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1 Introduction

When we consider many environmental problems, such as acid rain and global warming, we
face many uncertainties including, for example, demographic change, economic development,
and technological progress. Decision makers must then consider these uncertainties when they
develop and implement environmental policy. For instance, Pindyck (2000, 2002) investigate an
environmental policy designed to reduce the emission of a pollutant under uncertainty. See also
Barrieu and Chesney (2003), Ohyama and Tsujimura (2006, 2008), Wirl $(2006a,2006b)$ , and Lin,
Ko and Yeh (2007)

In this paper, we also investigate environmental policy under uncertainty. We consider that
an economic agent benefits from an economic activity that emits a certain pollutant. Simultane-
ously, the agent suffers from the pollutant. Importantly, we assume that how much damage the
agent suffers from the pollutant is uncertain, represented by a stochastic differential equation.
We also assume that implementing the policy is irreversible. Given there is uncertainty and ir-
reversibility in the implementation of environmental policy, it is important to decide the timing
of its implementation. Further, the agent has two policy options distinguished by the amount of
emission reductions possible and their associated costs, such that one policy reduces emissions
and costs less than the alternative policy. We then assume we can divide the costs to imple-
ment the chosen environmental policy into its fixed, proportional, and quadratic adjustment
components. The agent must then decide which policy to implement and when to implement
the chosen policy to maximize the benefit. To solve the agent’s problem, we formulate it as an
optimal stopping problem.

Our analysis differs and relates to previous work in several respects. For instance, while
Pindyck (2000, 2002) investigated environmental policy when the agent has just a single policy
option, we analyze the outcomes when the agent has two policy options. We refer to the former
as the single environmental policy and the latter as the alternative environmental policies. In
related work, D\’ecamps, Mariotti and Villeneuve (2006) explore the investment decision problem
of two alternative projects. They then show the value of the flexibility when the agent can
choose between the alternative projects.
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The remainder of the paper is organized as follows. In Section 2 we investigate the single
environmental policy under uncertainty. Section 3, examines the alternative environmental
policies under uncertainty. Section 4 presents the numerical analysis. Section 5 concludes the
paper.

2 Single Environmental Policy

Suppose that an economic agent benefits from an economic activity that emits a pollutant. At
the same time, the agent suffers from the pollutant. The agent then considers when it is optimal
to implement the environmental policy designed to reduce the emission of the pollutant. There
are two environmental policies, 1 and 2, available, where Environmental Policy 1 (EPl) reduces
emissions and costs less than Environmental Policy 2 (EP2). The agent then considers when it
is optimal to implement the chosen policy. In this section, we assume that the agent has either
EPl or EP2 available as policy options, but not both. Pindyck (2000, 2002) investigate a similar
problem.

2.1 Agent’s Problem

Let $Q_{t}$ be the level of economic activity at time $t\geq 0$ . The dynamics of the process of $Q_{t}$ ,
$Q=\{Q_{t}\}_{t\geq 0}$ are given by:

$dQ_{t}=\alpha Q_{t}dt$ , $Q_{0}=q$ , (2.1)

where $\alpha>0$ is the constant growth rate of economic activity. The agent benefit is assumed
to be given by $pQ_{t}$ , where $p$ is a parameter that converts the level of economic activity to a
money amount. If $Q_{t}$ represents the amount of production, $p$ is the price of the product. Let
$\gamma^{0}Q_{t}$ be the emission flow of the pollutant when the agent has not implemented the policy. If
the agent has implemented the policy $i(i=1,2)$ , it reduces the emission flow to $\gamma^{i}Q_{t}$ with
$\gamma^{0}>\gamma^{1}>\gamma^{2}>0$ . Then, the dynamics of the stock of the pollutant $Y_{t}$ is given by:

$dY_{t}^{i}=(\gamma^{i}Q_{t}-\delta Y_{t}^{i})dt$, $Y_{0}^{i}=y$ , (2.2)

where $\delta\in(0,1)$ is the rate of natural decay of the stock of the pollutant. Let $X_{t}Y_{t}^{2}$ be the
damage the agent suffers from the stock of the pollutant. $X_{t}$ is a variable that stochastically
shifts over time to reflect the damage owing to the pollutant and assumed to be governed by:

$dX_{t}=\mu X_{t}dt+\sigma X_{t}dW_{t}$ , $X_{0}=x$ , (2.3)

where $\mu>0,$ $\sigma>0$ , and $W_{t}$ is a standard Brownian motion on a filtered probability space
$(\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_{t}\}_{t\geq 0})$ satisfying the usual conditions2. Here $\mathcal{F}_{t}$ is generated by $W_{t}$ in $\mathbb{R}$, i.e., $\mathcal{F}_{t}=$

$\sigma(W_{s}, s\leq t)$ . . The net benefit $B(Q_{t}, X_{t}, Y_{t})$ from economic activity is given by:

$B^{i}(Q_{t}, X_{t}, Y_{t}^{i})=pQ_{t}-X_{t}(Y_{t}^{i})^{2}$ . (2.4)

Let $K^{i}(Q_{t})$ be the cost function of policy $i$ and be given by:

$K^{i}(Q_{t})=k_{0}+k_{1}(\gamma^{0}-\gamma^{i})Q_{t}+k_{2}(\gamma^{0}-\gamma^{i})^{2}Q_{t}^{2}$, (2.5)

where $k_{0}>0$ is the fixed cost, $k_{1}>0$ is the proportional cost parameter, and $k_{2}>0$ is the
adjustment cost parameter. Given $\gamma^{0}>\gamma^{1}>\gamma^{2}$ , we have $K^{1}<K^{2}$ . Then, the agent’s expected
total discounted benefit associated with policy $i$ is given by:

$J^{i}(q, x, y; \tau_{S}^{i})=E[\int_{0}^{\infty}e^{-rt}B^{i}(Q_{t}, X_{t}, Y_{t}^{i})dt-e^{-r\tau_{S}^{i}}K^{i}(Q_{\tau_{S}^{i}})]$ , (2.6)

2See, for example, Karatzas and Shreve (1991).
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where $\gamma\cdot>0$ is the discount rate, $\tau_{b^{\gamma}}^{l}\in \mathcal{T}$ is tbe impleinentation tiine of the policy $i$ , and $\mathcal{T}$ is the
set of all admissible implementation times. $Furthc^{1}i\cdot niore$ , we assume the following condition:

$E[\int_{0}^{\infty}e^{-rt}|B(Q_{t}, X_{t}, \}_{t}’)|dt]<\infty$ . (AS.1)

Therefore, the agent’s problem is to choose the timing of implementing the policy $i$ to maximize
$J^{i}$ :

$V^{i}(q, x, y)= \sup_{r_{S}^{l}\in \mathcal{T}}J^{i}(q, x, y;\tau_{S}^{i})=J^{i}(q, x, y;\tau_{S}^{i*})$
, (2.7)

where $V^{i}$ is the value function of the agent’s problem and $\tau_{S}^{i*}$ is the optimal timing to implement
the policy $i$ .

2.2 Optimal Environmental Policy

The agent’s problem (2.7) is formulated as an optimal stopping problem. As is well known,
optimal stopping problems are solved by variational inequalities. See, for example, Hu and
Oksendal (1998), Dupuis and Wang (2002), Oksendal (2003).

To define the variational inequalities, we rewrite (2.6) as:

$J^{i}(q, x, y; \tau_{S}^{i})=E[\int_{0}^{\infty}e^{-rt}B(Q_{t}, X_{t}, Y_{t})dt-e^{-r\tau_{S}^{i}}K^{i}(Q_{t})]$

$= E[\int_{0}^{\tau_{S}^{i}}e^{-rt}B^{0}(Q_{t}, X_{t}, Y_{t}^{0})dt$

$+ e^{-r\tau_{S}^{i}}(\int_{\tau_{S}^{l}}^{\infty}e^{-r(t-\tau_{S}^{i})}B^{i}(Q_{t}, X_{t}, Y_{t}^{i})dt-K^{i}(Q_{t}))]$

(2.8)

$= E[\int_{0}^{\tau_{S}^{i}}e^{-rt}B^{0}(Q_{t}, X_{t}, Y_{t}^{r}0)dt+e^{-r\tau_{S}^{i}}G^{i}(Q_{\tau_{S}^{\mathfrak{i}}}, X_{\tau_{S}^{i}}, Y_{\tau_{S}^{i}}^{i})]$ ,

where $G^{i}(Q_{t}, X_{t}, Y_{t}^{i})$ is given by:

$G^{i}(Q_{t}, X_{t}, Y_{t}^{i})= \int_{t}^{\infty}e^{-r(s-t)}B^{i}(Q_{s}, X_{s}, Y_{s}^{i})ds-K^{i}(Q_{t})$ . (2.9)

The region where the agent has not implemented the environmental policy $i$ is defined by:

$H_{S}^{i}=\{(x, y);V"(q, x, y)>G^{i}(q, x, y)\}$ . (2.10)

That is, $H_{S}^{i}$ is the continuation region and yields the timing of implementing the environmental
policy $i,$ $\tau_{S}^{i}$ , given by:

$\tau_{S}^{i}=\inf\{t>0;(x, y)\not\in H_{S}^{i}\}$ . (2.11)

We now define the variational inequalities of the agent’s problem (2.7).

