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An overview on the equation —Au = ¢ in
bounded domains

Massimo Grossi®

1 Introduction

In this survey we consider the problem

—Au =uP in Q,
u>0 in Q, (1.1)
u=20 on 912,

where €2 is a smooth bounded domain in RY, N > 3 and p > 1. Problem (1.1)
has been very studied in the last year and, despite of its simple structure, it is
a great source of interesting phenomena and open problems. According to the
values of the exponent p, we have the following classification: problem (1.1) is
said

+ 2
N =2’
N+2
N -2’

supercritical if p > N+ 2.
N =2

In this survey we focus our interest mainly in the last case (Section 4). On
the other hand, in order to explain the main difficulties, in Section 2 and Section
3 we list some of the most important results when 1 <p < %

Some of the topics of this survey were treated in a lecture given by the
author at the Kyoto University in June 2009. I would like to thank again all
the organizers for their support and fantastic hospitality.

subcritical if 1 < p <

critical if p =

2 The subcritical case 1 < p < %—f%
In this case it is not difficult to show that there exists at least one solution
to (1.1) for any domain Q. Indeed, if we consider the following minimization
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problem,
vt
1165{;&(()(2). (.]“ lu’p+l)n+l

then, using the compactness of the imbedding of H}(§2) in LP*1(Q), it is easy
to prove that S, is achieved. This provides (up to a multiplicative constant),
the existence of a solution to (1.1).

In next section we are going to see that this result in not true if p = {%Z. For
this reason it is interesting t(}:’ study the asymptotic behavior of the solution

which achieves S, when p — ﬁ% We have the following result,

Theorem 2.1. (Han.[H], 1991) Let us suppose that u. is a solution to (1.1)

which achieves (2.1) with p = ¥+2 —¢. Then, as ¢ — 0,
HutHx — +00

ue(x)
Ve

and xq verifies

— C(p.N)G(x.z9) uniformly in Q\ {zg}

VR(.I‘()) = O,

where G(z,y) is the Green function of —A in H3(QY), H(z,y) = N(—N_l—m—; -
G(z,y) is its regular part and R(z) = H(x,xz). Here C(p, N) is a positive real
constant depending only on p and N.

Solutions verifying ||u¢||.. — +oc at one point and u(x) — 0 far away from
its maximum point are usually called single — bump solutions. Han’s result
claims that the solution founded minimizing (2.1) is a single-bump solution as

N2
P— N=3
In an analogous way we define k — bump solutions if the same behavior occurs
at k points.

3 The critical case p = %

It is virtually impossible to provide a complete list of results in the critical case.
We just mention some of our interest. First, the existence result of the previous
section is not true anymore if we consider the critical or the supercritical case.
Indeed, we have the following fundamental result:

Theorem 3.1. (Pohozaev.[P]. 1965) Let us suppose that Q is starshaped with
respect to some point. Then there is no solution to (1.1) for p > %

The proof of Theorem 3.1 is a consequence of the celebrated Pohozaev iden-
tity which dealt with solutions of the problem

—Au = f(u) in £,
{ u=0 on J1, (3.1)
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So if u solves (3.1) we have that

2-N 1 ou
/ uf(u) + N/ F(u) = = (x—vy) v (QE) (Pohozaev identity)
2 Q Q 2 Joa v

where F'(s) = fos f(t)dt and v is the outer normal at Q. If we use the Pohozaev
identity with f(s) = s, p > % we get that in star-shaped domains neces-
sarily u = 0. Theorem 3.1 emphasizes the role of the geometry of the domain
in order to derive nonexistence result in the critical case. Note that if € is
not star-shaped with respect to any point but it has, for example, a nontrivial
topology, the situation is completely different. This is showed in the following
example,

Theorem 3.2. (Kazdan and Warner.[KW], 1975) Let §2 be an annulus. Then
there ezists a radial solution to (1.1) for any p > 1.

