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1 Introduction

The global financial crisis that began in 2007 has increased uncertainty about future market de-
mand in industries throughout the world. It is becoming increasingly important for firm project
management to take into account uncertainty and flexibility in the future. The real options ap-
proach, in which option pricing theory is applied to capital budgeting decisions, better enables
us to find an optimal investment strategy and project valuation involving such uncertainty and
flexibility than the Net Present Value (NPV) method could (see [4]).

Although the early literature on real options investigated monopolists’ investment decisions,
recent studies have investigated the problem of several firms competing in the same market from
a game theoretic approach. Many studies, such as [6, 9, 17], analyze the preemptive equilibrium
in a duopoly investment game.2 Their main result, that competition among firms accelerates
investment in a project, has been supported by empirical papers such as [15].

Most studies of strategic real options assume one-dimensional Geometric Brownian Motion
(GBM) to be the stochastic process (called the state variable) representing the future cash flow
from a project. This is because explicit results are more appealing due to the difficulty of model
calibration in many real options models. Although such simplification could be justified for
a problem concerning a single investment project, a problem involving several projects should
be modelled by a multidimensional state variable instead of a one-dimensional state variable.
In fact, several papers have investigated a monopolist’s investment decision involving several
projects in a model with a bidimensional state variable. For example, [5] investigated land
development timing with an alternative land use choice and [11] investigated timing in switching
methods of nuclear waste disposal. Recently [13] studied the decision of an automaker concerning
the alternative promotion of a hybrid vehicle and a full electric vehicle.3

To the best of my knowledge, however, there are no papers that investigate preemptive
investment involving several projects with a multidimensional state variable.4 The contribution

lThis paper is an abbreviated version of [12]. This work was supported by KAKENHI 20710116.
2In [7, 10] derived the equilibrium strategies in a $Cournot-Nash$ framework instead of the preemption game.

The competitive equilibrium where the output price moves between upper and lower barriers has also been
investigated in [4, 18]. On the other hand, [8, 16] investigated the agency problem in a single firm by the method
of mechanism design.

3These studies apply the results of financial options for multiple assets (see Chapter 6 in [3]) to capital bud-
geting. Although in several papers a problem with a bidimensional state variable is reduced to a one-dimensional
case by homogeneity, such cases are very restrictive.

4One paper, [1], conducted a case study on the preemptive competition in the textile industry with three
types of uncertainty, but the preemptive game is essentially modelled on the one-dimensional state variable. So,
theoretically, their paper is no different from the previous papers [6, 9, 17].
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of the paper is to first clarify the preemptive equilibrium in an investment game by several firms
with alternative projects, using a multidimensional state variable. This paper shows several
properties of the investment region and the option value in a model where firms optimize both
investment time and project choice among remaining projects that have not been chosen by the
leading competitors.

The use of this model is also motivated by the following practical issue. When we evaluate
the value of a project by the real options method, we are often puzzled by the question of which
value in monopolistic and strategic models is reliable. Indeed, the difference is likely to be
quite large because the theoretical models with a one-dimensional state variable calculate the
extreme values. This paper provides us with a useful criterion toward solving such a problem.
That is, we should evaluate the value of considering a potential alternative in a strategic model
with a multidimensional state variable. I find that the strategic option values with a symmetric
alternative are $40\%\sim$ 60% of monopoly with two alternative projects, or equivalently, 70% $\sim$

80% of monopoly with a single project.
Furthermore, I show that preemptive investment takes place earlier and the option value

becomes lower if the numbers of both firms and projects increase by the same amount. It is
intuitively explained that in the preemptive equilibrium all the firms are dragged into a scenario
with the worst project. Taking into account the fact that the number of competitors is likely to
increase with the number of alternatives, the result seems consistent with empirical studies on
strategic real options such as [15].

Another new finding is that preemptive competition is moderated by the correlation among
profits from projects. This contrasts with the monopoly situation where strong correlation
among cash flows decreases the value of project choice. Thus, the sensitivity of the correlation
with project value in an oligopoly depends on a trade-off between moderation of the preemptive
competition (positive effect) and a decrease in the value of project choice (negative effect). In
particular, when there are as many projects as firms, the competition deprives firms of the value
of project choice and hence a strong correlation increases the option value.

Finally, let me mention several applications of the model in this paper. As mentioned above,
the model is suitable for strategic investment involving several alternatives. An example is a
war among firms opening new stores. A follower must open a store in a different place or of a
different type from that of the leader. In the situation where big firms fight for market share
in emerging countries, an alternative to preemptive entry into the market in India might be
preemption into the market in the Republic of South Africa.