Definition 2.1 (Variational Inequalities). The following relations are the variational inequalities
of the agent’s problem (2.7);

$\mathcal{L}V$“ $(q, x, y)+B^{0}(q, x, y)\leq 0$ , (2.12)

$V^{i}(q, x, y)\geq G^{i}(q, x, y)$ , (2.13)

$[\mathcal{L}V^{i}(q, x, y)+B^{0}(q, x, y)][V"(q, x, y)-G^{i}(q, x, y)]=0$, (2.14)
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$wher\cdot e\mathcal{L}$ is the partial differential operator defined by:

$\mathcal{L}:=\frac{1}{2}\sigma^{2}x^{2}\frac{\partial^{\prime 2}}{\partial x^{2}}+\mu x\frac{\partial}{\partial x}+(\gamma^{i}q-\delta y)\frac{\partial^{\tau}}{\partial y}+\alpha q\frac{\partial}{\partial q}-r$. (215)

(2.14) is the complementary condition and can be rewritten as follows. If $(x, y)\in H_{S}^{i}$ , we
then have:

$\mathcal{L}V^{i}(q, x, y)+B^{0}(q, x, y)=0$ . (2.16)

Alternatively, if $(x, y)\not\in H_{S}^{i}$ , we have:

$V^{i}(q, x, y)-G^{i}(q, x, y)=0$ . (2.17)

Let $\phi^{i}(q, x, y)$ be a candidate function of the value function $V^{i}(q, x, y)$ . We can now prove
that an environmental policy derived by the variational inequalities is optimal. The following
theorem is the well-known verification theorem. See, for example, Theorem 10.4.1 in $\emptyset ksendal$

(2003). The theorem also states if a candidate function satisfies the variational inequalities, the
candidate function is equal to the value function. See also Hu and Oksendal (1998), Dupuis and
Wang (2002).

Theorem 2.1. 1. Let $\phi^{i}(q, x, y)$ be a solution of the variational inequalities $(2.12)-(2.14)$
that satisfies the following:
The family $\{\phi^{i}(Q_{\tau_{S}^{i}}, X_{\tau_{S}^{i}}, Y_{\tau_{S}^{i}})\}_{\tau_{S}^{i}\in\hat{T}}$ is uniformly integrable zuith respect to $\mathbb{P}$ , where $\hat{T}$ is
the set of all bounded stopping times. Then we obtain that:

$\phi^{i}(q, x, y)\geq V^{i}(q, x, y)$ . (2.18)

2. When $(x, y)\in H_{S}^{i}$ , we have (2.16). Furthermore, the timing of implementing the policy $i$ ,
$\tau_{S}^{i}$ , is given by (2.11). Then, the candidate function Of is equal to the value function $V^{i}$ :

$\phi^{i}(q, x, y)=V^{i}(q, x, y)$ . (219)

In addition, $r_{S}^{i}$ is optimal.

Proof. We omit the proof as it is similar to Oksendal (2003, Theorem 10.4.1). $\square$

Next, we investigate whether the candidate function $\phi^{i}(q, x, y)$ is a solution to the variational
inequalities. From the formulation of the agent’s problem (2.7), we conjecture the optimal
environmental policy as follows. For a given pollutant stock level $y$ , if the process of $X=\{X_{t}\}_{t\geq 0}$

reaches some threshold $x_{S}^{i}(y)$ , the agent implements the environmental policy $i$ , and otherwise
does not. Thus, the optimal timing of implementing the policy $i$ is given by:

$\tau_{S}^{i}$ $:= \tau_{S}^{i}(y)=\inf\{t>0;x\geq x_{S}^{i}(y)\}$ . (2.20)

The variational inequalities imply that (2.16) holds for $x<x_{S}^{i}(y)$ . We conjecture a solution to
(2.16) is:

$\phi^{i}(q, x, y)=C_{S1}^{i}(y)x^{\beta_{1}}+C_{S2}^{i}(y)x^{\beta_{2}}+\frac{pq}{r-\alpha}-\frac{xy^{2}}{\rho_{1}}-\frac{2xy\gamma^{0}q}{\rho_{1}\rho_{2}}-\frac{2x(\gamma^{0})^{2}q^{2}}{\rho_{1}\rho_{2}\rho_{3}}$, (2.21)

where $C_{S1}^{i}(y)$ and $C_{S2}^{i}(y)$ are unknowns to be determined. $\rho_{1}=r-\mu+2\delta,$ $\rho_{2}=r-\mu+\delta-\alpha$ ,
and $\rho_{3}=r-\mu-2\alpha$ . $\beta_{1}$ and $\beta_{2}$ are the solutions to the following characteristic equation:

$\frac{1}{2}\sigma^{2}\beta(\beta-1)+\mu\beta-r=0$ , (2.22)

251



and are calculated as:

$\beta_{1}=\frac{1}{2}-\frac{\mu}{\sigma^{2}}+\sqrt{(\frac{\ell\iota}{\sigma^{2}}-\frac{1}{2})^{2}+\frac{2r}{\sigma^{2}}}>1$ ,

(2.23)
$\beta_{2}=\frac{1}{2}-\frac{\mu}{\sigma^{2}}-\sqrt{(\frac{\mu}{\sigma^{2}}-\frac{1}{2})^{2}+\frac{2r}{\sigma^{2}}}<0$ .

