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1 Introduction
In this survey we consider the problem

$\{\begin{array}{ll}-\triangle u=u^{I)} i_{11}(1,u>0 i_{11}\Omega,u=0 on \partial\Omega,\end{array}$ (1.1)

where $\zeta$ ) is a smooth bounded doinain in $\mathbb{R}^{N},$ $N\geq 3$ and $p>1$ . Problem (1.1)
has been very studied in the last year aiid, despite of its simple structure, it is
a great source of interesting phenomena and open problems. According to the
values of the exponent $p_{7}$ we ha.ve the following $(1a.s^{\neg}sificatio\iota u$ : problem (1.1) is
said

$sub_{C?}\cdot itical$ if
$\cdot$ $1<p<\underline{N+2}$

$N-2$ ’

criticul if $p= \frac{N+2}{N-2}$ ,

$s\tau\iota pe\uparrow\cdot c\cdot|’ iticrxl$ if $p> \frac{N+2}{1N-2}$ .

In this survey we focus our interest mainly in the last case (Section 4). On
the other ha.nd, in order to explain tbe niaiii difficulties, ill Section 2alld Sectioi,i

3 we list some of the most important results when $1<p \leq\frac{N+2}{N-2}$ .
Some of the topics of this survey were treated in a lecture given by the

author at the Kyoto University in June 2009. I would like to thank again all
the organizers for their support and fantastic hospitality.

2 The subcritical case $1<p< \frac{N+2}{N-2}$

In this case it is not difficult to sbow tliat tbere exists at least one solution
to (1.1) for any domain $\Omega$ . $I_{11}c1_{t^{s}Pt}1$ , if we $()1^{\cdot}\downarrow sidert$ he following $lniniinization$
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problem,

$S_{\rho}= \tau\iota\in H_{\cap}^{1}(f1)14\inf_{\not\cong t},\cdot\frac{\int_{p}|\nabla u|^{2}}{(/l|u|^{\rho+1})^{\frac{2}{\rho+1}}}$ (2.1) 2

then, using the compactness of the imbedding of $H_{(}$] $(\Omega)$ in $L^{\rho+1}(\Omega)$ , it is easy
to prove that $S_{p}$ is achieved. This provides (up to a multiplicative constant),
the existence of a solution to (1.1).
In next section we are going to see that this result in not true if $p= \frac{N+2}{N-2}$ . For
this reason it is interesting to study the asyniptotic behavior of the solution
which achieves $S_{p}$ when $p arrow\frac{N+2}{N-2}$ . We have the following result,

$a3$
$Theorem2.1.(Han./H/,199Letu.ssupposethatu_{\epsilon}whichachieves(2.1)withp=\frac{1)N+2}{N-2}-\epsilon Then.as\epsilonarrow 0$

,
is a solution to (1.1)

$||u_{e}||_{x}arrow+\infty$

$\frac{u_{\epsilon}(x)}{\sqrt{\epsilon}}arrow C(p, N)G(x, x_{1)})$ uniformly in $\zeta$) $\backslash \{x_{0}\}$

and $x_{0}$ verifies
$\nabla R(x_{0})=0$ .

where $G(x, y)$ is the Green function $of-\triangle$ in $H_{0}^{1}(\Omega),$ $H(x, y)= \frac{1}{N(N-2)\omega_{N}}-$

$G(x, y)$ is its regular part and $R(x)=H(I, 1:)$ . He$7eC(p, N)$ is a positive real
constant depending only on $p$ and $N$ .

Solutions verifying $||u_{t}||_{x}arrow+\infty$ at one point and $u_{\epsilon}(x)arrow 0$ far away from
its maximum point are usually called single $-bump$ solutions. Han’s result
claims that the solution founded minimizing (2.1) is a single-bump solution as
$p arrow\frac{N+2}{N-2}$ .
$\ln$ an analogous way we define $k-b_{1}i_{17}ip$ solutions if the same behavior occurs
at $k$ points.

3 The critical case $p= \frac{N+2}{N-2}$

It is virtually impossible to provide a complete list of results in the critical case.
We just mention some of our interest. First, the existence result of the previous
section is not true anymore if we consider $t$ lie critical or the supercntical case.
Indeed, we have the following fundamental result;

3 Theorem 3.1. (Pohozae$v./P/$ . 1965) Let us suppose that $\Omega$ is starshaped with
respect to some point. Then there $\iota s$ no solution to (1.1) for $p \geq\frac{N+2}{N-2}$ .