The model also applies to M&A struggles. For instance, in the pharmaceutical industry
large corporations strategically acquire venture businesses that develop new drugs. Because
many M&As take place by private negotiation rather than through a public bidding process, it
is necessary for a firm to preempt the competitors. In the pharmaceutical industry numerous
potential targets generate a low correlation in gains in takeovers, and then severe preemptive
competition occurs.

The paper is organized as follows. Section 2 introduces the setup and the preliminary
results in three cases; a monopoly with a single project, a duopoly with a single project, and a
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monopoly with two alternative projects. Section 3 describes the new results of a duopoly with
two alternative projects. The results of the investment region and the project value contrasts a
duopoly with a monopoly. Section 4 concludes the paper. For all proofs, refer to [12].

2 Preliminaries

Consider a risk-neutral5 firm that has an option to invest in a project. Consider two kinds of
projects denoted by $i=1,2$ . When a firm conducts project $i$ at time $t$ with sunk cost $I_{i}(>0)$ , it
receives a temporary profit $X_{i}(t)^{6}$ Assume that the profit $X_{i}(t)$ follows a continuous diffusion
process:

$dX_{i}(t)=\mu_{i}(X_{i}(t), t)dt+\sigma_{i}(X_{i}(t), t)dB_{i}(t)$ , (1)

where $(B_{1}(t), B_{2}(t))$ is a two-dimensional Brownian Motion (BM) with correlation coefficient $\rho$ .

Mathematically, the model is built on the filtered probability space $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ generated by
$(B_{1}(t), B_{2}(t))$ as usual. The set $\mathcal{F}_{t}$ means the available information set to time $t$ , and a firm
optimizes its investment strategy under this information. Let $r(>0)$ and $T(>0)$ denote the
constant risk-free rate and maturity of the option throughout the paper. We may take $T=\infty$

when we consider a perpetual option, as in many real options models.

2.1 Monopoly with a single project

As a benchmark, we consider a firm that has a monopolistic option to invest in a single project,
$i$ . It is well known that the option value at time $t(\leq T)$ with the state variable $X_{i}(t)=x_{i}$ is
equal to the value function of the following optimal stopping problem:

$V_{i}^{1}(x_{i}, t)= \sup_{\tau\in \mathcal{T}_{t}}E_{t}^{x_{t}}[e^{-r(\tau-t)}(X_{i}(\tau)-I_{i})1_{\{\tau\leq T\}}]$ , (2)

where $\mathcal{T}_{t}$ denotes the set of all stopping times $\tau$ satisfying $\tau\geq t$ and $E_{t}^{x_{i}}[\cdot]$ is the expectation
conditional on $X_{i}(t)=x_{i}^{7}$ Throughout the paper, the superscript and the subscript on $V_{i}^{1}$

represent the number of firms and available project(s), respectively; that is, $V_{i}^{1}$ in (2) means the
value function in a monopoly with a single project $i$ .

Many diffusions satisfy the following properties.

Assumption (i) The value function $V_{i}^{1}(\cdot, t)$ is a (finite) continuous increasing function.

Assumption (ii) There exists a finite investment trigger $x_{i}^{1}(t)$ such that the optimal stopping
time $\tau_{i}^{1}(t)$ of problem (2) is written as the threshold strategy:

$\tau_{i}^{1}(t)=\inf\{s\geq t|X_{i}(s)\in S_{i}^{1}(s)=[x_{i}^{1}(s), \infty)\}$ . (3)

We restrict our attention to a continuous diffusion $X(t)$ satisfying the assumptions above. In
addition, as in the related papers, we assume nonnegativeness of $X(t)$ as follows.

5Generally we can assume risk-adjusted profit dynamics (1) rather than the risk-neutrality assumption.
6The profit can be interpreted as the discounted cash flow during the lifetime of the project.
7We do not consider 1 $\{\tau\leq\infty\}$ but 1 $\{\tau<\infty\}$ in the case of $T=\infty$ throughout the paper.
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Assumption (iii) $X_{i}(t)$ is nonnegative. If $X_{i}(s)=0$ for any $s,$ $X_{i}(t)=0$ for all $t\geq s$ .

