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Data discretion is one of the most important issues in data mining for
continuous datasets. However, there is less attention that has been paid to
the inconsistency of dataset that is discreted. In consequence, mining
mechani sm such as classification may face a difficulty in providing the
classification outputs. We first reveal the problem of record inconsistency,
and then describe a model that helps efficiently reveal the record
inconsistency that do exist datasets that are discreted. The main outputs of
the described model include revealed inconsistent records and consumed
processing time. Fifteen continuous real-life datasets that are discreted by
using the binning technique of S-plus histogram binning algorithm with equal
width interval technique are tested. There are results obtained indicating
that: (1) 38.89% of the discreted datasets contain inconsistent records and
22.22% of the discreted datasets have more than 20% amount of inconsistent
records.
Keywords: Data mining, Discretion, Record consistency

Background

Data mining (DD) is one of the active research domains that is
linked to data management, information representation, and machine
learning techniques, in particular the volume of data generated
increases rapidly [1-9]. If thoroughly review the DD research tasks,

there are five major stages: data collection, the collected data
preprocessing, pre-processed data mining, outputs collection, and
output implementation and evaluation. The data collection basically
is to gather real-life (sometimes artificial) data. Pre-processing
deals mainly with data refinement and reconstruction of datasets,
consistency of multi-typed datasets, elimination of redundant
attributes, combination of highly correlative attributes, and
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discretization of numeric attributes. The mining mechani sm generally
performs association, classification, regression, clustering, or
summarization to explore knowledge that is significantly interesting,
meaningful, and decision-supportable. Outputs contain the discovered
knowledge that can be either documented as a report or used in
intelligent systems to support in making decision. The work of
implementation and evaluation is about the use of mined knowledge and
test of the mining processes. It is dealt to ensure the DD pursuits
that include rel iabi 1 ity, efficiency, val idity, simpl icity, $and/or$

generality. Obviously, in the DD research system, the results of each
phase flow down to the next, and will have a great impact on the
final results.

Discretion is the conversion of continuous attributes to
categorical ones in order for mining mechani sm to perform knowledge
discovery. However, conflicting records may occur that have the same
conditions, but different conclusion [10]. Although many studies have
presented various techniques to improve the performance of
discretion, the problem of record inconsistency in a dataset is still
a serious issue that may consequently influence the reliability of
the mind knowledge $[2][3][8][11-18]$ . It should be noted that
indisputably same conditions resulting in different conclusions in
our real life is a common situation. However, with respect to an
induction-based knowledge discovery mechani sm, it should be defined
that the same conditions must produce a single conclusion. For
example, it will be a meaningless mined knowledge that if you study
quite hard, you may or may not pass your final exam. Consequently,

the investigation of record consistency for discreted datasets is
quite important for data mining. A discreted dataset usually contains
many attributes and many records. It is a highly labor-consumpti on
task to investigate the conflicting records. We therefore adopt

Structured Quesy Language (SQL) to develop a record consistency
investigation model to help efficiently test discreted datasets
[19-21]. The primary outputs of the described model include explored

inconsistent records and consumed running time.

Record Inconsistency Problem
Before explaining the record inconsistency prob $lem$ , we briefly

describe the discretion. The discretion is to group numeric data for
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each attribute in dataset. $F$ igure 1 illustrated this in a graphi c
manner with equal width interval (EWI). It should be noted that there
are many techniques used to group numeric data. However, this is
beyond our research focus. The EWI has been often used as a
conversion mechani sm to generate nominal values from continuous ones.
The EWI deals with the sorting the observed values of a continuous
attribute and dividing the range of observed values for the variable
into $k$ equally sized bins, where $k$ is a parameter predefined by the
user. If a variable $x$ is observed to have values bounded by $x_{\max}$ and
$x_{\mathfrak{m}in}$ , then this method computes the equalized bin width as $(X_{1\mathfrak{n}ax}$ $-$

$x_{\mathfrak{m}in})/k$ . As a result, the set of granules can be expressed as $G=\{G_{1}$ ,
$G_{2},$ $\cdots\cdots G_{k}\}$ . The conversion function is defined as follows. Each
nominal granule has the same continuous boundary, but the number of
record may be different.

$C_{EWJ}(Xi)=\{\begin{array}{l}G_{!I1},iFx_{nin+}(JI1+)d\leq Xj\coprod Aiin+G_{A},if_{Xi=Xnax}fl UlloT]_{j6\Gamma W}ise\end{array}$

iiid

whe re
$X_{1}$ : the $i^{th}$ data.
$G_{Il}$ : the $m^{th}$ granule that $y$ is grouped into, $m=$ 1, $\cdots k$ , $k$ : the

number of granules.
$x_{IlI_{J}},$ : the minimum of the data.
$x_{l\eta}\partial Y$ : the maximum of the data.