The proof of Theorem 3.1 is a consequence of the celebrated Pohozaev iden-
tity which dealt with solutions of the problem

$\{\begin{array}{l}- Au =f(u) i_{1}\downarrow\underline{(}\},(3.1)\end{array}$
$u=0$ on $\partial Jl$ . 4
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So if $u$ solves (3.1) we have that

$\frac{2-N}{2}\int_{\Omega}uf(u)+N\int_{l}F(u)=\frac{1}{2}\int_{\partial\Omega}(x-y)$ $\iota/(\frac{\partial u}{(\gamma_{U}})^{2}$ (Pohozaev identity)

where $F(s)= \int_{0}^{s}f(t)dt$ and $\nu$ is the outer normal at $\partial(l$ . If we use the Pohozaev

$sarilyu\equiv 0identitywithf(s)=s^{\rho},pTheorem3.1\geq\frac{N+2}{N-2,pha}.v^{\gamma}een)sizes^{\backslash }t1_{1}eroleofthegeometryofthedomaingetthatinstar- shapeddomainsneces-$

in order to derive nonexistence recsult in the critical case. Note that if $\Omega$ is
not star-shaped with respect to any point but it has, for example, a nontrivial
topology, the situation is completely $dif\dagger erent$ . This is showed in the following
example,

6 Theorem 3.2. (Kazdan and Warner. $[KWJ$ , 1975 $)$ Let $\Omega$ be an annulus. Then
there exists a radial solution to (1.1) for any $p>1$ .

The proof of the previous theorein is very similar to one of the subcritical
case. Indeed, let us consider tlie $follon\cdot i_{1}ig$ infiniiim,

$S_{rad}=\iota r\in H,(1l)1i_{I1}f,$
$\frac{\int_{\Omega}|\nabla u|^{2}}{(\int_{t1}|u|^{\rho+1})^{\frac{2}{1)+1}}}$ (3.2) 7

where $H_{rad}(\Omega)=\{u\in H_{0}^{1}(\Omega)$ . $u(x)=u(|x|)\}$ . Since the imbedding of $H_{rad}(\Omega)$

in $L^{p+1}(\Omega)$ is compact for aiiy $p>1$ we derive the existence of a solution.
On the other hand the non-spherical case is much harder to handle. An impor-
tant contribution was given by Coron.

$\underline{\prod 8}$ Theorem 3.3. (Coron. $[CJ$ . 1984$)$ Let .1 be a domain with a “small hole“. Then
there exists a solution to (1.1) for $p= \frac{N+2}{N-2}$ .

This theorem was extended some years later by Bahri and Coron, which
prove this beautiful (and deep!) result.

9 Theorem 3.4. (Bahri and Coron. $[BCJ$. 1988 $)$ If there exists a positive integer
$d$ such that $H_{d}(\Omega, Z_{2})\neq 0$ , then there exists a solution to (1.1) for $p= \frac{N+2}{N-2}$ .

Here $H_{d}(\Omega, Z_{2})\neq 0$ , denotes the homology of dimension $d$ with $Z_{2}$ coeffi-
cients. In particular, if $N=3$ , Bahri $allt$ ] $C^{\tau}oro11’ S$ results implies that if $\Omega$ is
not contractible there exists a solution to (1.1).
Now we mention the most important paper regarding the critical case: the pi-
oneering paper by Brezis and Nirenberg. In order to handle the obstruction
given by the Pohozaev identity, they added a linear term to the equation and
obtained the following beautiful result:

$b10$ Theorem 3.5. (Brezis and Nirenberg. $/BN/$ . 1983) Let us consider the problem

$\{\begin{array}{ll}- Au =u^{N2}\neq-\tau+\lambda z\iota in \Omega,u>0 in (1u=0 on\partial()_{\lrcorner},\end{array}$ (3.3) $b11$
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Then there exists $\lambda^{*}\geq 0$ such that for any $\lambda^{*}<\lambda<\lambda_{1}$ there exists one solution
to (3.3). Moreover we have that $\lambda^{*}=0$ if $N\geq 4$ . Here $\lambda_{1}\dot{\iota}s$ the first eigenvalue
$of-\triangle$ in $H_{0}^{1}(\Omega)$ .

Note that, using again the Pohozaev identity, if A $\leq 0$ in (3.3), there is no
solution in star-shaped domains. so the Brezis and Nirenberg’s result is sharp.

We end this section on the critical case by mentioning some interesting ex-
amples due to Dancer ([D], 1988), Ding ([Di], 1988) and Passaseo ([Pa], 1989).
Here the authors perturb some contractible domains in order to derive an exis-
tence result to (1.1) in non-contractible domains.