The assumptions are not restrictive. In fact, we can take a wide range of diffusions including
a GBM, i.e., (1) with $\mu_{i}(X_{i}(t), t)=\mu_{i}X_{i}(t),$ $\sigma_{i}(X_{i}(t), t)=\sigma_{i}X_{i}(t)$ where $\mu_{i}(<r)$ and $\sigma_{i}(>0)$

are constant, and a mean-reverting process (1) with $\mu_{i}(X_{i}(t), t)=\eta(\overline{X}-X_{i}(t)),$ $\sigma_{i}(X_{i}(t), t)=$

$\sigma_{i}X_{i}(t)$ where $\eta,\overline{X}$ and $\sigma_{i}$ are positive constants.
Note that for a GBM with $T=\infty,$ $V_{i}^{1}(x_{i}, t)$ is explicitly derived independently from time $t$

(see [4]). In fact, the option value $V_{i}^{1}(x_{i})$ is expressed as:

$V_{i}^{1}(x_{i})=\{\begin{array}{ll}(\frac{x_{i}}{x_{i}^{1}})^{\beta_{i}}(x_{i}^{1}-I_{i}) (0\leq x_{i}<x_{i}^{1})x_{i}-I_{i} (x_{i}\geq x_{i}^{1}).\end{array}$ (4)

Here, $x_{i}^{1}$ is the constant investment trigger defined by:

$x_{i}^{1}= \frac{\beta_{i}}{\beta_{i}-1}I_{i}$ , (5)

where $\beta_{i}$ is the positive characteristic root:

$\beta_{i}=\frac{1}{2}-\frac{\mu_{i}}{\sigma_{i}^{2}}+\sqrt{(\frac{\mu_{i}}{\sigma_{i}^{2}}-\frac{1}{2})^{2}+\frac{2r}{\sigma_{i}^{2}}}(>1)$.

2.2 Duopoly with a single project

This subsection considers two symmetric firms that struggle to take a single project $i$ . The
following outcome, called ”preemptive investment”, is well known. For details, refer to [6, 9, 17].
Assume that the initial value satisfies $X_{i}(0)\leq I$ .

We can solve the game between the firms backward. We begin by supposing that one of
the firms (called the leader) has first invested at time $t(\leq T)$ with $X_{i}(t)=x_{i}$ , and we find the
optimal decision of the other (called the follower). Because the follower’s opportunity to invest
is completely lost, the follower’s profit is $0$ . On the other hand, the leader’s profit is $x_{i}-I_{i}$ . In
the situation where neither firm has invested, each firm attempts to preempt the other in order
to obtain the leader’s payoff if $X_{i}(t)-I_{i}>0$ . As a result, in the preemptive equilibrium, both
firms attempt to invest at the zero-NPV time:

$\tau_{i}^{2}=\inf\{t\geq 0|X_{i}(t)-I_{i}=0\}$ (6)

and gain no project value:
$V_{i}^{2}(x_{i}, t)=0$ . (7)

Recall that the superscript 2 and the subscript $i$ represent duopoly with a single project $i$ .
Strictly speaking, both firms’ investment strategy at (6) proves to be a Nash equilibrium

in the stopping game formulated under the appropriate assumption.8 The outcome can be
interpreted to mean that the leading firm invests at (6), but the follower cannot conduct a
project. The leader’s profit is also zero because of investing too early. This is a well-known
preemptive equilibrium in the strategic real options literature (refer to [9]).

8This assumption is that if two firms choose the same timing, one of the firms is chosen as the leader with
probability 1/2. Most studies, including [6, 17], are built on this assumption.
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2.3 Monopoly with two alternative projects

This subsection considers a firm that has a monopolistic option to invest a single project among
projects 1, 2. The model applies to the situation where a firm cannot execute both projects
for a reason such as budget constraint. The problem has been essentially investigated in [5]
and Section 6 in [3]. In contrast, [2] investigated investment with different scales under a one-
dimensional state variable, i.e., the case where $\rho=1,$ $X_{1}(0)\neq X_{2}(0)$ and $I_{1}\neq I_{2}$ .

The option value at time $t(\leq T)$ with $X_{i}(t)=x_{i}$ is equal to the value function of the optimal
stopping problem as follows:

$V_{1,2}^{1}(x, t)= \sup_{\tau\in \mathcal{T}_{t}}E_{t}^{\mathcal{I}}[e-r(\tau-\ell)_{i=1,2}mm(X_{i}(\tau)-I_{i})1_{\{\tau\leq T\}}]$ . (8)

Recall that $V_{1,2}^{1}$ in (8) means the value function in monopoly with projects 1, 2.
The optimal stopping time $\tau_{1,2}^{1}$ in problem (8) becomes:

$\tau_{1,2}^{1}(t)=\inf\{s\geq t|X(s)\in S_{12,)}^{1}(s)\}$, (9)

where the stopping region $S_{1,2}^{1}(s)$ is defined by:

$S_{1,2}^{1}(s)= \{x\in \mathbb{R}_{+}^{2}|V_{1,2}^{1}(x, s)=_{i}\max_{=1,2}(x_{i}-I_{i})\}$ . (10)

The stopping region $S_{1,2}^{1}(t)$ proves to be the union of two disjoint convex sets corresponding to
the immediate investment region of each project when $X(t)$ follows a GBM (refer to Section 6
in [3] and Figure 3 in Section 3.2).