(2.26)

If $X_{t}=0$ , the agent does not suffer from the pollutant. Then, we obtain the following
boundary condition of the agent’s problem:

$\phi^{i}(q, 0, y)=\frac{pq}{r-\alpha}$ . (2.24)

It follows from (2.21) and (2.24) that we put $C’ 2(y)=0$ . Then, (2.21) becomes:

$\phi^{i}(q, x, y)=C_{S1}^{i}(y)x^{\beta_{1}^{i}}+\frac{pq}{r-\alpha}-\frac{xy^{2}}{\rho_{1}}-\frac{2xy\gamma^{0}q}{\rho_{1}\rho_{2}}-\frac{2x(\gamma^{0})^{2}q^{2}}{\rho_{1}\rho_{2}\rho_{3}}$ . (2.25)

The first term on the right-hand side of (2.25) represents the value from where the agent can
choose the timing of implementing the policy. The second to fifth terms represent the expected
discounted value of $B^{0}$ where the agent does not perpetually implement the environmental policy
$i$ . We calculate these as follows:

$E[\int_{0}^{\infty}e^{-rt}(pQ_{t}-X_{t}(Y_{t}^{i})^{2})dt]$

$= \int_{0}^{\infty}e^{-rt}pqe^{\alpha t}dt-\int_{0}^{\infty}e^{-rt}xe^{\mu t}\{e^{-\delta t}(y-\frac{\gamma^{0}q}{\alpha+\delta})+e^{\alpha t}\frac{\gamma^{0}q}{\alpha+\delta}\}^{2}dt$

$= \frac{pq}{r-\alpha}-\frac{xy^{2}}{\rho_{1}}-\frac{2xy\gamma^{0}q}{\rho_{1}\rho_{2}}-\frac{2x(\gamma^{0}q)^{2}}{\rho_{1}\rho_{2}\rho_{3}}$ .

The unknown $C_{S1}^{i}(y)$ and threshold $x_{S}^{i}(y)$ are calculated by the following simultaneous equa-
tions:

$\phi^{i}(q, x_{S}^{i}(y), y)=G^{i}(q, x_{S}^{i}(y), y)$ , (2.27)

$\phi_{x}^{i}(q, x_{S}^{i}(y), y)=G_{x}^{i}(q, x_{S}^{i}(y), y)$ . (2.28)

These respective equations are well known as the value-matching and smooth-pasting conditions.
Then, we obtain that:

$C_{S1}^{i}(y)=( \frac{2(\rho_{3}y\Gamma^{i}+’r^{i})}{\beta_{1}\rho_{1}p_{2}\rho_{3}})^{\beta_{1}}(\frac{\beta_{1}-1}{K^{i}(q)})^{\beta_{1}-1}$ , (2.29)

$x_{S}^{i}(y)=( \frac{\beta_{1}}{\beta_{1}-1})(\frac{\rho_{1}\rho_{2}\rho_{3}}{2(\rho_{3}y\Gamma^{i}+Y^{i}\backslash )})K^{i}(q)$ , (2.30)

where $\Gamma^{i}=(\gamma^{0}-\gamma^{i})q,$ $\prime r^{i}=((\gamma^{0})^{2}-(\gamma^{i})^{2})q^{2}$ . In what follows, owing to the tractability of
notation, $C_{S1}^{i}$ $:=C_{S1}^{i}(y)$ . From $\gamma^{0}>\gamma^{1}>\gamma^{2},$ $K^{1}<K^{2}$ and (2.30), the threshold of EPl is
smaller than the threshold of EP2:

$x_{S}^{1}(y)<x_{S}^{2}(y)$ . (2.31)
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3 Alternative Environmental Policies
In this section, we consider that the agent has two environmental policy options and assume
that the agent implements either EPl or EP2. We follow the framework in D\’ecamps, Mariotti
and Villeneuve (2006) who investigate the choice problem between two alternative investment
projects. Let $\tau_{A}$ be the timing of implementing EPl or EP2 given by:

$\tau A=\min[\tau_{A}^{1},$ $\tau_{A}^{2}]$ , (3.1)
where $\tau_{A}^{i}(i=1,2)$ is the timing of implementing the policy $i$ where the agent has two environ-
mental policy options. Notice that these timings depend on the stock of the pollutant $y$ . Owing
to the tractability of the notations, we omit the dependency on $y$ . Then, the agent’s expected
total discounted benefit $J$ is:

$I(q,$ $x,$ $y; \tau_{A})=E[\int_{0}^{\tau_{A}^{1}\wedge\tau_{A}^{2}}e^{-rt}B^{0}(Q_{t},$
$X_{t},$ $Y_{t}^{0})dt$

$+1_{\{\tau_{A}^{1}\leq\tau_{A}^{2}\}} e^{-r\tau_{A}^{1}}(\int_{\tau_{A}^{1}}^{\infty}e^{-r(t-\tau_{A}^{1})}B^{1}(Q_{t},$ $X_{t},$ $Y_{t}^{1})d$オー $K^{1}(Q_{t}))$

$+1\{\tau_{A}^{1}>\tau_{A}^{2}\}e^{-r\tau_{A}^{2}}$ $( \int_{\tau_{A}^{2}}^{\infty}e^{-r(t-\tau_{A}^{2})}B^{2}(Q_{t},$ $X_{t},$ $Y_{t}^{2})d$オー $K^{2}(Q_{t}))]$

$= E[\int_{0}^{\tau_{A}^{1}\wedge\tau_{A}^{2}}e^{-rt}B^{0}(Q_{t},$
$X_{t},$ $Y_{t}^{0})d$ オ

$+1\{e^{-r\tau_{A}^{1}}G^{1}(Q_{\tau_{A}^{1}}, X_{\tau_{A}^{1}}, Y_{\tau_{A}^{1}}^{1})+1e^{-r\tau_{A}^{2}}G^{2}(Q_{\tau_{A}^{2}}, X_{\tau_{A}^{2}}, Y_{\tau_{A}^{2}}^{2})](3.2)$

Therefore, the agent’s problem is to choose the timing of implementing the policy to maximize
their expected total discounted benefit $J$ :

$V(q, x, y)= \sup_{\tau_{A}\in \mathcal{T}}J(q, x, y;\tau_{A})=J(q, x, y;\tau_{A}^{*})$ . (3.3)

From (2.10) the region where the agent implements neither EPI nor EP2 is defined by:

$H_{A}(y)= \{(x, y);V(q, x, y)>\max[G^{1}(q, x, y), G^{2}(q, x, y)]\}$ . (3.4)
That is, $H_{A}(y)$ is the continuation region. Then, $\tau_{A}$ is given by:

$\tau_{A}=\inf\{t>0;x\not\in H_{A}(y)\}$ . (3.5)

As in Section 2, the agent’s problem is formulated as an optimal stopping problem and is
solved via the variational inequalities. The variational inequalities of the agent’s problem (3.3)
are as follows:

$\mathcal{L}V(q, x, y)+B^{0}(q, x, y)\leq 0$ , (3.6)
$V(q, x, y) \geq\max[G^{1}(q, x, y), G^{2}(q, x, y)]$ , (3.7)

$[ \mathcal{L}V(q, x, y)+B^{0}(q, x, y)][V(q, x, y)-\max[G^{1}(q, x, y),$ $G^{2}(q, x, y)]]=0$ . (3.8)
Let $\tilde{x}$ be the value of the shift variable such that $G^{1}(q, x, y)=G^{2}(q, x, y)$ . Then, $\tilde{x}$ is

calculated as:
$\tilde{x}=(K^{2}(q)-K^{1}(q))[\frac{\rho_{1}\rho_{2}\rho_{3}}{2(y\rho_{3}\Gamma+Y^{\backslash })}]$ (3.9)

where $\Gamma=(\gamma^{1}-\gamma^{2})q,$ $\prime r=((\gamma^{1})^{2}-(\gamma^{2})^{2})q^{2}$ . The value function $V$ smoothly pastes neither the
function $G^{1}$ nor the function $G^{2}$ at $x=\tilde{x}$ . Then, we obtain the following result.
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Proposition 3.1. When the shift variable is $\tilde{\chi j}$ , the agent irnplement.$\sigma$

. neither policy.

Decamps, Mariotti and Villeneuve (2006) provide a rigorous treatment in their Proposition
2.2. Furthermore, D\’ecamps, Mariotti and Villeneuve (2006) obtain the following result in their
Theorem 2.1.