It worths to observe that the results of this section rely on the fundamental
remark that it is possible to associate to the problem (1.1) a limit problem given
by

$-\triangle u=u^{\frac{N}{N}\lrcorner_{\frac{2}{2}}}-$ in $\mathbb{R}^{N}$ . (3.4) $b12$

whose solutions are $COlJ1[)Iet.\epsilon^{1}1y$ classified $($ see $|CCi^{C_{)}^{t}}1])$ .

4 The supercritical case $p> \frac{N+2}{N-2}$

This case is much niore difficult to manage $i$}
$il\downarrow tP$ there is no imbedding of $H_{0}^{1}(\Omega)$

in $L^{p+1}(\Omega)$ . For this reason, sta $1$ idard variationa) methods does not apply di-
rectly.
Let us start this section by considering tbe case where the exponent $p$ is slightly
grater than the critical one. namely $p= \frac{N+2}{N-2}+\epsilon$ . We have the following result:

cl Theorem 4.1. ($Ben$ Ayed. $El$ Mehdi. Grossi and $Rey.[BEGR]$, 2003) Let us
$notanysingle- bumpsolutionfor \epsilon_{\backslash }slconsidertheproblem(1.1)\tau mthp=\frac{N+2}{malN-2}.+\epsilon$

. Then. for any domain $\Omega$ , there is

We recall that if $p= \frac{N+2}{N-2}-e$ (subcritical case) there always exists one
solution to (1.1). From the last result we see that it is not allowed to exchange
$\epsilon$ with $-\epsilon!$ On the other hand. if we look for solutions with a large number of
bumps, Theorem 4.1 is not true anymore. Indeed we have,

c2 Theorem 4.2. Let us consider the problem (1.1) unth $p= \frac{N+2}{N-2}+\epsilon$ . We have
that,
1 $)$ If $\Omega$ is a domain with one hole then. for $e$ small enough, there exists a
2–bumps solution ($del$ Pino. Felmer and Musso, $/DFM/$, 2003),
2$)$ If $\Omega$ is a domain with one hole then. for $\epsilon$ small enough, there exists a
3–bumps solution (Pistoia and $Rey$ . $/PR]$ . 2006).

These results lead naturally to $\dagger$ he following

Open problems Let $p= \frac{N+2}{N-2}+f$ in (1.1).
(1) If $\Omega$ is a domain with one hole. $(|_{\langle)}e\backslash$ exists, for $\epsilon$ small enough, a k–bumps
solution for any $k\geq 4$ ?
(2) Does exist any $clc\rangle liiain()_{\backslash 11t}\cdot|l$ lliat tliere $\dot{c}i$ re no 2–bumps solutions?
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The latest theorems concerned with (supercritical) perturbation of the crit-
ical case. Next results deal with exponent $p$

“ far“ from the critical one. The
first one is

c3 Theorem 4.3. (Passaseo, $[Pa2J$ . 1992 $)$ There $e^{r}i_{i}ists$ a contractible domain such
that for any $p \geq\frac{N+2}{N-2}$ there exists a $sol\tau/tion$ to (1.1).

We also have the following interesting nonexistence result,

c4 Theorem 4.4. (Passaseo, $[Pa3]$ . 1993) There exists a domain with nontrivial
topology such that for any $p> \frac{N+1}{N-3}$ there e.cci $st$ no solution to (1.1).

Note that the exponent appearing in Pa.ssaseo’s theorem is the critica] Sobolev
exponent in dimension $N-1$ . This result is somehow surprising: unlike to the
critical case, the topologv of the doinain is not a sufficient condition for the
existence of solutions! Moreover this result is sharp, as follows by the next
theorem:

$c5$ Theorem 4.5. ($del$ Pino. Musso and Pacard, $/DMPj$, 2009) Let us consider the
same domain of Theorem 4.4. Then. for $\epsilon$ small enough. there exists a solution
to (1.1) with $p= \frac{N+1}{N-3}-r$ . Moreover. as $\epsilonarrow 0$ . the solution concentrates along
a curve.

On the other hand. if the domain has a small hole, the topology of the
domain ensures the existence of solutions. This is a generalization of Coron’s
result to the supercritical case.

$\underline{\cap c6}$ Theorem 4.6. ($del$ Pino and Wet,. $[DWJ$, 2007$)$ Let $\Omega$ be a domain with a
circular hole. Then there exists a sequence of exponents $p_{1}<p_{2}<$ . with
$\lim_{karrow+x}p_{k}=+\infty$ such that if $p\neq p_{k}$ there is a solution to (1.1) provzded the hole
is small enough.