Let us now focus on two symmetric projects, i.e., $\mu_{1}=\mu_{2},$ $\sigma_{1}=\sigma_{2}$ and $I_{1}=I_{2}$ . In this
case, the larger the correlation coefficient $\rho$ , the more likely it is that profits $X_{1}(t)$ and $X_{2}(t)$

take close values. Then the option value $V_{1,2}^{1}$ decreases and the stopping region $S_{1,2}^{1}(t)$ enlarges
with the correlation. This can be explained in terms of a decrease of diversification effects.
In particular, in the case of the perfect correlation, i.e., $\rho=1$ , the option value $V_{1,2}^{1}$ and the
investment time $\tau_{1,2}^{1}$ for $x_{1}=x_{2}$ , agree with those in a monopoly with a single project, i.e.,
$V_{i}^{1}$ and $\tau_{i}^{1}$ , respectively. The effect of a correlation will be compared in detail with that in a
duopoly with two projects in Section 3.

The next section is the main contribution of the paper. Although the results can be extended
in the case of $n$ firms with $m$ projects in Section 3.3, I first present the details of a duopoly with
two projects in order to avoid unnecessary confusion.

3 Several firms with several alternative projects

3.1 Duopoly with two alternative projects

This subsection investigates two symmetric firms that compete for one of two projects 1, 2.
Assume that the one that first invests (the leader) can choose the better project while the other
(the follower) loses the opportunity to invest in that project. The leader’s advantage of being
able to choose the better project brings about preemptive competition between the firms. As
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mentioned in Section 1, the model has a wide range of applications, such as preemption in the
new market and M&A struggles. Relevant to this model, [14] investigated a duopoly with two
projects following a one-dimensional state variable. Assume $X_{i}(0)\leq I_{i}(i=1,2)$ .

As in Section 2.2, the problem can be solved in a reverse manner. Suppose that the leader
has first invested in the better project $i(t)$ at time $t(\leq T)$ with $X(t)=x$ , where the function
$i(t)^{9}$ is defined by:

$i(t)=k$ if $X_{k}(t)-I_{k}=i1,2 \max_{=}(X_{i}(t)-I_{i})$ . (1)

Under this assumption, we find the optimal response of the follower. Because for $i\neq i(t)$ the
follower has the monopolistic option to invest in a single project $i$ , the option value and the
optimal investment timing coincide with $V_{i}^{1},$ $\tau_{i}^{1}$ (see (2) and (3)), respectively. On the other
hand, the leader’s payoff is equal to $\max_{i=1,2}(X_{i}(t)-I_{i})$ .

Let us return to the situation where neither firm has invested. The region $S_{1,2}^{2F}(t)$ where the
leader’s profit dominates that of the follower is:

$S_{1,2}^{2F}(t)=\{x_{1}-I_{1}\geq V_{2}^{1}(x_{2}, t)\}\cup\{x_{2}-I_{2}\geq V_{1}^{1}(x_{1}, t)\}$.

Each firm attempts to preempt the competitor as long as $X(t)\in S_{1_{\gamma}2}^{2F}(t)$ . In addition, one of the
firms reluctantly invests $X(t)\in S_{1}^{1}(t)\cup S_{2}^{1}(t)$ if it knows that the other invests at time:

$\tau_{1,2}^{2F}=\inf\{t\geq 0|X(t)\in\partial S_{1,2}^{2F}(t)\}$ , (2)

where $\partial S_{12,)}^{2F}(t)$ denotes the boundary of $S_{12,\}}^{2F}(t)$ . This is because for $X(t)\in S_{1}^{1}(t)\cup S_{2}^{1}(t)$

immediate investment generates a higher profit than the option value to wait until $\tau_{1,2}^{2F}$ (this will
be shown in the proof of Proposition 1). Therefore, the preemptive investment region $S_{1,2}^{2}(t)$

becomes:

$S_{1,2}^{2}(t)=\{x_{1}-I_{1}\geq V_{2}^{1}(x_{2}, t)\}\cup\{x_{2}-I_{2}\geq V_{1}^{1}(x_{1}, t)\}\cup S_{1}^{1}(t)\cup S_{2}^{1}(t)$. (3)

The preemptive investment takes place at:

$\tau_{1,2}^{2}=\inf\{t\geq 0|X(t)\in\partial S_{1,2}^{2}(t)\}$ , (4)

where $\partial S_{1,2}^{2}(t)$ denotes the boundary of $S_{1,2}^{2}(t)$ which consists of three parts, i.e.:

$\partial S_{1,2}^{2}(t)$ $=$

$\underline{\underline{\backslash \{x_{i}\leq x_{i}^{1},(t)-I_{i’}+I}_{i}’ x_{i}-I_{i}=V_{i}^{1}(x_{i’},t)}\underline{\}_{\lrcorner}}(a)$

’

$\cup\{x_{i’}\backslash \leq x_{i}^{1},(t), x_{i’}-I_{i’}=V_{i}^{1}(x_{i}, t)\}_{\lrcorner}$

$(b)$

$\cup\{x_{i’}=x_{i}^{1},(t),$

$(V_{i}^{1})^{-1}(x_{i}^{1},(t)-\underline{I_{i’})\leq x_{i}\leq x_{i}^{1},(t)-I_{i’}+I_{i}\}_{\lrcorner}}\underline{\underline{c}}(c)’$
(5)

for $i$ such that:
$x_{i}^{1}(t)-I_{i}\geq x_{i}^{1},(t)-I_{i’}$ , (6)

$\overline{9We}$do not have to be concerned about the value of $i(t)$ when $X_{1}(t)-I_{1}=X_{2}(t)-I_{2}$ .
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where $i’$ denotes project $i’\neq i$ throughout the paper.
Figure 1 illustrates the preemptive investment boundary $\partial S_{1,2}^{2}(t)$ . The first part (a) is the

region where the leader’s investment in project $i$ generates the same value as the follower’s option
value to invest in project $i’$ . In the second part (b), both firms are indifferent to being the leader
with project $i’$ and the follower with project $i$ . In the last part (c), both firms prefer to be the
follower with project $i$ to being the leader with project $i’$ due to $X(t)\not\in S_{12}^{2_{1}F}(t)$ . However, one
of the firms invests first if it knows that the other does not invest until $\tau_{1,2}^{2F}(t)$ . It must be noted
that, unlike the monopolist investment region, the preemptive investment boundary $\partial S_{1,2}^{2}(t)$ is
independent of the correlation coefficient $\rho$ .

Figure 1: The preemptive investment boundary $\partial S_{1,2}^{2}(t)$

The option value (of the leader) at time $t( \leq\min(T, \tau_{1,2}^{2}))$ with $X(t)=x$ is written as:

$V_{1,2}^{2}(x, t)= E_{t}^{x}[e^{-r(\tau_{1,2}^{2}-t)_{i}}\max_{=1,2}(X_{i}(\tau_{1,2}^{2})-I_{i})]$ . (7)

The leader’s advantage of choosing the better project is completely lost by its earlier investment
than the optimal timing. Furthermore, the leader’s profit becomes less than that of the follower
if and only if the process $X(t)$ hits part (c).

Although so far we intuitively see the preemptive outcome, to do a more precise derivation
we formulate the following stopping game by two symmetric firms $j=1,2$ . Define the action
space of both firms as follows:

$\mathcal{A}=$ { $(\tau,$ $i)|\tau\in \mathcal{T}_{0},$ $i:\mathcal{F}_{\tau}$ measurable random variable taking values in $\{0,1\}$ }.

Define the firm l’s payoff $\pi_{1}$ as:

$\pi_{1}(\tau_{1}, i_{1}, \tau_{2}, i_{2})$ $=$ $E[1_{\{\tau\}}\mathcal{T}_{1<2}e^{-r\tau_{1}}(X_{i_{1}}(\tau_{1})-I_{i_{1}})+1_{\{\tau_{1}>\tau_{2}\}}e^{-r\tau_{2}}V_{i_{2}’}^{1}(X_{i_{2}’}(\tau_{2}), \tau_{2})$

$+1_{\{\tau_{1}=\tau_{2}\}} \frac{e^{-r\tau_{1}}}{2}(X_{i_{1}}(\tau_{1})-I_{i_{1}}+V_{i_{2}’}^{1}(X_{i_{2}’}(\tau_{2}), \tau_{2}))]$ , (8)
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where $(\tau_{1}, i_{1})$ and $(\tau_{2}, i_{2})$ in $\pi_{1}(\tau_{1}, i_{1}, \tau_{2}, i_{2})$ denote the strategies of firm 1 and 2, respectively.
The last term of (8) corresponds to the assumption in footnote 8. We also define the payoff of
firm 2 as $\pi_{2}$ symmetrically.

