作用を与えることである. L を $(\mathbb{C}^*)^n$ \subset X に制限したもの $L|_{(\mathbb{C}^*)^n}$ は自明な直線束であり, さらにいたるところ 0 でない $(\mathbb{C}^*)^n$ -不変な切断 $s:(\mathbb{C}^*)^n \to L|_{(\mathbb{C}^*)^n}$ がとれる. $(\mathbb{C}^*)^n \times \mathbb{C}^*$ の L への埋め込みを, $(t,t') \in (\mathbb{C}^*)^n \times \mathbb{C}^*$ に対して

$$(t,t') \mapsto t's(t)$$

で定める.この埋め込まれた(\mathbb{C}^*) $^{n+1}$ の群演算が L への作用に拡大することを確認する. $t' \in \mathbb{C}^*$ は各ファイバーにスカラー倍として作用することに注意する. さらに (\mathbb{C}^*) n の L への作用と, \mathbb{C}^* の作用(スカラー倍)が可換であることから,(\mathbb{C}^*) $^{n+1}$ の L への求める作用を得た.

系 3.3. X 上の任意の複素直線束 $L \to X$ は, ある同伴直線束 (associated line bundle) $U(K) \times_{\ker V} \mathbb{C}$ と同型である.

証明. 節2の構成方法と,上の命題に注意すれば明らかである.

命題 3.4. f_1, f_2 をそれぞれ $L \to X$ の東同値写像とする. すなわち, 同型射 $f_i: L \to L$ であって, 各ファイバーにおける制限が線形同型写像である(i=1,2). それぞれの底空間 X への制限 $f_1|_{X}$, $f_2|_{X}$ が一致している, すなわち, $f_1|_{X}=f_2|_{X}$ ならば, ある定数 $c\in\mathbb{C}^*$ が存在して,

$$f_1=cf_2.$$

つまり,任意の束同値写像は(スカラー倍を除いて)底空間における制限によって決まる.

証明. 与えられた f_1, f_2 に対して, $f_2^{-1} \circ f_1 : L \to L$ を考える. 仮定より明らかに, 底空間 X

への制限 $(f_2^{-1} \circ f_1)|_X$ は恒等写像 id_X である. 従って、射 $f_2^{-1} \circ f_1: L \to L$ は各ファイバー $L_x(x \in X)$ ごとに線形変換を引き起こす.各ファイバー L_x は 1 次元ベクトル空間であるから、0 でない $u \in L_x$ に対して

$$f_2^{-1} \circ f_1(u) = c(x)u$$

となるような可逆な関数 $c: X \to \mathbb{C}^*$ を得る. 一方で, X の完備性より, c は定数値関数であり, 命題がいえた.

上の命題 3.4 は、最初の問題はトーリック多様体の自己同型群を見ればよい、ということを主張している。次節では、トーリック多様体の自己同型群について知られていることを紹介する。

4 トーリック多様体の自己同型群

定義 4.1. 群 G とその部分群 H に対して, $C_G(H)$, $N_G(H)$ でそれぞれ H の G における中心化群(centralizer),正規化群(normalizer)を表し,トーリック多様体 X に対して $\widetilde{Aut}^0(X)$, $\widetilde{Aut}(X)$ をそれぞれ次で定義する:

- $\widetilde{\operatorname{Aut}}^{0}(X) := C_{\operatorname{Aut}(U(K))}(\ker \mathcal{V})$
- $\widetilde{\operatorname{Aut}}(X) := N_{\operatorname{Aut}(U(K))}(\ker \mathcal{V})$

定義 4.1 の $\widetilde{\mathrm{Aut}}^0(X)$, $\widetilde{\mathrm{Aut}}(X)$ の元は、定義より明らかに U(K) における $\ker \mathcal{V}$ の軌道へ移す、従って、トーリック多様体 X の自己同型群 $\mathrm{Aut}(X)$ への自然な準同型 $\widetilde{\mathrm{Aut}}(X) \to \mathrm{Aut}(X)$ が誘導される.

命題 4.2. 次が成り立つ:

- 自然な準同型 $\widetilde{\operatorname{Aut}}(X) \to \operatorname{Aut}(X)$ は全射である.
- $\operatorname{Aut}^0(X)$ は $\operatorname{Aut}(X)$ の単位元成分($identity\ component$)であり、アフィン代数群である.