Theorem 3.1. Assume that:

$\frac{(\rho_{3}y\Gamma^{1}+I^{1})^{\beta_{1}}}{K^{1}(q)^{\beta_{1}-1}}>\frac{(\rho_{3}y\Gamma^{2}+’r^{2})^{\beta_{1}}}{K^{2}(q)^{\beta_{1}-1}}$ . (3.10)

Let $x_{A}^{i}(y)(i=1,2)$ be the threshold of implementing the policy $i$ when the agent has two policy
options: $EPl$ and $EP2$ . The timing of implementing $EPl,$ $\tau_{A}^{1}$ , is given by:

$\tau_{A}^{1}=\inf\{t>0;x_{S}^{1}(y)\leq X_{t}\leq x_{A}^{1}(y)\}$ . (3.11)

Conversely, the timing of implementing $EP2,$ $\tau_{A}^{2}$ , is given by:

$\tau_{A}^{2}=\inf\{t>0;X_{t}\geq x_{A}^{2}(y)\}$ . (3.12)

The continuation region $H_{A}(y)$ is redefined by:

$H_{A}(y)=\{x;x<x_{S}^{1}(y), x_{A}^{1}(y)<x<x_{A}^{2}(y)\}$ . (3.13)

From (3.11), the region where EPl is implemented is defined by:

$I_{1}(y)=\{x;x_{S}^{1}(y)\leq x\leq x_{A}^{1}(y)\}$ . (3.14)

Similarly, from (3.12), the region where EP2 is implemented is defined by:

$I_{2}(y)=\{x;x\geq x_{A}^{2}(y)\}$ . (3.15)

The continuation region $H_{A}$ is divided into two regions. The first region is defined by:

$H_{A1}(y)=\{x;x<x_{S}^{1}(y)\}$ , (3.16)

where $H_{A1}$ is the continuation region when the agent has only EPI. The second region is defined
by:

$H_{A12}(y)=\{x;x_{A}^{1}(y)<x<x_{A}^{2}(y)\}$ . (3.17)

This region arises from the flexibility where the agent can choose between EPl and EP2.
Let $\phi(q, x, y)$ be a candidate function of the value function $V(q, x, y)$ . From the variational

inequalities $(3.6)-(3.8)$ , for $x\in H_{A}$ we have:

$\frac{1}{2}\sigma^{2}x^{2}\phi_{xx}+\mu x\phi_{x}+(\gamma^{0}q-\delta y)\phi_{y}+\alpha q\phi_{q}-r\phi+B^{0}=0$ . (3.18)

For $x<x_{S}^{1}$ , when $x$ reaches $x_{S}^{1}$ , the agent implements EPl. Then, we have $\phi^{1}$ given by (2.25).
For $x_{A}^{1}<x<x_{A}^{2}$ , when $x$ reaches $x_{A}^{1}$ before $x_{A}^{2}$ , the agent implements EPl. Alternatively, when
$x$ reaches $x_{A}^{2}$ before $x_{A}^{1}$ , the agent implements EP2. Thus, the agent has two types of flexibility
in this region. The candidate function is then:

$\phi(q, x, y)=C_{A1}x^{\beta_{1}}+C_{A2}x^{\beta_{2}}+\frac{pq}{r-\alpha}-\frac{xy^{2}}{\rho_{1}}-\frac{2xy\gamma^{0}q}{\rho_{1}\rho_{2}}-\frac{2x(\gamma^{0})^{2}q^{2}}{\rho_{1}\rho_{2}\rho_{3}}$, (3.19)

where $C_{A1}$ $:=C_{A1}(y)$ and $C_{A2}:=C_{A2}(y)$ are unknowns to be determined. The first term on
the right-hand side is the value of the flexibility from where the agent chooses the timing of
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implementing EPl. The second term is the value of the flexibility from where the agent chooses
EP2. Then, $\phi$ is divided by the level of $x$ as follows:

$\phi(q, x, y)=\{\begin{array}{ll}C_{S1}^{1}x^{\beta_{1}}+pq\underline{x}\underline{2}xr-\overline{\alpha}\rho_{1}\rho_{1\beta 2}’ x<x_{S}^{1}(y),G^{1}(q, x, y), x_{g}^{1}(y)\leq x\leq x_{A}^{1}(y),C_{A1}x^{\beta_{1}}+C_{A2}x^{\beta_{2}}+\overline{r}\alpha^{-}\rho_{11}\rho_{2}\underline{R}L^{\underline{x}}2_{-}^{2}-\frac{2x}{\rho}21^{0}A-\frac{2x(\gamma^{0})^{2}q^{2}}{\rho_{1}\rho_{2}\rho_{3}}, x_{A}^{1}(y)<x<x_{A}^{2}(y),\end{array}$ (3.20)

$G^{2}(q, x, y)$ , $x\geq x_{A}^{2}(y)$ .

As in Section 2, we have to determine the unknowns: $C_{A1},$ $C_{A2}$ and the thresholds: $x_{A}^{1}(y)$ ,
$x_{A}^{2}(y)$ . These are calculated using simultaneous equations:

$\phi(q, x_{A}^{1}(y), y)=G^{1}(q, x_{A}^{1}(y), y)$ . (3.21)

$\phi(q, x_{A}^{2}(y), y)=G^{2}(q, x_{A}^{2}(y), y)$ . (3.22)

$\phi_{x}(q, x_{A}^{1}(y), y)=G_{x}^{1}(q, x_{A}^{1}(y), y)$ . (3.23)
$\phi_{x}(q, x_{A}^{2}(y), y)=G_{x}^{2}(q, x_{A}^{2}(y), y)$ . (3.24)

Unfortunately, as we cannot analytically derive these thresholds, in the following section we
numerically calculate their values.