We wish to find a Nash equilibrium in the stopping game, i.e., $(\tilde{\tau}_{1}, i_{1}^{\sim},\tilde{\tau}_{2}, i_{2}^{\sim})\in \mathcal{A}\cross \mathcal{A}$ satisfying
both:

$\pi_{1}(\tilde{\tau}_{1}, i_{1}^{\sim},\tilde{\tau}_{2}, i_{2}^{\sim})=$ $\max$ $\pi_{1}(\tau_{1}, i_{1},\tilde{\tau}_{2}, i_{2}^{\sim})$ , (9)
$(\tau_{1},i_{1})\in A$

and
$\pi_{2}(\tilde{\tau}_{1}, i_{1}^{\sim},\tilde{\tau}_{2}, i_{2}^{\sim})=\max_{(\tau_{2},i_{2})\in A}\pi_{2}(\tilde{\tau}_{1}, i_{1}^{-}, \tau_{2}, i_{2})$. (10)

Let $\tau_{1,2}^{2}(t)$ denote (4), replacing initial time $0$ with $t$ . We assume that the diffusion process
$X(t)$ satisfies the following condition$10_{;}$

Assumption (iv)

$i1,2 \max_{=}(x_{i}-I_{i})\leq E_{t}^{x}[e^{-r(\tau_{1,2}^{2}(t)-t)_{i}}\max_{=1,2}(X_{i}(\tau_{1,2}^{2}(t))-I_{i})]$ $(x\not\in S_{1,2}^{2}(t))$ .

The next proposition shows that the intuitive equilibrium above is indeed a Nash equilibrium
in the stopping game.

Proposition 1 The pair of strategies $(\tau_{12}^{2}, i(\tau_{12}^{2}), \tau_{12}^{2F}, i(\tau_{12}^{2F}))$ is a Nash equilibrium in the
stopping game, where the stopping times $\tau_{12}^{2},$ $\tau_{12}^{2F}$ are defined by (4),(2), and the functions
$i(\tau_{12}^{2}),$ $i(\tau_{12}^{2F})$ are defined by (1), respectively.

Proposition 1 includes the results in a duopoly with a single project. In fact, if $X_{i}(0)=$

$x_{i}>X_{i’}(0)=0$ the preemptive equilibrium in Proposition 1 agrees with that in Section 2.2.
For most of the diffusion process $X_{i}(t)$ , higher volatility $\sigma_{i}$ brings about later investment $\tau_{i}^{1}$ and
higher option value $V_{i}^{1}$ . In such a case, by (3) the preemptive investment region $S_{1,2}^{2}$ becomes
smaller, which leads to later investment $\tau_{1,2}^{2}$ and a higher option value $V_{1,2}^{2}$ . That is to say, the
effects of volatility $\sigma_{i}$ in a duopoly are inherited from a monopoly.

If $X(t)$ follows a GBM and $T=\infty$ , we have an explicit form of the time homogeneous
investment boundary $\partial S_{1,2}^{2}$ by (4), (5) and (5).

Corollary 1 Assume that $T=\infty,$ $\mu_{i}(X_{i}(t), t)=\mu_{i}X_{i}(t)$ , and $\sigma_{i}(X_{i}(t), t)=\sigma_{i}X_{i}(t)$ , where
$\mu_{i}(<r)$ and $\sigma_{i}(>0)$ are constant for $i=1,2$ . For all $t>0$ , the preemptive investment boundary
$\partial S_{1,2}^{2}$ is:

$\partial S_{1,2}^{2}$ $=$ $\{x_{i}\leq x_{i}^{1},$ $-I_{i}’+I_{i},$ $x_{i}-I_{i}=( \frac{x_{i’}}{x_{i}^{1}})^{\beta_{1}}(x_{i}^{1},$ $-I_{i’})\}$

$\cup\{x_{i’}\leq x_{i}^{1},$
$,$

$x_{i’}-I_{i’}=( \frac{x_{i}}{x_{i}^{1}})^{\beta_{1}}(x_{i}^{1}-I_{i})\}$

$\cup\{x_{i’}=x_{i}^{1},$
$,$

$(V_{i}^{1})^{-1}(x_{i}^{1},$ $-I_{i’})\leq x_{i}\leq x_{i}^{1},$ $-I_{i’}+I_{i}\}$ ,

$\overline{10_{I}}$do not know any proof, but the assumption is satisfied in many cases as far as I can judge from a wide
range of computations. Even if Assumption (iv) is not satisfied, the violation is so small that we can regard the
outcome as an approximate equilibnum.
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where $i$ satisfies (6).

The explicit derivation of the investment boundary $\partial S_{1,2}^{2}$ would be a big benefit in appli-
cations of the model. Although the option value $V_{1,2}^{2}$ (see (7)) becomes the solution of the
corresponding partial differential equation with boundary $\partial S_{1,2}^{2}$ instead of an explicit form, I
would like to emphasize that the results are quite useful for applications.