The proof of the previous theorem is very similar to one of the subcritical
case. Indeed, let us consider the following infimum,

v 2
Srad = inf ) —————-——fﬂ [Vl = (3.2)
116111",;,‘;)(& ), (/'” ‘ulp—i-l ) p+1

where Hrqq(Q) = {u € H}(Q) : u(xr) = u(|z])}. Since the imbedding of Hy44($2)
in LPT1(Q) is compact for any p > 1 we derive the existence of a solution.

On the other hand the non-spherical case is much harder to handle. An impor-
tant contribution was given by Coron,

Theorem 3.3. (Coron,[C], 1984) Let ) be a domain with a "small hole”. Then

there exists a solution to (1.1) for p = F+2.

This theorem was extended some years later by Bahri and Coron, which
prove this beautiful (and deep!) result.

Theorem 3.4. (Bahri and Coron,[BCJ. 1988) If there exists a positive integer
d such that Hy(Q,Z3) # 0, then there exists a solution to (1.1) for p = %{%

Here Hy(2,Z3) # 0, denotes the homology of dimension d with Z; coeffi-

cients. In particular, if N = 3, Bahri and Coron’s results implies that if €2 is
not contractible there exists a solution to (1.1).
Now we mention the most important paper regarding the critical case: the pi-
oneering paper by Brezis and Nirenberg. In order to handle the obstruction
given by the Pohozaev identity, they added a linear term to the equation and
obtained the following beautiful result:

Theorem 3.5. (Brezis and Nirenberg.[BN]. 1983) Let us consider the problem
Au=uNF f e inQ,

u>0 in Q (3.3)
uw=20 on 09,
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Then there exists A* > 0 such that for any A* < A < A there exists one solution
to (3.83). Moreover we have that \* = 0 if N > 4. Here A, is the first eigenvalue
of —=A in H3 ().

Note that, using again the Pohozaev identity, if A < 0 in (3.3), there is no
solution in star-shaped domains, so the Brezis and Nirenberg’s result is sharp.

We end this section on the critical case by mentioning some interesting ex-
amples due to Dancer ([D}, 1988), Ding (|Di], 1988) and Passaseo ([Pa], 1989).
Here the authors perturb some contractible domains in order to derive an exis-
tence result to (1.1) in non-contractible domains.

It worths to observe that the results of this section rely on the fundamental
remark that it is possible to associate to the problem (1.1) a limit problem given
by

~Au=u™7 in RV, (3.4)

whose solutions are completely classified (see [C/GS]).

4 The supercritical case p > —%—f%

This case is much more difficult to manage since there is no imbedding of HJ ()
in LP*1(Q). For this reason, standard variational methods does not apply di-
rectly.

Let us start this section by considering the case where the exponent p is slightly

grater than the critical one, namely p = % + ¢. We have the following result:

Theorem 4.1. (Ben Ayed. El Mechdi. Grossi and Rey,[BEGR], 2003) Let us
consider the problem (1.1) with p = %f—% +¢. Then, for any domain 2, there is

not any single-bump solution for ¢ small.

We recall that if p = %‘f—% — ¢ (subcritical case) there always exists one
solution to (1.1). From the last result we see that it is not allowed to exchange
e with —e! On the other hand, if we look for solutions with a large number of

bumps, Theorem 4.1 is not true anymore. Indeed we have,

Theorem 4.2. Let us consider the problem (1.1) withp = %f—"; +¢. We have
that,

1) If Q s a domain with one hole then. for ¢ small enough, there exists a
2 — bumps solution (del Pino. Felmer and Musso, [DFM], 2003),

2) If Q is a domain with one hole then. for ¢ small enough, there exists a
3 — bumps solution (Pistoia and Rey. [PR]. 2006 ).

These results lead naturally to the following

Open problems Let p = —,'g—f-% +ein (1.1).
(1) If Q is a domain with one hole, does exists, for ¢ small enough, a k — bumps
solution for any k > 47
(2) Does exist any domain € such that there are no 2 — bumps solutions?
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The latest theorems concerned with (supercritical) perturbation of the crit-
ical case. Next results deal with exponent p ”far” from the critical one. The
first one is

Theorem 4.3. (Passaseo, [Pa2], 1992) There exists a contractible domain such
that for any p > % there exists a solution to (1.1).