5 主定理

最初の問題を考えるにあたって、与えられた直線束 $L\to X$ に対して、大域切断のなす複素ベクトル空間を記述する必要がある。 α を ker $\mathcal V$ の 1-次元表現とし、 α に随伴する直線束の全空間を L_α とする;すなわち、 $U(K)\times\mathbb C$ への右 ker $\mathcal V$ -作用を

$$(z,u)\cdot k:=(k^{-1}\cdot z,\alpha(k^{-1})(u))$$

と定め、その作用による商空間を L_{α} と定める. 任意の直線束 $L \to X$ はある α が存在して $L \cong L_{\alpha}$ となることを注意しておく.

命題 5.1. 直線束 $L_{\alpha} \to X$ の大域切断の空間 $\Gamma(X, L_{\alpha})$ は, 次の空間と同一視される:

$$\{f \in \mathcal{O}(U(K)); f(z \cdot k) = \alpha(k^{-1})f(z)\} := S_{\alpha}$$

(ここで, $\mathcal{O}(U(K))$) は U(K) 上の正則 (regular) な関数全体のなす環を表す).

注意 5.2. U(K) の定義より, $\mathcal{O}(U(K))$ は m 変数の多項式環と同型になる.

証明. $q:U(K)\times\mathbb{C}\to L_\alpha$ を商写像とする. 任意の切断 $s:X\to L_\alpha$ は閉写像であることから, 部分集合 $q^{-1}(s(X))$ は $U(K)\times\mathbb{C}$ の閉集合である. さらに第一射影の制限 $p:q^{-1}(s(X))\to U(K)$ は同型射であることから, 特に $q^{-1}(s(X))$ はある関数 $f:U(K)\to\mathbb{C}$ のグラフである. このとき, $q^{-1}(s(X))$ が $\ker V$ -不変であることから, 関数 f は S_α の元である.

逆に任意の $k \in \ker \mathcal{V}$ に対して $f(z \cdot k) = \alpha(k^{-1})f(z)$ を満たす関数 f に対して, 切断 s_f を 各点 $[z] \in X$ において次のように定義する:

$$s_f([z]) := [z, f(z)],$$

ここで [z],[z,u] はそれぞれ $z\in U(K),(z,u)\in U(K)\times\mathbb{C}$ の $\ker \mathcal{V}$ の軌道を表す. f の性質より s_f は well-defined であり、これが同型対応を与える.

 L_{α} には自然な左 $\widetilde{\operatorname{Aut}^{0}}(X)$ -作用が入る; $U(K) \times \mathbb{C}$ への左 $\widetilde{\operatorname{Aut}^{0}}(X)$ -作用を,

$$g \cdot (z, u) := (g \cdot z, u)$$

で定める. $\widetilde{\operatorname{Aut}^0}(X)$ の定義から、この作用は L_α 上の作用を誘導する. 以上のことから、次の主定理を得る:

定理 5.3. $\widetilde{\operatorname{Aut}^0}(X)$ -同変直線束 $L_\alpha \to X$ の大域切断の空間に表れる表現は, $\mathcal{O}(U(K))$ の部分加群 S_α と同型である. ここで, S_α への $\widetilde{\operatorname{Aut}^0}(X)$ -作用は $f \in S_\alpha$ と $g \in \widetilde{\operatorname{Aut}^0}(X)$ に対して

$$f^g(z) := f(g^{-1} \cdot z)$$

と定める.

証明. 命題 5.1 の同一視を用いる. $f \in S_{\alpha}$ に対して、対応する切断を $s_f: X \to L_{\alpha}$ と書くこ

とにする. このとき, $g \in \widetilde{\operatorname{Aut}^0}(X)$ を作用させると,

$$s_f^g([z]) = gs_f g([z])$$

$$= gs_f([g^{-1} \cdot z])$$

$$= g \cdot [g^{-1} \cdot z, f(g^{-1} \cdot z)]$$

$$= [z, f(g^{-1} \cdot z)]$$

$$= [z, f^g(z)]$$

とかける. したがって定理を得た.

参考文献

- [1] David A. Cox The Homogeneous Coordinate Ring of a Toric Variety, arXiv:alg-geom/9210008v2, 21 Jun 1993.
- [2] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Graduate texts in Math. 168, Springer-Verlag, Berlin Heidenberg New York, 1996.
- [3] W. Fulton, *Introduction to Toric Varieties*, Princeton University Press, Princeton, 1993.
- [4] T. Oda, Convex Bodies and Algebraic Geometry, Springer-Verlag, Berlin Heidenberg New York, 1988.