For a general diffusion process $X(t)$ we can show the following properties of the investment
region $S_{1,2}^{2}$ , the timing $\tau_{1,2}^{2}$ , and the option value $V_{1,2}^{2}$ .

Proposition 2 The following relationships hold.
Investment Region

$S_{1,2}^{1}(t)\subset S_{i}^{1}(t)\subset S_{1,2}^{2}(t)$ , (11)

Investment Timing
$\tau_{1,2}^{2}\leq\tau_{i}^{1}\leq\tau_{1,2}^{1}$ , (12)

Option Value
$0=V_{i}^{2}(x_{i}, t)\leq V_{1,2}^{2}(x, t)\leq V_{i}^{1}(x_{i}, t)\leq V_{1,2}^{1}(x, t)$ . (13)

for all $i=1,2$ .

The point of Proposition 2 is that preemptive investment in a duopoly with two projects is
less efficient than investment in a monopoly with a single project (needless to say, than that in
monopoly with two projects). In other words, the preemptive competition becomes more severe
if the numbers of both firms and projects increase by the same amount. This result is consistent
with both the theoretical and empirical results in previous studies (cf. [7, 15]). We can say that
the result extends previous finding in the sense that the model considers the follower’s choice of
an alternative project.

Let us consider two symmetric projects with the same initial value $x_{1}=x_{2}$ . We focus on
the correlation coefficient $\rho$ . In the sensitivity analysis in the model, this correlation is the
most important because the previous strategic models with a one-dimensional state variable
cannot reveal its effects. For example, what happens if the profits $X_{1}(t)$ and $X_{2}(t)$ are perfectly
correlated, i.e., $\rho=1$ ? In that case, no preemption occurs because the two projects generate
the same profit. Indeed, the preemptive investment timing $\tau_{1,2}^{2}$ and the option value $V_{1,2}^{2}$ (see
(4) and (7) $)$ coincide with $\tau_{i}^{1}$ and $V_{i}^{1}$ in monopoly with a single project, respectively. Taking
this and (13) into account, we can easily show the following corollary.

Corollary 2 Consider the symmetric projects with $x_{1}=x_{2}$ . The following equalities hold for
the correlation coefficient $\rho$ :

$\max V_{1,2}^{2}(x, t)=V_{i}^{1}(x_{i}, t)=$ $\min$ $V_{1,2}^{1}(x, t)$ $(i=1,2)$ , (14)
$\rho\in[-1,1]$ $\rho\in[-1,1]$

where $\rho=1$ gives the maximum of $V_{1,2}^{2}(x, t)$ and the minimum of $V_{1,2}^{1}(x, t)$ .

It should be noted that in a duopoly the option value $V_{1,2}^{2}(x, t)$ , unlike the investment bound-
ary $\partial S_{1,2}^{2}(t)$ (see (5)), depends on the correlation coefficient $\rho$ . Recall that in a monopoly a weaker
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correlation increases the option value by diversification. In contrast, in a duopoly a stronger
correlation increases the strategic option value by moderation of the preemptive competition.
The preemptive competition is moderated by a stronger correlation because the leader’s ad-
vantage of project choice is reduced. This result is consistent with frequent takeovers in the
pharmaceutical industry where there are uncorrelated potential targets.

3.2 Numerical examples

This subsection presents numerical examples of the results. Assume that $X(t)$ follows a sym-
metric GBM. I set the same base parameter values as [3]:

$r=$ 6%, $\mu_{1}=\mu_{2}=0\%,$ $\sigma_{1}=\sigma_{2}=20\%,$ $I_{1}=I_{2}=100$ ,

which are also similar to those of [5]. All option values are computed for the initial point
$x(t)=(100,100)$ .

Figure 2 illustrates the investment boundaries $\partial S_{1,2}^{2}(t),$ $6$ months, 1 year, 5 years, and 10
years before maturity. The investment boundary is composed of two parts (a) and (b) with a
vertex on $(x_{1}^{1}(t), x_{2}^{1}(t))$ which is a pair of the investment triggers in a monopoly with a single
project.11 Needless to say, the investment region becomes larger as time to maturity. This
implies that the option value increases with time to maturity. In fact, the option values 6
months, 1 year, 5 years, and 10 years before maturity are $V_{1,2}^{2}=$ 3.72,5.15,9.83, and 12.16,
respectively.

Let us now examine the effects of the correlation coefficient $\rho$ , which is the most interesting
feature in the model. Fix time to maturity as 1 year. Figure 3 depicts the investment boundary
$\partial S_{1,2}^{2}(t)$ in a duopoly with those of a monopoly with two projects, i.e., $\partial S_{1,2}^{1}(t)$ . The investment
boundary in a duopoly, unlike that of a monopoly, is independent of the correlation. We see
from Figure 3 that the investment region in a monopoly becomes smaller with the correlation.
In other words, the monopolistic option value decreases with the diversification effects.