We also have the following interesting nonexistence result,

Theorem 4.4. (Passaseo, [Pa3], 1993) There ezists a domain with nontrivial

topology such that for any p > 1—’:’,—% there exist no solution to (1.1).

Note that the exponent appearing in Passaseo’s theorem is the critical Sobolev
exponent in dimension N — 1. This result is somehow surprising: unlike to the
critical case, the topology of the domain is not a sufficient condition for the
existence of solutions! Moreover this result is sharp, as follows by the next
theorem:

Theorem 4.5. (del Pino, Musso and Pacard, [DMP], 2009) Let us consider the
same domain of Theorem 4.4. Then, for ¢ small enough, there exists a solution
to (1.1) withp = %{—}3 —¢. Moreover, as ¢ — 0, the solution concentrates along
a curve.

On the other hand, if the domain has a small hole, the topology of the
domain ensures the existence of solutions. This is a generalization of Coron’s
result to the supercritical case,

Theorem 4.6. (del Pino and Wei, [DW], 2007) Let € be a domain with a
circular hole. Then there exists a sequence of exponents p; < pz < .. with

N lirf Pk = +00 such that if p # pi there is a solution to (1.1) provided the hole
L — 1+ OC

is small enough.

We now consider a different type of results, i.e. we look for solutions to (1.1)
when p is large. This approach is justified by the existence of a limit problem
to (1.1) as p — 4o00. This was done in [G], where the author studied the radial
solution in the annulus founded by Kazdan and Warner in Theorem 3.2. We
have the following result,

Theorem 4.7. (Grossi, [G], 2006) Let u, the unique radial solution of (1.1).
Then as p — +oc

41
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with
2 0> N 2PN fora < |zl < 7o
w(lzl) = 5w { 22N = bV forrg <|z| <b
where

1
(1,2"N +b2—N =N
Ty = —-——-—-—2———— .



Unlike to the case of single-bump solution, we have that no concentration
occurs as p — +oc. We point out that, if we denote by G(r,s) the Green

function of the operator —u” — =1y in Hj(a,b) and by H(r,s) its regular
part we have that
G | g
'll)('.l") — (|‘r|7’0)
H(T(). 7‘())

Theorem 4.7 is the starting point to deduce some existence result to (1.1) when
p is large. Together with (4.1) we also need to derive a limit problem to (1.1)
for p large. This can be done setting

(1) = T E— (e + ) = lac), (4.2)
where up(7p) = [|uplloc and pe3fluylit ! = 1. We have that
i — U inCL (R), (4.3)
where
4eV2"
U(r) =log (1—+€—\7_2—7—)—2 (4.4)

is the only solution of the problem:

-z =€ in R
z(0) = 2’(0) = 0.

m

(4.5)

Using these information we can try to construct a radial solution in Brezis-
Nirenberg type problem. i.e. adding a linear term to the equation. It was done
in the unit ball B; (for p large). We have that

Theorem 4.8. (Grossi, [G1], 2008) Let us consider the problem

—Au+ a(|lz))u =v” in B,
u>0 in By (4.6)
uw=20 on 831,

and let us denote by G, (r, s) the Green function of the operator —u'' — i:—lu' +
a(r)u in Hy(0,1) and by H, (v, s) its reqular part. Then , if 1| is a nondegenerate
critical point of Ha(r,1). for p large enough there exists a radial solution u, to
(4.6). Moreover we have that

R Ga,(l'l"l‘, "‘1)

u’P(l‘Tl) }1” (T],T]) .

This result holds for radial solutions in the unit ball and it is not easy to
extend it to a non-spherical situation. However, coming back to problem (1.1),
we have the following open problem,

Open problem Let Q be a domain with one hole (not necessarily small).
Then, for p large enough, does there exist a solution to (1.1) which satisfies:
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i)up, > 1in M for p — +00
ii) Au, — 0 outside of M for p — +oc?

Observe that this solution should be the "natural” extension of the one in
Theorem (4.7) to non-spherical domain.
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