4 Numerical Analysis

In this section, we numerically calculate the thresholds: $x_{S}^{1}(y),$ $x_{S}^{2}(y),$ $x_{A}^{1}(y)$ , and $x_{A}^{2}(y)$ and
investigate the effects of changes in the parameters on the thresholds. The basic parameter
values are set out in Table 1.

The value function $V$ where the agent has two environmental policy options is illustrated
in Figure 1. The threshold values are calculated as $x_{S}^{1}=0.1494,$ $x_{S}^{2}=0.2423,$ $x_{A}^{1}=0.2176$ ,
$x_{A}^{2}=0.2793$ in the base case. The indifference value of the shift variable is $\tilde{x}=0.2476$ .

We provide the results of the comparative static analysis of the thresholds in Figures 2-14.
Figure 2 shows that the continuation region $H_{A}$ is increasing in the discount rate $r$ . While
the implementation region of EPl, $I_{1}$ , is increasing in $r$ , the implementation region of EP2, $I_{2}$ ,
is decreasing in $r$ . That is, the higher the discount rate, the smaller the present value of the
damage. Then, the agent postpones implementing the environmental policy. For $r<0.03316$ ,
assumption (3.10) does not hold.

Figure 3 shows that the continuation region $H_{A}$ is decreasing in the expected growth rate of
economic activity, $\alpha$ . However, while the implementation region of EPl $I_{1}$ is decreasing in $\alpha$ ,
the implementation region of EP2 $I_{2}$ is increasing in $\alpha$ . That is, the higher the expected growth
rate of economic activity, the larger the present value of the damage. Accordingly, the agent
hastens implementation of the environmental policy. For $\alpha>0.02075$ , assumption (3.10) does
not hold.

Figure 4 shows that the continuation region $H_{A}$ is decreasing in the parameter of economic
activity, $q$ . However, while the region $I_{1}$ is increasing in $q$ , region $I_{2}$ is decreasing in $q$ . For
$q<1.72152$ , assumption (3.10) does not hold. Figure 5 shows that the continuation region $H_{A}$

is decreasing in the expected growth rate of the shift variable, $\mu$ . However, while region $I_{1}$ is
decreasing in $\mu$ , region $I_{2}$ is increasing in $\mu$ . That is, the higher the expected growth rate of the
shift variable, the larger the present value of the damage. For $\mu>0.02075$ , assumption (3.10)
does not hold.

Figure 6 shows that the continuation region $H_{A}$ is increasing in the volatility of the shift
variable, $\sigma$ . Regions $I_{1}$ and $I_{2}$ are both decreasing in $\sigma$ . For $\sigma>0.27923$ , assumption (3.10)
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does not hold. Figure 7 shows the continuation region $H_{A}$ is decreasing in the stock of the
pollutant, $y$ . However, while region $I_{1}$ is decreasing in $y$ , region $I_{2}$ is increasing in $y$ . Figure 8
shows that region $H_{A1}$ is increasing in the emission conversion factor $\gamma^{0}$ . In contrast, $H_{A12}$ is
decreasing in $\gamma^{0}$ . Combining these effects, $H_{A}$ is increasing in $\gamma^{0}$ . While region $I_{1}$ is increasing
in $\gamma^{0}$ , region $I_{2}$ is decreasing in $\gamma^{0}$ . For $\gamma^{0}<0.0396$ , assumption (3.10) does not hold.

Figures 9 and 10 show that region $H_{A1}$ is decreasing in the emission conversion factor $\gamma^{1}$ . In
contrast, $H_{A12}$ is increasing in $\gamma^{1}$ . Combining these effects, $H_{A}$ is not monotonic with respect
to $\gamma^{1}$ . To start with, $H_{A}$ is decreasing and then increasing in $\gamma^{1}$ . However, while region $I_{1}$ is
decreasing in $\gamma^{1}$ , region $I_{2}$ is increasing in $\gamma^{1}$ . For $\gamma^{1}>0.0420$ , assumption (3.10) does not hold.
For $\gamma^{1}=0.02$ , threshold $x_{A}^{1}$ equals threshold $x_{A}^{2}$ and threshold $x_{S}^{1}$ equals threshold $x_{S}^{2}$ .