Table 1 presents the option values and percentages for a range of correlation coefficients $\rho$ .
The option value $V_{1,2}^{2}$ in a duopoly increases to $V_{i}^{1}=7.15$ with $\rho$ , while the option value $V_{1,2}^{1}$ in a
monopoly drops to $V_{i}^{1}=7.15$ , as shown in the previous subsection. For a reasonable correlation
$\rho=-0.2\sim 0.8$ the option value in a duopoly is 40% $\sim$ 60% of the monopolist with two projects,
or equivalently 70% $\sim$ 80% of the monopolist with a single project.

It should be noted that the results concerning the percentages $V_{1,2}^{2}/V_{1,2}^{1},$ $V_{1,2}^{2}/V_{i}^{1}$ are robust
for time to maturity $T$ , drift $\mu$ , and volatility $\sigma$ . For example, for $\rho=0$ , the option value
10 years before maturity is $V_{1,2}^{2}=12.16$ , which is more than twice that of Table 1, while the
percentages are $V_{1,2}^{2}/V_{1,2}^{1}=$ 42.72%, $V_{1,2}^{2}/V_{i}^{1}=$ 74.73%. The option value and the percentages
for volatility $\sigma=0.5$ and $\rho=0$ are $V_{1,2}^{2}=12.32$ and $V_{1,2}^{2}/V_{1,2}^{1}=$ 38.87%, $V_{1,2}^{2}/V_{i}^{1}=$ 69.99%,
respectively.

In a valuation of a project by a real options approach, it sometimes occurs that a monopolistic
model and strategic model generate polar valuations, namely, the value in the former is too high

1lAll computations in the paper use a bivariate version of the lattice binomial method with 500 time steps, and
hence the discretization is rougher for longer times to maturity.
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while that in the latter becomes too low. Then, a substantial problem for a practitioner arises.
How can we judge the gap and which value is reliable? The model of the paper would provide
us with a useful criterion in such a case. That is, we should evaluate the value of a project
considering a potential alternative using the methodology of this paper.

Table 1: Option values.

$\frac{\rho V_{1,2}^{2}V_{1,2}^{1}V_{12}^{2}/V_{12}^{1}V_{12}^{2}/V_{i}^{1}}{-0.44.9913.4137.27\% 69.85\%}$

$-0.2$ 5.06 12.99 38.99% 70.78%
$0$ 5.15 12.51 41.18% 72.01%

0.2 5.26 11.97 43.99% 73.6%
0.4 5.41 11.34 47.75% 75.7%
0.6 5.62 10.58 53.17% 78.64%

0.8 5.96 9.57 62.27% 83.33%
1 7.15 7.15 100% 100%

Figure 2: The preemptive boundary $\partial S_{1,2}^{2}(t),$ $0.5,1,5$ , and 10 years before maturity.

4 Conclusion

This paper has investigated the preemptive equilibrium in a real options model with the mul-
tidimensional state variable, which represents potential alternative projects. The results are
summarized as follows.
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Figure 3: The investment boundary $\partial S_{1,2}^{2}(t)$ and $\partial S_{1,2}^{1}(t)$ for $\rho=0,0.4$ , and 0.8.

First, preemptive investment takes place earlier and the option value becomes lower if the
numbers of both firms and projects increase by the same amount. The result can be regarded as
extension of the previous results with a one-dimensional state variable as well as being consistent
with empirical findings.

Second, the preemptive competition is moderated by the correlation among profits from
projects. The effect contrasts with that in a monopoly where a strong correlation decreases the
value of project choice. The sensitivity of the correlation to the project value in an oligopoly
depends on a trade-off between moderation of the preemptive competition and a decrease in the
value of project choice.

Third, the strategic option values with a symmetric alternative is 40% $\sim$ 60% of a monopoly
with two alternative projects, or equivalently 70% $\sim$ 80% of a monopoly with a single project.
This indicates the importance of the existence of a potential alternative. Although monopolistic
and strategic models with a one-dimensional state variable tend to calculate extreme values, the
method in this paper allows a reasonable valuation taking account of the follower’s potential
alternative investment.

Lastly, I should point out important but difficult topics for future research. The paper
assumes that profits from the projects are not sensitive to a competitor’s altemative investment.
However, the leader’s cash flow could be affected by the follower’s initiation of a project even
if it is an altemative project that is different from the leader’s project. Also, the projects may
have different maturity in some cases.
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