$d$ : the equalized interval for $k$ granules.

Figure 1: Information granul arity
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It is very possible that inconsistent records may occur while
performing the conversion operation. Conflicting records are very
possible to produce dead-end leaf while constructing a decision tree
[10]. In other words, conflicting records will stop returning

decision rules. It is believed that conflicting records will very
possibly result in two serious problems. One is that it is irrelevant
to compute gained information for both attributes and classes if a
discreted dataset contains too many inconsistent records. The other
is that some information of the col lected data sources will be lost
if too many inconsistent records are eliminated.

To further deal with such a serious problem whi le discreting the
continuous attributes, an artificial dataset is firstly generated as
an example that has the record inconsistency problem to describe this
concern in detail and secondly conduct an empirical investigation for
real life datasets. The generated dataset contains 28 discreted
records. Each record is assigned an ID. Also assume that the dataset
has 7 attr ibutes as wel 1 as a class with 7labels and is ordered by
the values of both attributes and class. The value domain of
attributes for this dataset are: $V_{A}=\{A1, A2, A4, A5, A6, A7\}$ , $V_{B^{=}}\{B1$ ,

B2, B3, B5, B6, B7} $V_{C}=\{C1, C2, C4, C5, C6, C7\}$ , $V_{D}=\{D1$ , D2, D4, D5,
D6, D7}, $V_{E^{=}}\{E1, E2, E3, E4, E5, E6\}$ , $V_{F}=\{F2, F3, F4, F5, F6\}$ , $V_{G^{=}}\{G1$ ,

G2, G3, G4, G5, G7}, and Vcss $=\{CSS1$ , CSS2, CSS3, CSS4, CSS5, CSS6,

CSS7}. If look at the records numbered from 1 to 7, it is found that
the combinations of attributes are all equal to (Al, B2, C2, D4, El,
F2, G2), but have different conclusions that are {CSSI, CSS2, CSS3,

CSS5}.
Since inconsistent records are regarded as those that have the

same conditions, but different conclusions, any record that has a
single attribute values is considered to be consistent in a discreted
dataset. Moreover, in order to further conveniently look at the
inconsistency problem in depth and find a solution in general, four
types of subdatasets based on the relations between attribute values
and class values for a discreted dataset are defined as follows.

$D_{|n’ a|}$ : A dataset that contains all records in a discreted
dataset. For example, $D_{ia\lrcorner}$

) $.=\{1$ , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28} in
the artificial dataset. $D_{sing^{1}e}$ : A dataset that contains every single
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record of which the combination of attribute value is unique. For
example, $D_{slng1e}$ $=$ {8, 9, 10, 18, 23, 27, 28} in the artificial
dataset. $D_{\mathfrak{m}u\lfloor)_{J}e}|+$ : A dataset that contains record sets. Each set has an
identical combination of attribute value and the number of records is
equal to or greater than 2. For example, $D_{||t(1^{+}|pe}=\{\{1$ , 2, 3, 4, 5, 6,
7 $\}$ , {11, 12, 13, 14}, {15, 16, 17}, {19, 20} , {21, 22}, {24, 25, 26} $\}$

in the artificial dataset. Note that $D_{\eta}utp^{1}e$ is equivalent to the
difference set of $D_{inj\uparrow ia}|$ and $D_{\nwarrow i_{tl}g^{1}e}$ . $D_{Sa\mathfrak{m}eConc1us1011}$ : A dataset that contains
record sets. Each set is a member of $D_{n\iota(1pe}|_{1}^{+}|$ and has a unique

conclusion. For example, $D_{Sa\mathfrak{m}eC1ass}=$ $\{\{19$ , 20}, {24, 25, 26} $\}$ in the
artificial dataset.