We now consider a different type of $re\backslash \iota\iota lt\backslash \cdot$ . $ie$ . we look for solutions to (1.1)
when $p$ is large. Tliis $app_{\Gamma t)a(}\cdot I_{1}$ is $ju\backslash tifif’(|$ bv tbe existence of a limit problem
to (1.1) as $parrow+\infty$ . This was done in [G]. where the author studied the radial
solution in the annulus founded by Kazdan and Warner in Theorem 3.2. We
have the following result,

$c7$ Theorem 4.7. (Grossi, $/G/$ . 2006) Let $u_{p}$ the unique radial solution of (1.1).
Then as $parrow+\infty$

$u_{p}(|x|)arrow w(|a\cdot|)$ $in$ $C^{0}(\overline{A})$ (4.1) $cS$

with

$w(|x|)= \frac{2}{a^{2-N}-b^{2- N}}\{\begin{array}{ll}a^{2-N}-|x|^{2-N} for a\leq|x|\leq r_{0}|x|^{2-N}-b^{2-N} for r_{0}\leq|x|\leq b\end{array}$

where

$r_{\zeta)}=( \frac{a^{2-N}+b^{2-N}}{2})^{T_{-}^{1}R}$
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Unlike to the case of single-bunip solution, we have that no concentration
occurs as $parrow+\infty$ . We point out that, if we denote by $G(r, s)$ the Green
function of the operator $-tl$

“
– $\frac{N-1}{7}\tau\iota’$ in $H_{0}^{1}(a, b)$ and by $H(r, s)$ its regular

part we have that
$s\iota)(|x\cdot|)=\frac{G(|x|.|_{(})}{H(\uparrow^{\backslash }(7_{0}^{\backslash })}$

Theorem 4.7 is the starting point to deduce sonie existence result to (1.1) when
$p$ is large. Together with (4.1) we also need to derive a liniit problem to (1.1)
for $p$ large. This can be done setting

$\overline{u}_{\rho}(r)=\frac{p}{\Vert u_{\rho}\Vert_{x}}(u_{p}(\epsilon_{\ddagger)}7^{\cdot}+r_{p})-\Vert u_{\rho}\Vert_{x})$ , (4.2) $c9$

where $u_{p}(r_{p})=||u_{\rho}||_{x}$ and $p\epsilon_{\rho}^{2}\Vert v_{p}\Vert_{x}^{p- 1}=1$ . We have that

$\overline{u}_{\rho}arrow U$ in $C_{\iota_{oc}}^{J},(\mathbb{R})$ , (4.3) c10

where
$U(r)= \log\frac{4e^{\sqrt{2}}’}{(1+e^{\sqrt{2}r})^{2}}$ (4.4) cll

is the only solution of the problem:

$\{\begin{array}{ll}-z’’=e^{arrow}- in \mathbb{R}z(0)=z’(0)=0. \end{array}$ (4.5) $c12$

Using these information we can try to construct a radial solution in Brezis-
Nirenberg type problem. $i.e$ . adding a linear terni to the equation. It was done
in the unit ball $B_{1}$ (for $p$ large). We have that

$c13$ Theorem 4.8. (Grossi, $/Gl]$ . 2008) $L$ et us consider the problem

$\{\begin{array}{ll}-\triangle u+a(|x|)u=u^{p} in B_{1},u>0 \uparrow nB_{1}u=0 on \partial B_{1},\end{array}$ (4.6) c14

and let us denote by $G_{a}(?_{7}s)$ the Green function of the operator-u“
- $\frac{N-1}{\Gamma}u’+$

$a(r)u$ in $H_{0}^{1}(0,1)$ and by $H_{o}(\uparrow\cdot. s)$ its regvlar part. Then, if $?\iota$ is a nondegenerate
critical point of $H_{a}(7_{y}\Gamma)$ . for $p$ large enough there exists a radial solution $u_{\rho}$ to
(4. 6). Moreover we have that

$u_{7^{\lrcorner}}(|x|) arrow\frac{G_{o}(|x|.|^{\backslash }l)}{ff(1(r_{1}?_{1})}$

This result holds for radial solutions in the unit ball and it is not easy to
extend it to a non-spherical situation. However, coming back to problem (1.1),
we have the following open problem,

Open problem Let $(\vee)$ be a ( $|tlll\dot{c}iill$ witli one $lioIe(l\downarrow\langle)t$ necessarily $SlI\iota al1$ ).
Then, for $p$ large enough, does $t1_{1^{1}1C^{\lrcorner}}exi\backslash t$ a solution to (11) which satisfies:
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i $)$ $u_{p}arrow$ lin $M$ for $parrow+\infty$

ii) $\triangle u_{p}arrow 0$ outside of $\Lambda f$ for $parrow+\infty$ ?

Observe that this solution should be tlie “ natural“ extension of the one in
Theorem (4.7) to non-spherical domain.

bc
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