Figure 11 shows that region $H_{A1}$ does not change by varying the emission conversion factor
$\gamma^{2}$ . This is because $H_{A12}$ is decreasing in $\gamma^{2}$ . Then, $H_{A}$ is decreasing in $\gamma^{2}$ . While region $I_{1}$ is
decreasing in $\gamma^{2}$ , region $I_{2}$ is increasing in $\gamma^{2}$ . For $\gamma^{2}=0.03$ , threshold $x_{A}^{1}$ equals threshold $x_{A}^{2}$

and threshold $x_{S}^{1}$ equals threshold $x_{S}^{2}$ .
Figure 12 shows that regions $H_{A1}$ and $H_{A12}$ are increasing in the fixed cost to implement

the environmental policy, $k_{0}$ . Then, region $H_{A}$ is increasing in $k_{0}$ and regions $I_{1}$ and $I_{2}$ are
decreasing in $k_{0}$ . For $k_{0}>51.0730$ , assumption (3.10) does not hold. Figure 13 shows that
region $H_{A1}$ and $H_{A12}$ are increasing in the proportional cost parameter $k_{1}$ . Then, region $H_{A}$ is
increasing in $k_{1}$ and regions $I_{1}$ and $I_{2}$ are decreasing in $k_{1}$ . For $k_{1}>1291.7$ , assumption (3.10)
does not hold.

Figure 14 shows that region $H_{A1}$ and $H_{A12}$ are increasing in the adjustment cost parameter
$k_{2}$ . Then, region $H_{A}$ is increasing in $k_{2}$ . However, while region $I_{1}$ is increasing in $k_{2}$ , region $I_{2}$

is decreasing in $k_{2}$ . For $k_{2}<1622.2$ , assumption (3.10) does not hold.

5 Conclusion

In this paper, we investigate environmental policy under uncertainty. We consider that an
economic agent benefits from the economic activity and suffers from the pollutant so emitted.
As the agent has two policy options, the agent must decide which policy to implement and when
to implement the chosen policy in order to maximize its benefit. To solve the agent’s problem, we
formulate it as an optimal stopping problem. We first investigate the single environmental policy
and obtain the closed form of the threshold. Next, we investigate the alternative environmental
policies. Unfortunately, the thresholds of the policies are not explicitly derived. Therefore,
we conduct numerical and comparative static analysis. The representative findings indicate
that the continuation region increases in volatility, that is, with uncertainty, while the policy
implementing regions decrease in volatility. Further, the continuation region increases in the
emission conversion factor where the agent has implemented neither EPl nor EP2. That is, while
the region for implementing EPl increases in the conversion factor, the region for implementing
EP2 decreases in the conversion factor.

To conclude the paper, we suggest a number of possible extensions for our model. First,
to future work we defer examination of the effect of technological progress, particularly as this
plays an important role in environmental policy. Second, in this paper, we assume that the
dynamics of economic activity are deterministic. As economic development is also uncertain in
the real world, the dynamics of economic activity (or the price) should incorporate stochastic
differential equations. We leave these topics for future research.
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Table 1: The base case values of the parameters and variables

Variable Symbol Value
Parameters
Discount rate $r$ 0.05
Growth rate of economic activity $\alpha$ 0.01
Price $p$ 10
Growth rate of shift variable $\mu$ 0.01
Volatility of shift variable $\sigma$ 0.2
Rate of natural decay $\delta$ 0.01
Emission conversion factor for policy $0$ $\gamma^{0}$ 0.05
Emission conversion factor for policy 1 $\gamma^{1}$ 0.03
Emission conversion factor for policy 2 $\gamma^{2}$ 0.02
Fixed cost $k_{0}$ 5
Proportional cost $k_{1}$ 100
Adjustment cost $k_{2}$ 10000

Variables
Economic activity $q$ 5
Stock of pollutant $y$ 0.1

Policy $0$ is when the agent has implemented neither EPl nor EP2.

Figure 1: Figure 2:
Value function of alternative environmental Comparative statics of thresholds with respect

policies. to $r$ .
$V(q.x,y)$

$0034$ 0.044 $r0.054$ 0.064
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Figure 3: Figure 4:
Comparative statics of thresholds with respect Comparative statics of thresholds with respect

to $\alpha$ . to $q$ .
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Figure 5: Figure 6:
Comparative statics of thresholds with respect Comparative statics of thresholds with respect

to $\mu$ . to $\sigma$ .
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Figure 7: Figure 8:
Comparative statics of thresholds with respect Comparative statics of thresholds with respect

to $y$ . to $\gamma^{0}$ .
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Figure 9:
Comparative statics of thresholds with respect

to $\gamma^{1}$ .

Figure 10:
Comparative statics of continuation regions

$H_{A1},$ $H_{A12}$ , and $H_{A}$ , respect to $\gamma^{1}$ .
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Figure 11: Figure 12:
Comparative statics of thresholds with respect Comparative statics of thresholds with respect

to $\gamma^{2}$ . to $k_{0}$ .
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Figure 13: Figure 14:
Comparative statics of thresholds with respect CComparative statics of thresholds with respect

to $k_{1}$ . to $k_{2}$ .
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