Apparently, the inconsistent records only exist in $D_{mu1tp^{1}e}|$ . Each
element (a subset) in $D_{|\mathfrak{n}\lfloor\iota|tip|e}$ needs to be further detected whether or
not the records have the same conclusions. Any element of which the
conclusions are constant is eliminated from $D_{\eta_{\mathfrak{U}}|\{|}p^{1}e$ to derive the set
that contains all inconsistent record. For example, $S_{SameCiass}$ containing
two record sets of {19, 20} and {24, 25, 26} are such kind of
elements in $S_{lIIl1}|ti_{t)}|e$ . The remainder then forms a subset that is denoted
by $D_{DfC|ass}|$ that contains the inconsistent record which are $\{\{1$ , 2, 3,
4, 5, 6, 7}, {11, 12, 13, 14}, {15, 16, 17}, {21, 22} $\}$ . $D_{DifC1ass}$ is
then used to investigate the initial dataset. However, for the
algorithmic aspect, formula (1) is not just a simple algebra that can
be used to explore inconsistent records. The size of dataset, number
of attributes, number of values that each attribute can take on, and
the number of values that the class can take on are all variables
that may cause the problem ve ry compl ex. In order for the solution to
be generalized, the study needs to solve two problems. One is to
separate $D_{sing1e}$ and $D_{nu1tp^{1}e}|$ from $D_{0I1}g|na|$ , the other is to eliminate all
subsets in $D_{San\iota \mathfrak{e}C1ass}$ from $D_{|n\square \iota_{1}f_{I)}|e}$ .

Proposed Model

The proposed model basically is developed by using a divide-
group-join strategy. It contains three procedures: grouping,
dividing, and joining. Grouping is to deal with the $D_{sing^{1}e}$ and $D_{\mathfrak{m}u1tp|e}|$

separations from the initial dataset. The $D_{Sai_{\mathfrak{n}eC1ass}}$ is derived by
dividing while joining returns the final results. In Figure 2, there
are three operations, $0P_{A}$ , $0P_{B}$ , and $0P_{c}$ to complete the whole process.
Each operation represents an SQL statement for a defined purpose. The
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objective of each operation is listed in Table 1 where operations and
their corresponding SQL statements with pseudo format are contained.
By connecting all procedures, the defined SQL statements used to
return inconsistent records is formed.

The dataset containing
$inconsi_{n}stent_{\backslash }records$

Figure 2: The operations of record consistency
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A demonstrated example
An example as mentioned in the above section is used to

demonstrate how the proposed model functions in a simpler way. $D_{A}$ was
listed in Table 2 where the number of records with same conditions
and conclusions were contained. In $D_{A}$ , we realized that some records
were consistent and some were not. However, there was only one record
in $D_{A}$ if they were consistent, since all conditions and conclusions
were taken into account in terms of grouping. Therefore, we regrouped

via all conditions and counted for $D_{A}$ . The output was stored in $D_{B}$

that was listed in Table 3. We then eliminated those records from $D_{B}$

that returned only one record to obtain $D_{C}$ listed in Table 4, because
they represented consistent records in $D_{A}$ . We finally performed inner
join for $D_{A}$ and $D_{C}$ to obtain the final results $D_{DfC|ass}|$ . The $D_{DfC|ass}|$ was
listed in Table 5. All intermediate subsets as well as the final
results were tested correct.
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Ta $h1_{P}?\cdot 1^{t}h\rho s||hs\rho\uparrow$ Ta $h|p$ $’\{$ . Th $\rho s||hsp$ $\dagger$

ABCDEFGClassCnt $aAlB2C2D4PlF2(\backslash |2C_{\backslash }\backslash S13$

$AlB2C2D4ElF2U^{\backslash }2CSS2211B2C2D4b1F2(\backslash |2C\}b$

$31AlB2C2D4blF2(\backslash |2CSS51AlB2C2D4E1\Gamma 2(\backslash 13C$

$SS41AlB3C4D4ElF3(13CSS41AlB3CtD4EIF_{J}^{J}1\backslash i$

$4CSS21A2B3C4D5E2F3(\tau_{1}$ ICSS $12A2B3C4D5E2F$

$3(\neg 1|CSS52A4B5C5D5E2F4(\backslash 13CSS1|A4B5C5D5E$

$2F4C_{\mathfrak{l}}.3CSS3|A4B5C5D5E2F41_{I}^{t}3CSS4|A4B5C5D$

$5E3F4G5CSS51A4B5C5D6E3F5G7CSS22A5BIC$

$5D6F4F5C_{1}4CSS4|A5B|C5D6E4F51_{I}^{\backslash }4CS_{\backslash }61A5B$

$6C6D6E5F5C_{I}3CSS7|A6B7C2D7E5F61_{1}^{\backslash }2CSS33A$

$7B3C|D7E6F6C_{I}5CSS21A7B7C7D7E6F5(\backslash 12CSS3$

I

$TahIp4$ . Thp guhgpt

ABCDEF($\backslash C1$ assCnt $-aCnt_{-}bAlB2C2D4ElF2(\backslash |2CSS514A$

$2B3C4D5E2F3GlCSS522A4B5C5D5E2F4G3CSS413A5B1$

$C5D6E4F5G4CSS612$

Experiment and Results

$ABCl)EF(\dagger Cla\searrow\searrow Cnt_{-}aCnt_{-}^{1})AIB2C2D4Elb2t_{1}^{\backslash }2CSS514A$

$IB2C2D4bIF2t_{1}^{\backslash }3CSS41$ IAIB $JJC4D4EIF3G3CbS4I$ IAIB3
$C4D4E|\ulcorner 3(\neg|4C\iota\backslash \backslash 211A2B3C4D^{\ulcorner})E2F_{J}^{J}(\backslash |[CSS522A4B5C5D$

$5E2\Gamma 4C_{1}3C;;t13A4B5C5D5E3F4(\backslash |5CSS51IA4B5C5D6E3$

$\Gamma 51_{I}^{t}7CSS221A\ulcorner oBlC5D6E4\Gamma 51_{I}^{\backslash }4CSS612A5B6C6D6E5F51_{I}^{T}$

$3CSS711A6B7C2D7E5F6G2CSS331A7B3ClD7E6F6G5CS$

$S211A7B7C7D7E6F5G2CSS311$

Table 5: The subset

$ABCDEFt_{I}^{\backslash }ClassCnt_{-}aAIB2C2D4EIF2G2CSS13$

$A|B2C2D4E|F2(\backslash 12CSS22A|B2C2D4E|F2G2CSS$

$31AIB2C2D4EIF2(\backslash 12CSS5IA2B3C4D5E2F3GlC$

SS $|2A2B3C4D5E2F3\Gamma_{I}1C_{\backslash }\backslash \backslash \backslash 52A4B5C5D5E2F4G$

$3CSSllA4B5C5D5E2F4G3CSS3IA4B5C5D5E2F$

$4G3CSS41A5BIC5D6E4F5G4CSS41A5BlC5D6E$

$4F5G4CSS61$

In order for the proposed model to be able to both investigate

the record inconsistency and reveal record inconsistency problem, 18
continuous real-life datasets were tested. The discretion technique

employed was the EWI that involves sorting the observed values of a
continuous feature and dividing it into $k$ equally sized granules,

whe re $k$ is the number of granules defined by users [2]. The binning

algorithm, S-Plus Histogram Binning Algorithm (SHBA) introduced by

Spector [22] was utilized to determine the number of granules. The
characteristics of the experiment were that (1) the number of
datasets used is 18, (2) missing data was eliminated if occurs, (3)

binning technique utilized is SHBA, (4) discretion technique employed

is EWI, (5) outputs of the experiment is inconsistent records and
processing time, and (6) objective is the investigation of record
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inconsistency. The SHBA is expressed as SHBA: $k$ $=$ maximum(l,

integer $(2*log(difference)))$ , where $k$ is the number of granules and
difference is the number of different values that an attr ibute has.

$ln$ addition, the average of run time was the mean of twenty trials that
were performed. The results of the experiment were listed in Table 7. It was
found that of 18 datasets that were investigated, 7 were not recognized. This
implied that 38.89% of the discreted datasets contained inconsistent records.
More particularly, there was four datasets that contained inconsistent
records more than 20%. The one that showed the biggest percentage of
inconsistent records was 37.2373%. The experimental results also confirmed
that the proposed model did not consume unacceptable processing time.

Table 7: Record consistency investigation via EWI with SHBA

Conc lus $i$ on
This paper has briefly described the problem of record inconsistency and

presented a model that is constructed by using SQL to help efficiently

investigate the inconsistent records for discreted datasets. It has been

demonstrated successful as a record inconsistency detector for any dataset

79



that is discreted. The model can be also directly used for discrete datasets.
The equal width interval technique with SHBA embedded is employed to in the

proposed model. The results implied that record inconsistency investigation

was truly an essential issue to the discreted datasets used in DM research.
In our experiment, many parameters are considered. For example, the

determination of $k$ is based on Spector [22]. Other techniques may have

influence the final results, which is one of our future research focuses.
Although that we believe that other discretion techniques utilized and
binning regulations employed may greatly affect the percentage of

inconsistent records in a discreted dataset, it is encouraged that datasets

used in the DM research be investigated before moving to the next stages.

Moreover, as we have mentioned, the decision of the size of granules for

continuous attributes that need to be discreted is facing a problem of

dilemma that suffers from unacceptable amount of conflicting records to be

contained if too large and incomprehensible knowledge to be discovered if too

small. Therefore, a mechani sm that can carry out a near optimal solution for
record consistency and reliability of a descreted rule also is advantageous

to the further research focuses.
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